51
|
Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, Yan M, Zhu Z, Liu B. MiR-148a Functions as a Tumor Suppressor by Targeting CCK-BR via Inactivating STAT3 and Akt in Human Gastric Cancer. PLoS One 2016; 11:e0158961. [PMID: 27518872 PMCID: PMC4982598 DOI: 10.1371/journal.pone.0158961] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/26/2016] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) have been widely accepted as a class of gene expression regulators which post-translationally regulate protein expression. These small noncoding RNAs have been proved closely involved in the modulation of various pathobiological processes in cancer. In this research, we demonstrated that miR-148a expression was significantly down-regulated in gastric cancer tissues in comparison with the matched normal mucosal tissues, and its expression was statistically associated with lymph node metastasis. Ectopic expression of miR-148a inhibited tumor cell proliferation and migration in vitro, and inhibited tumor formation in vivo. Subsequently, we identified cholecystokinin B receptor (CCK-BR) as a direct target of miR-148a using western blot and luciferase activity assay. More importantly, siRNA-induced knockdown of CCK-BR elicited similar anti-oncogenic effects (decreased proliferation and migration) as those induced by enforced miR-148a expression. We also found that miR-148a-mediated anti-cancer effects are dependent on the inhibition of STAT3 and Akt activation, which subsequently regulates the pathways involved in cell proliferation and migration. Taken together, our results suggest that miR-148a serves as a tumor suppressor in human gastric carcinogenesis by targeting CCK-BR via inactivating STAT3 and Akt.
Collapse
Affiliation(s)
- Beiqin Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Lv
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Su
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyan Yu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinlong Gu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenggang Zhu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
52
|
Joo MK, Park JJ, Chun HJ. Recent updates of precision therapy for gastric cancer: Towards optimal tailored management. World J Gastroenterol 2016; 22:4638-4650. [PMID: 27217696 PMCID: PMC4870071 DOI: 10.3748/wjg.v22.i19.4638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
Signaling pathways of gastric carcinogenesis and gastric cancer progression are being avidly studied to seek optimal treatment of gastric cancer. Among them, hepatocyte growth factor (HGF)/c-MET, phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathways have been widely investigated. Their aberrant expression or mutation has been significantly associated with advanced stage or poor prognosis of gastric cancer. Recently, aberrations of immune checkpoints including programmed cell death-1/programmed cell death ligand-1 (PD-1/PD-L1) have been suggested as an important step in the formation of a microenvironment favorable for gastric cancer. Accomplishments in basic research have led to the development of novel agents targeting these signaling pathways. However, phase III studies of selective anti-HGF/c-MET antibodies and mTOR inhibitor failed to show significant benefits in terms of overall survival and progression-free survival. Few agents directly targeting STAT3 have been developed. However, this target is still critical issue in terms of chemoresistance, and SH2-containing protein tyrosine phosphatase 1 might be a significant link to effectively inhibit STAT3 activity. Inhibition of PD-1/PD-L1 showed durable efficacy in phase I studies, and phase III evaluation is warranted. Therapeutic strategy to concurrently inhibit multiple tyrosine kinases is a reasonable option, however, lapatinib needs to be further evaluated to identify good responders. Regorafenib has shown promising effectiveness in prolonging progression-free survival in a phase II study. In this topic highlight, we review the biologic roles and outcomes of clinical studies targeting these signaling pathways.
