51
|
Lipani L, Odadzic D, Weizel L, Schwed JS, Sadek B, Stark H. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs. Eur J Med Chem 2014; 86:578-88. [PMID: 25218907 DOI: 10.1016/j.ejmech.2014.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/16/2014] [Accepted: 09/04/2014] [Indexed: 11/25/2022]
Abstract
The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively.
Collapse
Affiliation(s)
- Luca Lipani
- Department of Drug Sciences, University of Catania, Viale A. Doria, 6, I-95125 Catania, Italy; Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Dalibor Odadzic
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lilia Weizel
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Johannes-Stephan Schwed
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 17666, United Arab Emirates.
| | - Holger Stark
- Biocenter, Institute of Pharmaceutical Chemistry, Johann-Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
52
|
Martinel Lamas DJ, Croci M, Carabajal E, Crescenti EJV, Sambuco L, Massari NA, Bergoc RM, Rivera ES, Medina VA. Therapeutic potential of histamine H₄ receptor agonists in triple-negative human breast cancer experimental model. Br J Pharmacol 2014; 170:188-99. [PMID: 23425150 DOI: 10.1111/bph.12137] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/24/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The presence of the histamine H₄ receptor (H₄R) was previously reported in benign and malignant lesions and cell lines derived from the human mammary gland. The aim of this work was to evaluate the effects of H₄R ligands on the survival, tumour growth rate and metastatic capacity of breast cancer in an experimental model. EXPERIMENTAL APPROACH Xenograft tumours of the highly invasive human breast cancer cell line MDA-MB-231 were established in immune deficient nude mice. The following H₄R agonists were employed: histamine (5 mg kg⁻¹), clozapine (1 mg kg⁻¹) and the experimental compound JNJ28610244 (10 mg kg⁻¹). RESULTS Data indicate that developed tumours were highly undifferentiated, expressed H₄R and exhibited high levels of histamine content and proliferation marker (PCNA) while displaying low apoptosis. Mice of the untreated group displayed a median survival of 60 days and a tumour doubling time of 7.4 ± 0.6 days. A significant decrease in tumour growth evidenced by an augment of the tumour doubling time was observed in the H₄R agonist groups (13.1 ± 1.2, P < 0.01 in histamine group; 15.1 ± 1.1, P < 0.001 in clozapine group; 10.8 ± 0.7, P < 0.01 in JNJ28610244 group). This effect was associated with a decrease in the PCNA expression levels, and also reduced intratumoural vessels in histamine and clozapine treated mice. Histamine significantly increased median survival (78 days; Log rank Mantel-Cox Test, P = 0.0025; Gehan-Breslow-Wilcoxon Test, P = 0.0158) and tumoural apoptosis. CONCLUSIONS AND IMPLICATIONS Histamine through the H₄R exhibits a crucial role in tumour progression. Therefore, H₄R ligands offer a novel therapeutic potential as adjuvants for breast cancer treatment.
Collapse
Affiliation(s)
- Diego J Martinel Lamas
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Wittmann HJ, Seifert R, Strasser A. Sodium binding to hH3R and hH4R — a molecular modeling study. J Mol Model 2014; 20:2394. [DOI: 10.1007/s00894-014-2394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022]
|
54
|
Łażewska D, Więcek M, Ner J, Kamińska K, Kottke T, Schwed JS, Zygmunt M, Karcz T, Olejarz A, Kuder K, Latacz G, Grosicki M, Sapa J, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands. Eur J Med Chem 2014; 83:534-46. [DOI: 10.1016/j.ejmech.2014.06.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/17/2014] [Accepted: 06/16/2014] [Indexed: 12/01/2022]
|
55
|
Histamine Induces Upregulated Expression of Histamine Receptors and Increases Release of Inflammatory Mediators from Microglia. Mol Neurobiol 2014; 49:1487-500. [DOI: 10.1007/s12035-014-8697-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
|
56
|
Wingen K, Schwed JS, Isensee K, Weizel L, Zivković A, Odadzic D, Odazic D, Stark H. Benzylpiperidine variations on histamine H3 receptor ligands for improved drug-likeness. Bioorg Med Chem Lett 2014; 24:2236-9. [PMID: 24745967 DOI: 10.1016/j.bmcl.2014.03.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. Nevertheless, many promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity and their dibasic character. Analysis of previously, as potential PET ligands synthesized compounds (ST-889, ST-928) revealed promising results concerning physicochemical properties and drug-likeness. Herein, the synthesis, the evaluation of the binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties of further novel benzylpiperidine variations on H3R antagonists is described. Due to the introduction of various small hydrophilic moieties in the structure, drug-likeness parameters have been improved. For instance, compound 12 (ST-1032) showed in addition to high affinity at the H3R (pKi (hH3R)=9.3) clogS, clogP, LE, LipE, and LELP values of -2.48, 2.18, 0.44, 7.14, and 4.95, respectively. Also, the keto derivative 5 (ST-1703, pKi (hH3R)=8.6) revealed LipE and LELP values of 5.25 and 6.84, respectively.
Collapse
Affiliation(s)
- Kerstin Wingen
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - J Stephan Schwed
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Kathleen Isensee
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Lilia Weizel
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Aleksandra Zivković
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | | | - Dalibor Odazic
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany
| | - Holger Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
57
|
Savall BM, Chavez F, Tays K, Dunford PJ, Cowden JM, Hack MD, Wolin RL, Thurmond RL, Edwards JP. Discovery and SAR of 6-alkyl-2,4-diaminopyrimidines as histamine H₄ receptor antagonists. J Med Chem 2014; 57:2429-39. [PMID: 24495018 DOI: 10.1021/jm401727m] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report discloses the discovery and SAR of a series of 6-alkyl-2-aminopyrimidine derived histamine H4 antagonists that led to the development of JNJ 39758979, which has been studied in phase II clinical trials in asthma and atopic dermatitis. Building on our SAR studies of saturated derivatives from the indole carboxamide series, typified by JNJ 7777120, and incorporating knowledge from the tricyclic pyrimidines led us to the 6-alkyl-2,4-diaminopyrimidine series. A focused medicinal chemistry effort delivered several 6-alkyl-2,4-diaminopyrimidines that behaved as antagonists at both the human and rodent H4 receptor. Further optimization led to a panel of antagonists that were profiled in animal models of inflammatory disease. On the basis of the preclinical profile and efficacy in several animal models, JNJ 39758979 was selected as a clinical candidate; however, further development was halted during phase II because of the observation of drug-induced agranulocytosis (DIAG) in two subjects.