Collapse
|
53
|
Ji HG, Piao JY, Kim SJ, Kim DH, Lee HN, Na HK, Surh YJ. Docosahexaenoic acid inhibits Helicobacter pylori-induced STAT3 phosphorylation through activation of PPARγ. Mol Nutr Food Res 2016; 60:1448-57. [PMID: 27079734 DOI: 10.1002/mnfr.201600009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/09/2023]
Abstract
SCOPE The health beneficial effects of docosahexaenoic acid (DHA) have been attributed to its anti-inflammatory properties. However, the molecular mechanism underlying anti-inflammatory effects of DHA remains largely elusive. METHODS AND RESULTS In the present study, DHA was found to suppress the phosphorylation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) induced by Helicobacter pylori infection in human gastric cancer AGS cells. Notably, DHA induced expression of suppressor of cytokine signaling 3 (SOCS3), a negative regulator of STAT3. Knockdown of SOCS3 abolished the suppressive effect of DHA on STAT3(Tyr705) phosphorylation induced by H. pylori infection. DHA also induced nuclear translocation, DNA binding, and transcriptional activities of peroxisome proliferator-activated receptor gamma (PPARγ) in AGS cells. Knockdown of PPARγ inhibited the transcription of SOCS3 and attenuated the suppressive effect of DHA on phosphorylation of STAT3(Tyr705) induced by H. pylori. The PPARγ antagonist bisphenol A diglycidyl ether also mitigated the suppressive effect of DHA on H. pylori-induced phosphorylation of STAT3(Tyr705) . In addition, DHA inhibited the expression of c-Myc, which was attenuated in the AGS cells harboring SOCS3 specific siRNA. DHA also markedly decreased anchorage-independent growth of AGS cells infected by H. pylori. CONCLUSION DHA inhibits H. pylori-induced STAT3 phosphorylation in a PPARγ/SOCS3-dependent manner.
Collapse
Affiliation(s)
- Hyeon-Geun Ji
- Cancer Research Institute, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Juan-Yu Piao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences, Seoul, South Korea
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Cancer Research Institute, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Sciences, Seoul, South Korea
| |
Collapse
|
54
|
Crosstalk between bone marrow-derived myofibroblasts and gastric cancer cells regulates cancer stemness and promotes tumorigenesis. Oncogene 2016; 35:5388-5399. [PMID: 27109105 PMCID: PMC5063653 DOI: 10.1038/onc.2016.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
Abstract
Bone marrow-derived cells have important roles in cancer development and progression. Our previous studies demonstrated that murine bone marrow-derived myofibroblasts (BMFs) enhanced tumor growth. In this study, we investigated the mechanisms of BMF actions. We found that co-injection of BMFs with gastric cancer cells markedly promoted tumorigenesis. Co-cultured BMFs or BMF-conditioned medium (BMF-CM) induced the formation of spheres, which expressed stem cell signatures and exhibited features of self-renewal, epithelial-to-mesenchymal transition and tumor initiation. Furthermore, CD44+ fractions in spheres were able to initiate tumorigenesis and re-establish tumors in serially passaged xenografts. In co-culture systems, BMFs secreted high levels of murine interleukin-6 (IL-6) and hepatocyte growth factor (HGF), whereas cancer cells produced high level of transformation growth factor-β1 (TGF-β1). BMF-CM and IL-6 activated BMFs to produce mHGF, which activated signal transducer and activator of transcription 3 (STAT3) and upregulated TGF-β1 in human cancer cells. In return, cancer cell-CM stimulated BMFs to produce IL-6, which was inhibited by anti-TGF-β1 neutralizing antibody. Blockade of HGF/Met, Janus kinase 2 (JAK2)/STAT3 and TGF-β1 signaling by specific inhibitors inhibited BMF-induced sphere formation. STAT3 knockdown in cancer cells also inhibited BMF-induced sphere formation and tumorigenesis. Moreover, TGF-β1 overexpression in cancer cells was co-related with IL-6 and HGF overexpression in stromal cells in human gastric cancer tissues. Our results show that BMF-derived IL-6/HGF and cancer cell-derived TGF-β1 mediate the interactions between BMFs and gastric cancer cells, which regulate cancer stemness and promote tumorigenesis. Targeting inhibition of the interactions between BMFs and cancer cells may be a new strategy for cancer therapy.
Collapse
|
55
|
Wang XY, Wang LL, Zheng X, Meng LN, Lyu B, Jin HF. Expression of p-STAT3 and vascular endothelial growth factor in MNNG-induced precancerous lesions and gastric tumors in rats. World J Gastrointest Oncol 2016; 8:305-313. [PMID: 26989466 PMCID: PMC4789616 DOI: 10.4251/wjgo.v8.i3.305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/14/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the dynamic expression of p-signal transducer and activator of transcription 3 (STAT3) and vascular endothelial growth factor (VEGF) in the formation of gastric tumors induced by drinking water containing N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) in Wistar rats.
METHODS: One hundred and twenty Wistar rats were randomly divided into two groups (60 in each group): Control group and Model group. The rats in each group were then randomly divided into three groups (20 in each group): C/M15, C/M25 and C/M40 (15, 25 and 40 represent the number of feeding weeks from termination). Rats in the control group received normal drinking water and rats in the model group received drinking water containing 100 μg/mL MNNG. Stomach tissues were collected at the end of the 15th, 25th and 40th week, respectively, for microscopic measurement using hematoxylin and eosin staining. The expression of p-STAT3 and VEGF in different pathological types of gastric tissue, including normal, inflammation, atrophy, hyperplasia and gastric stromal tumor, was observed by immunohistochemistry and Western blot, and the corelation between p-STAT3 and VEGF was analyzed.
RESULTS: (1) The expression of p-STAT3 in tissue with gastritis, atrophy, dysplasia and gastric stromal tumor were significantly increased in the model group compared with the control group (2.5 ± 1.0, 2.75 ± 0.36, 6.2 ± 0.45, 5.67 ± 0.55 vs 0.75 ± 0.36, P = 0.026, 0.035, 0.001, 0.002, respectively); the expression of p-STAT3 in tissue with dysplasia was higher than that in samples with gastritis or atrophy (6.2 ± 0.45 vs 2.5 ± 1.0, P = 0.006; 6.2 ± 0.45 vs 2.75 ± 0.36, P = 0.005, respectively); however, the expression of p-STAT3 in gastritis and atrophy was not significantly different (P > 0.05); (2) the expression of VEGF in tissue with gastritis, atrophy, dysplasia and gastric stromal tumor was significantly increased in the model group compared with normal gastric mucosa; and the expression of VEGF in tissue with dysplasia was higher than that in tissue with inflammation and atrophy (10.8 ± 1.96 vs 7.62 ± 0.25, P = 0.029; 10.8 ± 1.96 vs 6.26 ± 0.76, P = 0.033, respectively); similarly, the expression of VEGF in tissue with gastritis and atrophy was not significantly different (P > 0.05); and (3) the expression of VEGF was positively correlated with p-STAT3.
CONCLUSION: p-STAT3 plays an important role in gastric cancer formation by regulating the expression of VEGF to promote the progression of gastric tumor from gastritis.
Collapse
|
56
|
Wang X, Zhang Y, Jiang L, Zhou F, Zhai H, Zhang M, Wang J. Interpreting the distinct and shared genetic characteristics between Epstein-Barr virus associated and non-associated gastric carcinoma. Gene 2016; 576:798-806. [PMID: 26584536 DOI: 10.1016/j.gene.2015.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022]
Abstract
Gastric carcinoma is one of the major causes of cancer mortality worldwide. There is a better prognosis for patients with Epstein-Barr virus (EBV)-associated gastric carcinoma (EBVaGC) compared with those with EBV negative gastric carcinoma (EBVnGC). It is partly due to the fact that EBV infection recruits lymphocytes infiltrating the tumor. It has been reported that this infection indeed resulted in the changes in immune response genes and thus preventing the development of tumor. It is worthwhile to do a systematic study of EBVaGC and EBVnGC based on genetic characteristics and pathways. In this study, we investigated the information of gene ontology (GO) and KEGG pathway annotations to characterize EBVaGC and EBVnGC-related genes. By applying minimum redundancy maximum relevance (mRMR) algorithm, we provided an optimal set of features for identifying the EBVaGC and EBVnGC. We also employed the shortest path algorithm to probe the novel EBVaGC- and EBVnGC-related genes based on the interaction network of genes that differently expressed in them respectively. We obtained 1039 and 1003 features to identify these two types of gastric carcinoma respectively. Based on the optimal features of classification, we predicted 1881 and 2475 novel genes as additional candidates to support clinical research respectively for these two types of gastric cancers. We compared the differences and similarities of molecular traits between EBVaGC and EBVnGC, which would facilitate the understanding of gastric cancer and its therapy and was thus clinically relevant.