Collapse
Affiliation(s)
- Brad M Savall
- Janssen Research & Development, LLC , 3210 Merryfield Row, San Diego, California 92121, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Geyer R, Igel P, Kaske M, Elz S, Buschauer A. Synthesis, SAR and selectivity of 2-acyl- and 2-cyano-1-hetarylalkyl-guanidines at the four histamine receptor subtypes: a bioisosteric approach. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00245d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
59
|
Geyer R, Kaske M, Baumeister P, Buschauer A. Synthesis and functional characterization of imbutamine analogs as histamine H3 and H4 receptor ligands. Arch Pharm (Weinheim) 2013; 347:77-88. [PMID: 24493592 DOI: 10.1002/ardp.201300316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/07/2022]
Abstract
Imbutamine (4-(1H-imidazol-4-yl)butanamine) is a potent histamine H3 (H3R) and H4 receptor (H4R) agonist (EC50 values: 3 and 66 nM, respectively). Aiming at improved selectivity for the H4R, the imidazole ring in imbutamine was methyl-substituted or replaced by various differently substituted heterocycles (1,2,3-triazoles, 1,2,4-triazoles, pyridines, pyrimidines) as potential bioisosteres. Investigations in [(35)S]GTPγS binding assays using membranes of Sf9 insect cells expressing the respective human histamine receptor subtype revealed only very weak activity of most of the synthesized hetarylalkylamines at both receptors. By contrast, the introduction of substituents at the 4-imidazolyl ring was most effective regarding H4R selectivity. This holds for methyl substitution in position 2 and, especially, in position 5. 5-Methylimbutamine (H4R: EC50 = 59 nM, α = 0.8) was equipotent with imbutamine at the hH4R, but revealed about 16-fold selectivity for the hH4R compared to the hH3R (EC50 980 nM, α = 0.36), whereas imbutamine preferred the hH3R. The functional activities were in agreement with radioligand binding data. The results support the hypothesis that, by analogy with histamine, methyl substitution in histamine homologs offers a way to shift the selectivity in favor of the H4R.
Collapse
Affiliation(s)
- Roland Geyer
- Faculty of Chemistry and Pharmacy, Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
60
|
Zhang L, Peng XM, Damu GLV, Geng RX, Zhou CH. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med Res Rev 2013; 34:340-437. [PMID: 23740514 DOI: 10.1002/med.21290] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.
Collapse
Affiliation(s)
- Ling Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | | | | | | | | |
Collapse
|
61
|
Stegaev V, Nies AT, Porola P, Mieliauskaite D, Sanchez-Jimenez F, Urdiales JL, Sillat T, Schwelberger HG, Chazot PL, Katebe M, Mackiewicz Z, Konttinen YT, Nordstrom DCE. Histamine transport and metabolism are deranged in salivary glands in Sjogren's syndrome. Rheumatology (Oxford) 2013; 52:1599-608. [DOI: 10.1093/rheumatology/ket188] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
62
|
Strasser A, Wittmann HJ, Buschauer A, Schneider EH, Seifert R. Species-dependent activities of G-protein-coupled receptor ligands: lessons from histamine receptor orthologs. Trends Pharmacol Sci 2012; 34:13-32. [PMID: 23228711 DOI: 10.1016/j.tips.2012.10.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 12/26/2022]
Abstract
Histamine is a biogenic amine that exerts its biological effects as a neurotransmitter and local mediator via four histamine receptor (HR) subtypes (H(x)Rs) - H(1)R, H(2)R, H(3)R, and H(4)R - belonging to the superfamily of G-protein-coupled receptors (GPCRs). All four H(x)Rs exhibit pronounced differences in agonist and/or antagonist pharmacology among various species orthologs. The species differences constitute a problem for animal experiments and drug development. This problem applies to GPCRs with diverse ligands. Here, we summarize our current knowledge on H(x)R orthologs as a case study for species-dependent activity of GPCR ligands. We show that species-specific pharmacology also provides unique opportunities to study important aspects of GPCR pharmacology in general, including ligand-binding sites, the roles of extracellular domains in ligand binding and receptor activation, agonist-independent (constitutive) receptor activity, thermodynamics of ligand/receptor interaction, receptor-activation mechanisms, and ligand-specific receptor conformations.
Collapse
Affiliation(s)
- Andrea Strasser
- Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
63
|
Bhowmik M, Khanam R, Vohora D. Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: a systemic consideration of recent progress and perspectives. Br J Pharmacol 2012; 167:1398-1414. [PMID: 22758607 PMCID: PMC3514756 DOI: 10.1111/j.1476-5381.2012.02093.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/03/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022] Open
Abstract
The central histaminergic actions are mediated by H(1) , H(2) , H(3) and H(4) receptors. The histamine H(3) receptor regulates the release of histamine and a number of other neurotransmitters and thereby plays a role in cognitive and homeostatic processes. Elevated histamine levels suppress seizure activities and appear to confer neuroprotection. The H(3) receptors have a number of enigmatic features like constitutive activity, interspecies variation, distinct ligand binding affinities and differential distribution of prototypic splice variants in the CNS. Furthermore, this Gi/Go-protein-coupled receptor modulates several intracellular signalling pathways whose involvement in epilepsy and neurotoxicity are yet to be ascertained and hence represent an attractive target in the search for new anti-epileptogenic drugs. So far, H(3) receptor antagonists/inverse agonists have garnered a great deal of interest in view of their promising therapeutic properties in various CNS disorders including epilepsy and related neurotoxicity. However, a number of experiments have yielded opposing effects. This article reviews recent works that have provided evidence for diverse mechanisms of antiepileptic and neuroprotective effects that were observed in various experimental models both in vitro and in vivo. The likely reasons for the apparent disparities arising from the literature are also discussed with the aim of establishing a more reliable basis for the future use of H(3) receptor antagonists, thus improving their utility in epilepsy and associated neurotoxicity.
Collapse
Affiliation(s)
- M Bhowmik
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | |
Collapse
|
64
|
Voltage sensitivities and deactivation kinetics of histamine H3 and H4 receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3081-9. [DOI: 10.1016/j.bbamem.2012.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022]
|
65
|
von Gunten S, Marsland BJ, von Garnier C, Simon D. Update in clinical allergy and immunology. Allergy 2012; 67:1491-500. [PMID: 23110377 DOI: 10.1111/all.12067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2012] [Indexed: 01/08/2023]
Abstract
In the recent years, a tremendous body of studies has addressed a broad variety of distinct topics in clinical allergy and immunology. In this update, we discuss selected recent data that provide clinically and pathogenetically relevant insights or identify potential novel targets and strategies for therapy. The role of the microbiome in shaping allergic immune responses and molecular, as well as cellular mechanisms of disease, is discussed separately and in the context of atopic dermatitis, as an allergic model disease. Besides summarizing novel evidence, this update highlights current areas of uncertainties and debates that, as we hope, shall stimulate scientific discussions and research activities in the field.