Collapse
Affiliation(s)
- Xixun Wang
- Department of Abodomenal Surgery, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Yifei Zhang
- Department of Abodomenal Surgery, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Lixin Jiang
- Department of Abodomenal Surgery, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Furun Zhou
- Department of Gastroenterology, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Huiyuan Zhai
- Department of Abodomenal Surgery, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Menglai Zhang
- Department of Abodomenal Surgery, Yantai Yuhuangding Hospital, Shandong, PR China
| | - Jinglin Wang
- Department of Emergency Center, Yantai Yuhuangding Hospital, Shandong, PR China.
| |
Collapse
|
57
|
Zhang X, Tang J, Zhi X, Xie K, Wang W, Li Z, Zhu Y, Yang L, Xu H, Xu Z. miR-874 functions as a tumor suppressor by inhibiting angiogenesis through STAT3/VEGF-A pathway in gastric cancer. Oncotarget 2015; 6:1605-17. [PMID: 25596740 PMCID: PMC4359318 DOI: 10.18632/oncotarget.2748] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are endogenously expressed, small non-coding RNAs that regulate gene expression by targeting mRNAs for translational repression or degradation. Our previous studies indicated that miR-874 played a suppressive role in gastric cancer (GC) development and progression. However, the role of miR-874 in tumor angiogenesis and the mechanisms underlying its function in GC remained to be clarified. Here, gain- and loss-of-function assays demonstrated that miR-874 inhibited the tumor angiogenesis of GC cells in vitro and in vivo. Through reporter gene and western blot assays, STAT3 was shown to be a direct target of miR-874. Overexpression of STAT3 rescued the loss of tumor angiogenesis caused by miR-874. Conversely, the STAT3-shRNA attenuated the increased tumor angiogenesis caused by the miR-874-inhibitor. Furthermore, the levels of miR-874 were inversely correlated with those of STAT3 protein in GC tissues. Taken together, these findings indicate that down-regulation of miR-874 contributes to tumor angiogenesis through STAT3 in GC, highlighting the potential of miR-874 as a target for human GC therapy.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an People's Hospital, Xuzhou Medical College, Huai'an, Jiangsu, China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofei Zhi
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kunling Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
58
|
Joo MK, Park JJ, Yoo HS, Lee BJ, Chun HJ, Lee SW, Bak YT. Epigenetic regulation and anti-tumorigenic effects of SH2-containing protein tyrosine phosphatase 1 (SHP1) in human gastric cancer cells. Tumour Biol 2015; 37:4603-12. [PMID: 26508024 DOI: 10.1007/s13277-015-4228-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/12/2015] [Indexed: 02/06/2023] Open
Abstract
SH2-containing protein tyrosine phosphatase 1 (SHP1) is an important negative regulator in cytokine-mediated signal transduction and cell cycling. Recent studies have demonstrated that SHP1 promoter methylation is frequently observed in gastric adenocarcinoma tissues. In this in vitro study, we attempted to reveal promoter hypermethylation and to investigate effects of SHP1 in gastric carcinoma cell lines. We observed that both gene and protein expression of SHP1 were negative in 8 of 10 gastric cancer cell lines (SNU-1, SNU-5, SNU-16, SNU-638, SNU-719, MKN-28, MKN-45, AGS). Methylation-specific PCR (MSP) showed a methylation-specific band only in the 10 gastric cancer lines. Bisulfite pyrosequencing in AGS, MKN-28, and SNU-719 cells indicated that methylation frequency was as high as 94.4, 92.6, and 94.5 %, respectively, in the three cell lines. Treatment of SNU-719, MKN-28, and AGS cells with 5-Aza-2'-deoxycytidine (5-Aza-dc) led to re-expression of SHP1 in these cells. Introduction of exogenous SHP1 in SNU-719 and MKN-28 cells by transient transfection substantially downregulated protein expression of constitutive phosphor-Janus kinase 2 (JAK2) (tyrosine 1007/1008) and phosphor-signal transducers and activators of transcription 3 (STAT3) (tyrosine 705), which in turn decreased expression of STAT3 target genes including those encoding cyclin D1, MMP-9, VEGF-1, and survivin. Induction of SHP1 significantly inhibited cell proliferation, migration and invasion in SNU-719 and MKN-28 cells. Taken together, epigenetic silencing of SHP1 is frequently caused by promoter hypermethylation in gastric carcinoma cells. Overexpression of SHP1 downregulates the JAK2/STAT3 pathway to modulate various target genes and inhibit cell proliferation, migration, and invasion in gastric cancer cells.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea.