Collapse
Affiliation(s)
- S. von Gunten
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - B. J. Marsland
- Department of Respiratory Medicine; Hospitalier Universitaire Vaudois; Lausanne; Switzerland
| | - C. von Garnier
- Department of Respiratory Medicine, Inselspital; Bern University Hospital; Bern; Switzerland
| | - D. Simon
- Department of Dermatology, Inselspital; Bern University Hospital; Bern; Switzerland
| |
Collapse
|
66
|
Vohora D, Bhowmik M. Histamine H3 receptor antagonists/inverse agonists on cognitive and motor processes: relevance to Alzheimer's disease, ADHD, schizophrenia, and drug abuse. Front Syst Neurosci 2012; 6:72. [PMID: 23109919 PMCID: PMC3478588 DOI: 10.3389/fnsys.2012.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 10/04/2012] [Indexed: 12/18/2022] Open
Abstract
Histamine H3 receptor (H3R) antagonists/inverse agonists possess potential to treat diverse disease states of the central nervous system (CNS). Cognitive dysfunction and motor impairments are the hallmark of multifarious neurodegenerative and/or psychiatric disorders. This review presents the various neurobiological/neurochemical evidences available so far following H3R antagonists in the pathophysiology of Alzheimer's disease (AD), attention-deficit hyperactivity disorder (ADHD), schizophrenia, and drug abuse each of which is accompanied by deficits of some aspects of cognitive and/or motor functions. Whether the H3R inverse agonism modulates the neurochemical basis underlying the disease condition or affects only the cognitive/motor component of the disease process is discussed with the aim to provide a rationale for their use in diverse disease states that are interlinked and are accompanied by some common motor, cognitive and attentional deficits.
Collapse
Affiliation(s)
- Divya Vohora
- Faculty of Pharmacy, Department of Pharmacology, Jamia Hamdard (Hamdard University)New Delhi, India
| | | |
Collapse
|
67
|
|
68
|
Richard MD, Brahm NC. Schizophrenia and the immune system: pathophysiology, prevention, and treatment. Am J Health Syst Pharm 2012; 69:757-66. [PMID: 22517021 DOI: 10.2146/ajhp110271] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Published evidence on established and theoretical connections between immune system dysfunction and schizophrenia is reviewed, with a discussion of developments in the search for immunologically-targeted treatments. SUMMARY A growing body of evidence indicates that immunologic influences may play an important role in the etiology and course of schizophrenia. A literature search identified more than 100 articles pertaining to suspected immunologic influences on schizophrenia published over the past 15 years. Schizophrenia researchers have explored a wide range of potential immune system-related causal or contributory factors, including neurobiological and neuroanatomical disorders, genetic abnormalities, and environmental influences such as maternal perinatal infection. Efforts to establish an immunologic basis for schizophrenia and identify reliable immune markers continue to be hindered by sampling challenges and methodological problems. In aggregate, the available evidence indicates that at least some cases of schizophrenia have an immunologic component, suggesting that immune-focused prevention strategies (e.g., counseling of pregnant women to avoid immune stressors) and close monitoring of at-risk children are appropriate. While antipsychotics remain the standard treatments for schizophrenia, a variety of drugs with immunologic effects have been investigated as adjunctive therapies, with variable and sometimes conflicting results; these include the cyclooxygenase-2 inhibitor celecoxib, immune-modulating agents (e.g., azathioprine and various anticytokine agents such as atlizumab, anakinra, and tumor necrosis factor-α blockers), and an investigational anti-interferon-γ agent. CONCLUSION The published evidence indicates that immune system dysfunction related to genetic, environmental, and neurobiological influences may play a role in the etiology of schizophrenia in a subset of patients.
Collapse
|
69
|
Zhang DD, Sisignano M, Schuh CD, Sander K, Stark H, Scholich K. Overdose of the histamine H₃ inverse agonist pitolisant increases thermal pain thresholds. Inflamm Res 2012; 61:1283-91. [PMID: 22820944 DOI: 10.1007/s00011-012-0528-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/04/2012] [Accepted: 07/03/2012] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE AND DESIGN Pitolisant (BF2.649) is a selective inverse agonist for the histamine H(3) receptor and was developed for the treatment of excessive daytime sleepiness in Parkinson disease, narcolepsy, and schizophrenia. Since H(3)-ligands can decrease inflammatory pain, we tested Pitolisant in inflammatory and neuropathic pain models. MATERIALS AND TREATMENTS: Behavioral effects of pitolisant and the structural different H(3) receptor inverse agonists ciproxifan and ST-889 were tested in zymosan-induced inflammation and the spared nerve injury model for neuropathic pain. METHODS Responses to mechanical and thermal stimuli were determined. Calcium imaging was performed with primary neuronal cultures of dorsal root ganglions. RESULTS Clinically relevant doses of pitolisant (10 mg/kg) had no relevant effect on mechanical or thermal pain thresholds in all animal models. Higher doses (50 mg/kg) dramatically increased thermal but not mechanical pain thresholds. Neither ciproxifan nor ST-889 altered thermal pain thresholds. In peripheral sensory neurons high concentrations of pitolisant (30-500 μM), but not ciproxifan, partially inhibited calcium increases induced by capsaicin, a selective activator of transient receptor potential vanilloid receptor 1 (TRPV1). High doses of pitolisant induced a strong hypothermia. CONCLUSION The data show a dramatic effect of high dosages of pitolisant on the thermosensory system, which appears to be H(3) receptor-independent.
Collapse
Affiliation(s)
- Dong Dong Zhang
- Institute of Clinical Pharmacology, pharmazentrum frankfurt, ZAFES, Hospital of the Goethe-University Frankfurt, Theodor Stern Kai 7, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Gschwandtner M, Bunk H, Köther B, Thurmond RL, Kietzmann M, Werfel T, Bäumer W, Gutzmer R. Histamine down-regulates IL-27 production in antigen-presenting cells. J Leukoc Biol 2012; 92:21-9. [DOI: 10.1189/jlb.0111017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
71
|
Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 2012; 3:238-47. [PMID: 22860191 DOI: 10.1021/cn200126p] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/10/2012] [Indexed: 12/25/2022] Open
Abstract
Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
72
|
DOGS: reaction-driven de novo design of bioactive compounds. PLoS Comput Biol 2012; 8:e1002380. [PMID: 22359493 PMCID: PMC3280956 DOI: 10.1371/journal.pcbi.1002380] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/21/2011] [Indexed: 11/19/2022] Open
Abstract
We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS (Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a deterministic compound construction procedure that explicitly considers compound synthesizability, based on a compilation of 25'144 readily available synthetic building blocks and 58 established reaction principles. This enables the software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4 receptor and γ-secretase were synthesized as suggested by the software. The computational approach proved to be suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-like properties. The computer program DOGS aims at the automated generation of new bioactive compounds. Only a single known reference compound is required to have the computer come up with suggestions for potentially isofunctional molecules. A specific feature of the algorithm is its capability to propose a synthesis plan for each designed compound, based on a large set of readily available molecular building blocks and established reaction protocols. The de novo design software provides rapid access to tool compounds and starting points for the development of a lead candidate structure. The manuscript gives a detailed description of the algorithm. Theoretical analysis and prospective case studies demonstrate its ability to propose bioactive, plausible and chemically accessible compounds.
Collapse
|
73
|
Yamaura K, Akiyama S, Ueno K. Increased expression of the histamine H4 receptor subtype in hypertrophic differentiation of chondrogenic ATDC5 cells. J Cell Biochem 2012; 113:1054-60. [DOI: 10.1002/jcb.23436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
74
|
Interactions of recombinant human histamine H1, H2, H3, and H4 receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:145-70. [DOI: 10.1007/s00210-011-0704-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 10/12/2011] [Indexed: 11/26/2022]
|
75
|
Geyer R, Buschauer A. Synthesis and histamine H(3) and H(4) receptor activity of conformationally restricted cyanoguanidines related to UR-PI376. Arch Pharm (Weinheim) 2011; 344:775-85. [PMID: 21987304 DOI: 10.1002/ardp.201100144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 11/11/2022]
Abstract
Recently, we identified highly potent agonists of the human histamine H(4) receptor (hH(4) R) among a series of imidazolylbutylcyanoguanidines. Aiming at improved selectivity for the hH(4) R relative to the H(3) receptor (hH(3) R), the flexible tetramethylene linker connecting imidazole ring and cyanoguanidine group was replaced by conformationally restricted carbocycles. Introduction of a para- or a meta-phenylene spacer yielded only very weakly active compounds at both hH(3) R and hH(4) R (investigated in [(35) S]GTPγS binding assays using Sf9 insect cell membranes expressing hH(x) R subtypes). By contrast, the incorporation of a more flexible cyclohexane-1,4-diyl linker resulted in EC(50) or K(B) values ≥110 nM at hH(4) R and hH(3) R. Quality of action, potency and receptor subtype selectivity of the investigated compounds depend on the stereochemistry: Cis-configured diastereomers prefer the hH(4) R and are partial agonists, whereas trans-isomers are antagonists at the hH(4) R. At the hH(3) R the trans-diastereomers are superior to the cis-isomers by a factor of 10. The results on imidazolylcycloalkylcyanoguanidines suggest that variation of ring size and optimization of the stereochemistry may be useful to increase the potency and selectivity of hH(4) R agonists relative to the hH(3) R.
Collapse
Affiliation(s)
- Roland Geyer
- Department of Pharmaceutical/Medicinal Chemistry II, University of Regensburg, Germany
| | | |
Collapse
|
76
|
Yamaura K, Oda M, Suzuki M, Ueno K. Lower expression of histamine H₄ receptor in synovial tissues from patients with rheumatoid arthritis compared to those with osteoarthritis. Rheumatol Int 2011; 32:3309-13. [PMID: 21881994 DOI: 10.1007/s00296-011-2069-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study is to compare the expression level of histamine H(4) receptor (H(4)R) mRNA in synovial tissues of rheumatoid arthritis (RA) and osteoarthritis (OA) patients, and to study correlation of results with clinical characteristics of patients with RA. Synovial tissues were obtained from 7 RA and 7 OA patients undergoing artificial arthroplasty. Serum levels of erythrocyte sedimentation rate, C-reactive protein, matrix metalloproteinase-3 (MMP-3), rheumatoid factors, and cyclic citrullinated peptide antibodies were determined. The expression of H(4)R mRNA in synovial tissues was determined by real-time polymerase chain reaction. Expression of H(1)R and H(4)R mRNA were significantly lower in RA compared with OA patients (P < 0.005), while expression of H(2)R mRNA was comparable in both. While a significant negative correlation was found between H(4)R expression and serum MMP-3 concentration (r = -0.70, P < 0.05), no correlation was found between MMP-3 and H(1)R (r = -0.52) or H(2)R (r = 0.23). This study supports the supposition that H(4)R in synovial tissue may play a role in cartilage and bone destruction by influencing the secretion of MMP-3 in patients with RA.
Collapse
Affiliation(s)
- Katsunori Yamaura
- Department of Geriatric Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | | | | | | |
Collapse
|
77
|
Papathanassiou M, Giannoulaki V, Zampeli E, Tiligada E. Effect of aminoguanidine on the conjunctival histamine and nitrite levels in experimental conjunctivitis. J Ocul Pharmacol Ther 2011; 27:137-42. [PMID: 21500983 DOI: 10.1089/jop.2010.0147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Histamine and nitric oxide (NO) play pivotal roles in ocular surface hypersensitivity reactions, whereas the activity of their metabolic enzymes diamine oxidase (DAO) and NO synthase (NOS) may affect their function. This study aimed at investigating the effects of ocular administration of aminoguanidine (AMG), a multiple action DAO and NOS inhibitor, on the conjunctival histamine and nitrite levels in a model of experimental conjunctivitis. METHODS AMG, at 0.81, 81 or 81×10(3) μM, was instilled into the lower conjunctival fornix of normal and compound 48/80 (C48/80)-challenged eyes of male Wistar rats in the absence or presence of 40 mg/mL disodium cromoglycate. Histamine and nitrite were quantified in the conjunctival homogenate and lavage fluid 45 min and 6 h postchallenge, respectively. RESULTS AMG induced no significant alterations in basal histamine and nitrite levels in the normal rat eye. In experimental conjunctivitis, AMG failed to modify the reduction in histamine content and partially circumvented the increases in nitrite levels observed during the early and late phase reactions, respectively. In the presence of disodium cromoglycate, AMG significantly increased the levels of both proinflammatory mediators in the normal rat eye. CONCLUSIONS The data suggested that DAO may not be the main route of in situ histamine catabolism in the normal and C48/80-challenged rat conjunctiva, whereas NOS contributes to the phenotypic alterations observed in mast cell-dependent conjunctivitis. Mast cell stabilizing agents and AMG-modulated systems seem to interact through yet undefined mechanisms in the different phases of ocular hypersensitivity reactions.