| | - Hyo Soon Yoo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Beom Jae Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Anam Hospital. 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705, Republic of Korea
| | - Sang Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Ansan Hospital. 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 425-707, Republic of Korea
| | - Young-Tae Bak
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital. 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| |
Collapse
|
59
|
Menheniott TR, Judd LM, Giraud AS. STAT3: a critical component in the response to Helicobacter pylori infection. Cell Microbiol 2015; 17:1570-82. [PMID: 26332850 DOI: 10.1111/cmi.12518] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/16/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
STAT3 imparts a profound influence on both the epithelial and immune components of the gastric mucosa, and through regulation of key intracellular signal transduction events, is well placed to control inflammatory and oncogenic outcomes in the context of Helicobacter (H.) pylori infection. Here we review the roles of STAT3 in the host immune response to H. pylori infection, from both gastric mucosal and systemic perspectives, as well as alluding more specifically to STAT3-dependent mechanisms that might be exploited as drug targets.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Judd
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew S Giraud
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
60
|
Khanna P, Chua PJ, Bay BH, Baeg GH. The JAK/STAT signaling cascade in gastric carcinoma (Review). Int J Oncol 2015; 47:1617-26. [PMID: 26398764 DOI: 10.3892/ijo.2015.3160] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 11/06/2022] Open
Abstract
Gastric carcinoma remains one of the most prevalent forms of cancer worldwide, despite the decline in incidence rates, increased awareness of the disease and advancement in treatment strategies. Helicobacter pylori infection, dietary factors, lifestyle influences and various genetic aberrations have been shown to contribute to the development and progression of gastric cancer. Recent studies on the genomic landscape of gastric adenocarcinoma have identified several key signaling molecules, including epidermal growth factor receptor family (ErbB) members, vascular endothelial growth factor receptor family (VEGFR) members and PI3K/Akt/mTOR pathway components, that have been implicated in the molecular pathogenesis of gastric cancers. However, clinical trials with compounds that target these molecules have failed to show a significant improvement in overall survival rates when supplemented with conventional therapies. Therefore, it is essential to identify effective prognostic and/or diagnostic biomarkers and develop molecular targeted therapies. The JAK/STAT cascade is a principal signal transduction pathway in cytokine and growth factor signaling, regulating various cellular processes such as cell proliferation, differentiation, migration and survival. Numerous in vivo and in vitro studies have shown that dysregulated JAK/STAT signaling is a driving force in the pathogenesis of various solid cancers as well as hematopoietic malignancies. Hence, a large number of preclinical and clinical studies of drugs targeting this pathway are currently underway. Notably, aberrant JAK/STAT signaling has also been implicated in gastric cancers. In this review, we focus on the ongoing research on the JAK/STAT cascade in gastric carcinoma and discuss the therapeutic potential of targeting JAK/STAT signaling for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Puja Khanna
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| | - Pei Jou Chua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117 597, Republic of Singapore
| |
Collapse
|
61
|
You LL, Cao DH, Jiang J, Hou Z, Suo YE, Wang SD, Cao XY. Transgenic mouse models of gastric cancer: Pathological characteristic and applications. Shijie Huaren Xiaohua Zazhi 2015; 23:2754-2760. [DOI: 10.11569/wcjd.v23.i17.2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transgenic animal models of gastric cancer have high specificity and similar tumor characteristics to human gastric cancer. Current research and application of transgenic animal models of gastric cancer are wide, and several models have been developed. In transgenic animal models of gastric cancer, primary gastric carcinoma can develop spontaneously. These transgenic animal models have been widely used to study the mechanism of gastric cancer development, and have great significance for clinical diagnosis and treatment of gastric cancer. This paper systematically summarizes several different kinds of transgenic animal models and describes the molecular pathogenic mechanisms and pathological characteristics of gastric mucosal lesions in these models as well as their applications.