Collapse
|
78
|
Affiliation(s)
- Charles M. Marson
- Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H OAJ, United Kingdom
| |
Collapse
|
79
|
Modulation of metabolic activity of phagocytes by antihistamines. Interdiscip Toxicol 2011; 4:15-9. [PMID: 21577279 PMCID: PMC3090049 DOI: 10.2478/v10102-011-0004-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/13/2011] [Indexed: 11/20/2022] Open
Abstract
The purpose of the study was to investigate the effects of H(1)-antihistamines of the 1(st) generation (antazoline, bromadryl, brompheniramine, dithiaden, cyclizine, chlorcyclizine, chlorpheniramine, clemastine) and the 2(nd) generation (acrivastine, ketotifen, and loratadine) on the respiratory burst of phagocytes. Reactive oxygen species generation in neutrophils isolated from rat blood was measured using luminol-enhanced chemiluminescence. Changes in nitrite formation and iNOS protein expression by RAW 264.7 macrophages were analysed using Griess reaction and Western blotting. The antioxidative properties of drugs in cell-free systems were detected spectrophotometrically, luminometrically, fluorimetrically, and amperometrically. The majority of the H(1)-antihistamines tested (bromadryl, brompheniramine, chlorcyclizine, chlorpheniramine, clemastine, dithiaden, and ketotifen) exhibited a significant inhibitory effect on the chemiluminescence activity of phagocytes. H(1)-antihistamines did not show significant scavenging properties against superoxide anion and hydroxyl radical, thus this could not contribute to the inhibition of chemiluminescence. H(1)-antihistamines had a different ability to modulate nitric oxide production by LPS-stimulated macrophages. Bromadryl, clemastine, and dithiaden were the most effective since they inhibited iNOS expression, which was followed by a significant reduction in nitrite levels. H(1)-antihistamines had no scavenging activity against nitric oxide. It can be concluded that the effects observed in the H(1)-antihistamines tested are not mediated exclusively via H(1)-receptor pathway or by direct antioxidative properties. Based on our results, antihistamines not interfering with the microbicidal mechanisms of leukocytes (antazoline, acrivastine and cyclizine) could be used preferentially in infections. Other antihistamines should be used, under pathological conditions accompanied by the overproduction of reactive oxygen species.
Collapse
|
80
|
Walter M, Kottke T, Stark H. The histamine H₄ receptor: targeting inflammatory disorders. Eur J Pharmacol 2011; 668:1-5. [PMID: 21741967 DOI: 10.1016/j.ejphar.2011.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/07/2011] [Accepted: 06/15/2011] [Indexed: 01/14/2023]
Abstract
The discovery of the histamine H(4) receptor has added a new chapter to the century of extensive biogenic amine research. The human histamine H(4) receptor is mainly expressed in cells of the human immune system (e.g. mast cells, eosinophils, monocytes, dendritic cells, T cells) and mediates several effects on chemotaxis with numerous cell types. The distinct expression pattern and the immunomodulatory role highlight its physiological relevance in inflammatory and immunological processes. Inflammatory conditions, e.g. allergy, asthma and autoimmune diseases, were for a long time thought to be mainly mediated by activation of the histamine H(1) receptor subtype. However, in the treatment of diseases as chronic pruritus, asthma and allergic rhinitis the use of histamine H(1) receptor antagonists is unsatisfying. Selective H(4) receptor ligands and/or synergism of histamine H(1) and H(4) receptor modulation may be more effective in such pathophysiological conditions. Promising preclinical studies underline its role as an attractive target in the treatment of inflammatory and autoimmune disorders. Meanwhile, first histamine H(4) receptor antagonist has reached clinical phases for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Miriam Walter
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, ZAFES/LiFF/CMP/ICNF, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
81
|
Rossbach K, Nassenstein C, Gschwandtner M, Schnell D, Sander K, Seifert R, Stark H, Kietzmann M, Bäumer W. Histamine H1, H3 and H4 receptors are involved in pruritus. Neuroscience 2011; 190:89-102. [PMID: 21689731 DOI: 10.1016/j.neuroscience.2011.06.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 12/12/2022]
Abstract
Histamine has long been recognised as a classical inducer of pruritus. However, the specific mechanism of histamine-induced itch has still not been fully understood. The H1 and H4 receptor appear to be key components in the induction of itch. The specific role of the H3 receptor in histamine-induced itch remains unclear. The aim of our study was to investigate the role of the four known histamine receptors (H1-4) in acute itch in mice. Intradermal injection of the selective H3R inverse agonist pitolisant induced strong itch in mice. Pitolisant (50 nmol/injection)-induced pruritus could be completely blocked by a combined treatment with the H1R antagonist cetirizine (15 mg/kg) and the H4R antagonist JNJ 7777120 (15 mg/kg), whereas the H2R antagonist ranitidine (15 mg/kg) failed to inhibit the scratch response. Next, expression and function of histamine receptors on sensory neurons isolated from dorsal root ganglia of mice were investigated. As the itch sensation results from the excitation of sensory nerves in the skin, we further focused on skin specific sensory neurons. Therefore, neurons were retrograde labelled from the skin by means of a fluorescent tracer. Expression of H1R, H3R and H4R on skin innervating sensory neurons was detected. By single-cell calcium imaging, it was demonstrated that histamine induces a calcium increase in a subset of (skin-specific) sensory neurons via activation of the H1R and H4R as well as inhibition of the H3R. It is assumed that the decreased threshold in response to H3R antagonism activates H1R and H4R on sensory neurons, which in turn results in the excitation of histamine-sensitive afferents and therefore elicits the sensation of itch.
Collapse
Affiliation(s)
- K Rossbach
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
N-Alkenyl and cycloalkyl carbamates as dual acting histamine H3 and H4 receptor ligands. Bioorg Med Chem 2011; 19:2850-8. [DOI: 10.1016/j.bmc.2011.03.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 11/19/2022]
|
83
|
Abstract
The pathology of atopic dermatitis is orchestrated on the cellular level by several different cell types in the characteristic skin lesions. In such lesions, histamine as a mediator of many biological functions is also present in high concentrations. Most of the cells involved in the inflammatory responses express the histamine H1 and H2 receptors, but drugs targeting these receptors are not clinically effective. The discovery of the fourth histamine receptor, which is differentially expressed on immune and nonimmune cells, has shed new light on the actions of histamine in the complexity of atopic dermatitis. In this review, we describe a possible genetic impact on the expression level of the histamine H4 receptor and summarize the current data regarding the activity of the histamine H4 receptor on the key effector cells in atopic dermatitis. We do so in the context of whether the histamine H4 receptor offers a novel target for effective treatments of inflammatory skin diseases.