Collapse
|
62
|
Ma Y, Zhang X, Xu X, Shen L, Yao Y, Yang Z, Liu P. STAT3 Decoy Oligodeoxynucleotides-Loaded Solid Lipid Nanoparticles Induce Cell Death and Inhibit Invasion in Ovarian Cancer Cells. PLoS One 2015; 10:e0124924. [PMID: 25923701 PMCID: PMC4414561 DOI: 10.1371/journal.pone.0124924] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/10/2015] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the synthesis of multi-functional nanoparticles have opened up tremendous opportunities for the targeted delivery of genes of interest. Cationic solid lipid nanoparticles (SLN) can efficiently bind nucleic acid molecules and transfect genes in vitro. Few reports have combined SLN with therapy using decoy oligodeoxynucleotides (ODN). In the present study, we prepared SLN to encapsulate STAT3 decoy ODN; then, the properties and in vitro behavior of SLN-STAT3 decoy ODN complexes were investigated. SLN-STAT3 decoy ODN complexes were efficiently taken up by human ovarian cancer cells and significantly suppressed cell growth. Blockage of the STAT3 pathway by SLN-STAT3 decoy ODN complexes resulted in an evident induction of cell death, including apoptotic and autophagic death. The mechanism involved the increased expression of cleaved caspase 3, Bax, Beclin-1 and LC3-II and reduced expression of Bcl-2, pro-caspase 3, Survivin, p-Akt and p-mTOR. In addition, SLN-STAT3 decoy ODN complexes inhibited cell invasion by up-regulating E-cadherin expression and down-regulating Snail and MMP-9 expression. These findings confirmed that SLN as STAT3 decoy ODN carriers can induce cell death and inhibit invasion of ovarian cancer cells. We propose that SLN represent a potential approach for targeted gene delivery in cancer therapy.
Collapse
Affiliation(s)
- Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoxuan Xu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liang Shen
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, China
| | - Yao Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Ziyan Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
63
|
Qi P, Xu MD, Shen XH, Ni SJ, Huang D, Tan C, Weng WW, Sheng WQ, Zhou XY, Du X. Reciprocal repression between TUSC7 and miR-23b in gastric cancer. Int J Cancer 2015; 137:1269-78. [PMID: 25765901 DOI: 10.1002/ijc.29516] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 02/16/2015] [Accepted: 03/04/2015] [Indexed: 12/14/2022]
Abstract
Recently, long noncoding RNAs (lncRNAs) were demonstrated to play important regulatory roles in biological processes and cancer biology. However, the overall pathophysiological contribution of lncRNAs to gastric cancer (GC) remains largely unknown. In this study, differentially expressed lncRNAs in GC and paired adjacent normal tissue samples were identified by microarray and were validated using quantitative real-time polymerase chain reaction (qRT-PCR). One particular lncRNA, tumour suppressor candidate 7 (TUSC7), was analyzed in sequential large cohorts, and the Kaplan-Meier method with the log-rank test for comparisons was used to analyse the survival data. The results indicated that TUSC7 was downregulated in GC samples and was an independent prognostic indicator of disease-free survival (DFS) and disease-specific survival (DSS) in GC patients. Applying loss-of-function and gain-of-function approaches, we determined that TUSC7 suppressed tumour cell growth in vitro and in vivo. Furthermore, we showed that TUSC7 was a direct transcriptional target of p53 via interaction of p53 with the putative p53-response element in the upstream region of TUSC7. Finally, we demonstrated reciprocal repression between TUSC7 and miR-23b; in contrast to TUSC7, miR-23b promoted cell growth. The results indicated that TUSC7 is a p53-regulated tumour suppressor that acts in part by repressing miR-23b and that TUSC7 may be a key regulatory hub in GC.