Collapse
|
84
|
Henry MB, Zheng S, Duan C, Patel B, Vassileva G, Sondey C, Lachowicz J, Hwa JJ. Antidiabetic properties of the histamine H3 receptor protean agonist proxyfan. Endocrinology 2011; 152:828-35. [PMID: 21239440 DOI: 10.1210/en.2010-0757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proxyfan is a histamine H3 receptor protean agonist that can produce a spectrum of pharmacological effects including agonist, inverse agonist, and antagonist. We have discovered that proxyfan (10 mg/kg orally) significantly improved glucose excursion after an ip glucose tolerance test in either lean or high-fat/cholesterol diet-induced obese mice. It also reduced plasma glucose levels comparable to that of metformin (300 mg/kg orally) in a nongenetic type 2 diabetes mouse model. The dose-dependent decrease in glucose excursion correlated with inhibition of ex vivo H3 receptor binding in the cerebral cortex. In addition, glucose levels were significantly reduced compared with vehicle-treated mice after intracerebroventricular administration of proxyfan, suggesting the involvement of central H3 receptors. Proxyfan-induced reduction of glucose excursion was not observed in the H3 receptor knockout mice, suggesting that proxyfan mediates this effect through H3 receptors. Proxyfan reduced glucose excursion by significantly increasing plasma insulin levels in a glucose-independent manner. However, no difference in insulin sensitivity was observed in proxyfan-treated mice. The H1 receptor antagonist chlorpheniramine and the H2 receptor antagonist zolantidine had modest effects on glucose excursion, and neither inhibited the glucose excursion reduced by proxyfan. The H3 receptor antagonist/inverse agonist, thioperamide, had weaker effects on glucose excursion compared with proxyfan, whereas the H3 receptor agonist imetit did not affect glucose excursion. In conclusion, these findings demonstrate, for the first time, that manipulation of central histamine H3 receptor by proxyfan can significantly improve glucose excursion by increasing plasma insulin levels via a glucose-independent mechanism.
Collapse
Affiliation(s)
- Melanie B Henry
- Diabetes/Obesity Research, Merck Research Laboratories, Kenilworth, New Jersey 07033, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Receptor-specific functional efficacies of alkyl imidazoles as dual histamine H3/H4 receptor ligands. Eur J Pharmacol 2011; 654:200-8. [DOI: 10.1016/j.ejphar.2010.12.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/18/2010] [Accepted: 12/15/2010] [Indexed: 11/23/2022]
|
86
|
Schnell D, Brunskole I, Ladova K, Schneider EH, Igel P, Dove S, Buschauer A, Seifert R. Expression and functional properties of canine, rat, and murine histamine H₄ receptors in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:457-70. [PMID: 21359967 DOI: 10.1007/s00210-011-0612-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/13/2010] [Indexed: 01/14/2023]
Abstract
The histamine H₄ receptor (H₄R) is expressed on cells of the immune system including eosinophils, dendritic cells, and T cells and plays an important role in the pathogenesis of bronchial asthma, atopic dermatitis, and pruritus. Analysis of the H₄R in these diseases depends on the use of animal models. However, there are substantial pharmacological differences between various H₄R species orthologs. The purpose of this study was to analyze the pharmacological properties of canine, rat, and murine H₄R in comparison to human H₄R expressed in Sf9 insect cells. Only hH₄R and cH₄R exhibited a sufficiently high [³H]histamine affinity for radioligand binding studies. Generally, cH₄R exhibited lower ligand-affinities than hH₄R. Similarly, in high-affinity GTPase studies, ligands were more potent at hH₄R than at other H₄R species orthologs. Unlike the other H₄R species orthologs, hH₄R exhibited high agonist-independent (constitutive) activity. Most strikingly, the prototypical H₄R antagonist (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine) (JNJ7777120) exhibited partial agonistic activity at cH₄R, rH₄R, and mH₄R, whereas at hH₄R, JNJ7777120 was a partial inverse agonist. H₄R agonists from the class of N ( G )-acylated imidazolylpropylguanidines and cyanoguanidines exhibited substantial differences in terms of affinity, potency, and efficacy among H₄R species orthologs, too. The species-dependent pharmacological profiles are not due to the highly variable amino acid sequence position 341. Finally, H₄R species orthologs differ from each other in terms of regulation by NaCl. Collectively, there are profound pharmacological differences between H₄R species orthologs. Most importantly, caution must be exerted when interpreting pharmacological effects of "the prototypical H₄R antagonist" JNJ7777120 as H₄R antagonism.
Collapse
Affiliation(s)
- David Schnell
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Salim S, Ali AS, Ali SA. Insights into the physiomodulatory role of histaminergic receptors in vertebrate skin pigmentation. J Recept Signal Transduct Res 2011; 31:121-31. [DOI: 10.3109/10799893.2011.552915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
89
|
Sander K, Kottke T, Weizel L, Stark H. Kojic acid derivatives as histamine H(3) receptor ligands. Chem Pharm Bull (Tokyo) 2011; 58:1353-61. [PMID: 20930404 DOI: 10.1248/cpb.58.1353] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The histamine H(3) receptor (H(3)R) is a promising target in the development of new compounds for the treatment of mainly centrally occurring diseases. However, emerging novel therapeutic concepts have been introduced and some indications in the H(3)R field, e.g. migraine, pain or allergic rhinitis, might take advantage of peripherally acting ligands. In this work, kojic acid-derived structural elements were inserted into a well established H(3)R antagonist/inverse agonist scaffold to investigate the bioisosteric potential of γ-pyranones with respect to the different moieties of the H(3)R pharmacophore. The most affine compounds showed receptor binding in the low nanomolar concentration range. Evaluation and comparison of kojic acid-containing ligands and their corresponding phenyl analogues (3-7) revealed that the newly integrated scaffold greatly influences chemical properties (S Log P, topological polar surface area (tPSA)) and hence, potentially modifies the pharmacokinetic profile of the different derivatives. Benzyl-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)methanamine ligands 3 and 4 belong to the centrally acting diamine-based class of H(3)R antagonist/inverse agonist, whereas kojic acid analogues 6 and 7 might act peripherally. The latter compounds state promising lead structures in the development of H(3)R ligands with a modified profile of action.
Collapse
Affiliation(s)
- Kerstin Sander
- Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Biocenter, ZAFES/CMP/ICNF, Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
90
|
Karabulut H, Baysal S, Acar B, Babademez MA, Karasen RM. Allergic rhinitis (AR) in geriatric patients. Arch Gerontol Geriatr 2011; 53:270-3. [PMID: 21227518 DOI: 10.1016/j.archger.2010.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 11/17/2022]
Abstract
Allergic rhinitis (AR) can be defined as an inflammatory disease of the nose and the paranasal sinuses, characterized by a specific IgE-mediated hypersensitivity reaction. The aim of this study was to evaluate the correlation between the symptoms of AR and the prick test results in geriatric patients presenting with symptoms of AR by comparing these with those of a young control group. Thirty-two geriatric patients (Group 1) were analyzed retrospectively, and 37 patients (Group 2) were selected as the control group. Diagnosis of AR was made based upon the physical examination findings, nasal endoscopic examination findings and the skin prick test results. While the skin prick test positivity was 50% in Group 1, this rate was found as 75.7% in Group 2. The difference was found to be statistically significant (p=0.044). A statistically significant difference was found between the two groups in terms of susceptibility to mugwort pollen and fish (p=0.048, p=0.033). In conclusion, in geriatric patients presenting with AR symptoms, systemic treatment should not be initiated before performing skin prick test, due to the adverse effects of the drugs.
Collapse
Affiliation(s)
- Hayriye Karabulut
- Department of Otolaryngology, Ankara Kecioren Research and Training Hospital, Vadi konutlari B Blok D, 4 Subayevleri Kecioren, 06130 Ankara, Turkey.
| | | | | | | | | |
Collapse
|
91
|
Hough LB, Rice FL. H3 receptors and pain modulation: peripheral, spinal, and brain interactions. J Pharmacol Exp Ther 2011; 336:30-7. [PMID: 20864501 PMCID: PMC3014298 DOI: 10.1124/jpet.110.171264] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/02/2010] [Indexed: 12/18/2022] Open
Abstract
Histamine H(3) receptors (H(3)Rs), distributed within the brain, the spinal cord, and on specific types of primary sensory neurons, can modulate pain transmission by several mechanisms. In the skin, H(3)Rs are found on certain Aβ fibers, and on keratinocytes and Merkel cells, as well as on deep dermal, peptidergic Aδ fibers terminating on deep dermal blood vessels. Activation of H(3)Rs on the latter in the skin, heart, lung, and dura mater reduces calcitonin gene-related peptide and substance P release, leading to anti-inflammatory (but not antinociceptive) actions. However, activation of H(3)Rs on the spinal terminals of these sensory fibers reduces nociceptive responding to low-intensity mechanical stimuli and inflammatory stimuli such as formalin. These findings suggest that H(3)R agonists might be useful analgesics, but these drugs have not been tested in clinically relevant pain models. Paradoxically, H(3) antagonists/inverse agonists have also been reported to attenuate several types of pain responses, including phase II responses to formalin. In the periaqueductal gray (an important pain regulatory center), the H(3) inverse agonist thioperamide releases neuronal histamine and mimics histamine's biphasic modulatory effects in thermal nociceptive tests. Newer H(3) inverse agonists with potent, selective, and brain-penetrating properties show efficacy in several neuropathic and arthritis pain models, but the sites and mechanisms for these actions remain poorly understood.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
| | | |
Collapse
|
92
|
Abstract
Considerable evidence has been collected indicating that histamine can modulate proliferation of different normal and malignant cells. High histamine biosynthesis and content together with histamine receptors have been reported in different human neoplasias including melanoma, colon and breast cancer, as well as in experimental tumours in which histamine has been postulated to behave as an important paracrine and autocrine regulator of proliferation. The discovery of the human histamine H(4) receptor in different tissues has contributed to our understanding of histamine role in numerous physiological and pathological conditions revealing novel functions for histamine and opening new perspectives in histamine pharmacology research. In the present review we aimed to briefly summarize current knowledge on histamine and histamine receptor involvement in cancer before focusing on some recent evidence supporting the novel role of histamine H(4) receptor in cancer progression representing a promising molecular target and avenue for cancer drug development.
Collapse
Affiliation(s)
- Vanina A Medina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
93
|
Tiligada E, Kyriakidis K, Chazot PL, Passani MB. Histamine pharmacology and new CNS drug targets. CNS Neurosci Ther 2010; 17:620-8. [PMID: 22070192 DOI: 10.1111/j.1755-5949.2010.00212.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the last decade, the identification of a number of novel drug targets led to the development of promising new compounds which are currently under evaluation for their therapeutic prospective in CNS related disorders. Besides the established pleiotropic regulatory functions in the periphery, the interest in the potential homeostatic role of histamine in the brain was revived following the identification of H(3) and H(4) receptors some years ago. Complementing classical CNS pharmacology, the development of selective histamine receptor agonists, antagonists, and inverse agonists provides the lead for the potential exploitation of the histaminergic system in the treatment of brain pathologies. Although no CNS disease entity has been associated directly to brain histamine dysfunction until now, the H(3) receptor is recognized as a drug target for neuropathic pain, sleep-wake disorders, including narcolepsy, and cognitive impairment associated with attention deficit hyperactivity disorder, schizophrenia, Alzheimer's, or Parkinson's disease, while the first H(3) receptor ligands have already entered phase I-III clinical trials. Interestingly, the localization of the immunomodulatory H(4) receptor in the nervous system exposes attractive perspectives for the therapeutic exploitation of this new drug target in neuroimmunopharmacology. This review focuses on a concise presentation of the current "translational research" approach that exploits the latest advances in histamine pharmacology for the development of beneficial drug targets for the treatment of neuronal disorders, such as neuropathic pain, cognitive, and sleep-wake pathologies. Furthermore, the role of the brain histaminergic system(s) in neuroprotection and neuroimmunology/inflammation remains a challenging research area that is currently under consideration.
Collapse
Affiliation(s)
- Ekaterini Tiligada
- Department of Pharmacology, Medical School University of Athens, Athens, Greece.
| | | | | | | |
Collapse
|
94
|
Igel P, Dove S, Buschauer A. Histamine H4 receptor agonists. Bioorg Med Chem Lett 2010; 20:7191-9. [PMID: 21044842 DOI: 10.1016/j.bmcl.2010.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
Since its discovery 10 years ago the histamine H(4) receptor (H(4)R) has attracted attention as a potential drug target, for instance, for the treatment of inflammatory and allergic diseases. Potent and selective ligands including agonists are required as pharmacological tools to study the role of the H(4)R in vitro and in vivo. Many H(4)R agonists, which were identified among already known histamine receptor ligands, show only low or insufficient H(4)R selectivity. In addition, the investigation of numerous H(4)R agonists in animal models is hampered by species-dependent discrepancies regarding potencies and histamine receptor selectivities of the available compounds, especially when comparing human and rodent receptors. This article gives an overview about structures, potencies, and selectivities of various compounds showing H(4)R agonistic activity and summarizes the structure-activity relationships of selected compound classes.
Collapse
Affiliation(s)
- Patrick Igel
- Department of Pharmaceutical/Medicinal Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
95
|
Schizophrenia, "just the facts" 5. Treatment and prevention. Past, present, and future. Schizophr Res 2010; 122:1-23. [PMID: 20655178 DOI: 10.1016/j.schres.2010.05.025] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/22/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022]
Abstract
The introduction of second-generation antipsychotics and cognitive therapies for schizophrenia over the past two decades generated considerable optimism about possibilities for recovery. To what extent have these developments resulted in better outcomes for affected individuals? What is the current state of our science and how might we address the many unmet needs in the prevention and treatment of schizophrenia? We trace the evolution of various treatments for schizophrenia and summarize current knowledge about available pharmacological and psychosocial treatments. We consider the widely prevalent efficacy-effectiveness gap in the application of available treatments and note the significant variability in individual treatment response and outcome. We outline an individualized treatment approach which emphasizes careful monitoring and collaborative decision-making in the context of ongoing benefit-risk assessment. We note that the evolution of both pharmacological and psychosocial treatments thus far has been based principally on serendipity and intuition. In view of our improved understanding of the etiology and pathophysiology of schizophrenia, there is an opportunity to develop prevention strategies and treatments based on this enhanced knowledge. In this context, we discuss potential psychopathological treatment targets and enumerate current pharmacological and psychosocial development efforts directed at them. Considering the stages of schizophrenic illness, we review approaches to prevent progression from the pre-symptomatic high-risk to the prodrome to the initial psychotic phase to chronicity. In view of the heterogeneity of risk factors, we summarize approaches towards targeted prevention. We evaluate the potential contribution of pharmacogenomics and other biological markers in optimizing individual treatment and outcome in the future.
Collapse
|
96
|
Histamine H3 receptor modulates nociception in a rat model of cholestasis. Pharmacol Biochem Behav 2010; 96:312-6. [DOI: 10.1016/j.pbb.2010.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 05/11/2010] [Accepted: 05/24/2010] [Indexed: 11/23/2022]
|
97
|
Beaton G, Moree WJ. The expanding role of H1antihistamines: a patent survey of selective and dual activity compounds 2005 – 2010. Expert Opin Ther Pat 2010; 20:1197-218. [DOI: 10.1517/13543776.2010.510516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
98
|
Łażewska D, Kieć-Kononowicz K. Recent advances in histamine H3receptor antagonists/inverse agonists. Expert Opin Ther Pat 2010; 20:1147-69. [DOI: 10.1517/13543776.2010.509346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
99
|
Comparison of the pharmacological properties of human and rat histamine H(3)-receptors. Biochem Pharmacol 2010; 80:1437-49. [PMID: 20688049 DOI: 10.1016/j.bcp.2010.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 11/20/2022]
Abstract
Ligand pharmacology of histamine H(3)-receptors is species-dependent. In previous studies, two amino acids in transmembrane domain 3 (TM III) were shown to play a significant role. In this study, we characterized human and rat histamine H(3)-receptors (hH(3)R and rH(3)R, respectively), co-expressed with mammalian G proteins in Sf9 insect cell membranes. We compared a series of imidazole-containing H(3)R ligands in radioligand binding and steady-state GTPase assays. H(3)Rs similarly coupled to Gα(i/o)-proteins. Affinities and potencies of the agonists histamine, N(α)-methylhistamine and R-(α)-methylhistamine were in the same range. Imetit was only a partial agonist. The pharmacology of imetit and proxifan was similar at both species. However, impentamine was more potent and efficacious at rH(3)R. The inverse agonists ciproxifan and thioperamide showed higher potency but lower efficacy at rH(3)R. Clobenpropit was not species-selective. Strikingly, imoproxifan was almost full agonist at hH(3)R, but an inverse agonist at rH(3)R. Imoproxifan was docked into the binding pocket of inactive and active hH(3)R- and rH(3)R-models and molecular dynamic simulations were performed. Imoproxifan bound to hH(3)R and rH(3)R in E-configuration, which represents the trans-isomer of the oxime-moiety as determined in crystallization studies, and stabilized active hH(3)R-, but inactive rH(3)R-conformations. Large differences in electrostatic surfaces between TM III and TM V cause differential orientation of the oxime-moiety of imoproxifan, which then differently interacts with the rotamer toggle switch Trp(6.48) in TM VI. Collectively, the substantial species differences at H(3)Rs are explained at a molecular level by the use of novel H(3)R active-state models.
Collapse
|
100
|
Schneider EH, Strasser A, Thurmond RL, Seifert R. Structural requirements for inverse agonism and neutral antagonism of indole-, benzimidazole-, and thienopyrrole-derived histamine H4 receptor ligands. J Pharmacol Exp Ther 2010; 334:513-21. [PMID: 20484153 DOI: 10.1124/jpet.110.165977] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The human histamine H(4) receptor (hH(4)R), coexpressed with Galpha(i2) and Gbeta(1)gamma(2) in Sf9 insect cells, is highly constitutively active, and thioperamide [THIO; N-cyclohexyl-4-(imidazol-4-yl)-1-piperidinecarbothioamide] is one of the most efficacious hH(4)R inverse agonists. High constitutive hH(4)R activity may have pathophysiological implications in which case inverse agonists may behave differently than neutral antagonists. To learn more about the structural requirements for hH(4)R inverse agonism, we investigated 25 compounds (indole, benzimidazole, and thienopyrrole derivatives) structurally related to the standard antagonist JNJ-7777120 [1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methyl-piperazine]. We characterized the compounds in radioligand binding assays by using [(3)H]histamine ([(3)H]HA) and in steady-state GTPase assays in the presence (antagonist mode) and absence (inverse agonist mode) of the agonist HA, yielding the following results: 1) Twenty-two compounds were inverse agonists (efficacy: 15-62% of the THIO effect), and only three compounds (12%) showed neutral antagonism. Thus, inverse agonism is far more common than neutral antagonism. 2) The inverse agonistic efficacy of the R5-monosubstituted indole-derived compounds increased with the volume of R5. R5 may interact with Trp(6.48) of the rotamer toggle switch and stabilize the inactive receptor conformation. 3) A subset of compounds showed large differences between the K(i) value from [(3)H]HA competition binding and the EC(50) value from steady-state GTPase assays, whereas the K(b) values were closer to the K(i) values. Thus, the two-state model should be extended to a model comprising a constitutively active hH(4)R state, which can be discriminated by inverse agonists from a structurally distinct HA-stabilized active state.
Collapse
Affiliation(s)
- Erich H Schneider
- Departments of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|