Collapse
Affiliation(s)
- Peng Qi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Mi-die Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Han Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shu-Juan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wei-Wei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wei-Qi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
64
|
Joo MK, Park JJ, Kim SH, Yoo HS, Lee BJ, Chun HJ, Lee SW, Bak YT. Antitumorigenic effect of plumbagin by induction of SH2-containing protein tyrosine phosphatase 1 in human gastric cancer cells. Int J Oncol 2015; 46:2380-8. [PMID: 25815436 DOI: 10.3892/ijo.2015.2935] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/17/2015] [Indexed: 01/20/2023] Open
Abstract
A recent study reported that plumbagin downregulated the activity of Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) pathway to show various antitumor effects in multiple myeloma cells. We aimed in this in vitro study to demonstrate the inhibition of JAK2/STAT3 pathway by plumbagin through inducing SH2-containing protein tyrosine phosphatase 1 (SHP1) expression in the MKN-28 gastric cancer cell line. We performed western blot analysis to measure SHP1, phosphor-JAK2/STAT3 level, and observed that plumbagin induced SHP1 expression and simultaneously downregulated phosphor-JAK2/STAT3 in MKN-28 cells, with negative SHP1 expression. This effect was consistent when JAK2/STAT3 signaling was activated by interleukin-6 (IL-6), and ameliorated when cells were treated with prevanadate, a protein tyrosin phosphatase inhibitor. Furthermore, plumbagin significantly reduced gene expression of cyclin D1, vascular endothelial growth factor (VEGF)-1, Bcl-xL, survivin and matrix metalloproteinase-9 (MMP-9), known target products of STAT3 activation in gastric carcinogenesis by reverse transcription-polymerase chain reaction (RT-PCR). Several functional studies such as water soluble tetrazolium salt-1 (WST-1) assay, wound closure assay, Matrigel invasion assay and Annexin V assay were also performed, and we validated the functional effect of plumbagin for inhibition of cell proliferation, migration and invasion, and induction of apoptosis. Collectively, our findings suggest that plumbagin is a potential regulator of cellular growth, migration, invasion and apoptosis by inhibiting both constitutive and inducible STAT3 activity through induction of SHP1 in gastric cancer cells.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152‑703, Republic of Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152‑703, Republic of Korea
| | - Sung Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152‑703, Republic of Korea
| | - Hyo Soon Yoo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152‑703, Republic of Korea
| | - Beom Jae Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152‑703, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Seoul 136‑705, Republic of Korea
| | - Sang Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Ansan Hospital, Ansan, Gyeonggi 425‑707, Republic of Korea
| | - Young-Tae Bak
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine, Guro Hospital, Seoul 152‑703, Republic of Korea
| |
Collapse
|
65
|
Ryan RE, Martin B, Mellor L, Jacob RB, Tawara K, McDougal OM, Oxford JT, Jorcyk CL. Oncostatin M binds to extracellular matrix in a bioactive conformation: implications for inflammation and metastasis. Cytokine 2015; 72:71-85. [PMID: 25622278 DOI: 10.1016/j.cyto.2014.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 09/25/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
Abstract
Oncostatin M (OSM) is an interleukin-6-like inflammatory cytokine reported to play a role in a number of pathological processes including cancer. Full-length OSM is expressed as a 26 kDa protein that can be proteolytically processed into 24 kDa and 22 kDa forms via removal of C-terminal peptides. In this study, we examined both the ability of OSM to bind to the extracellular matrix (ECM) and the activity of immobilized OSM on human breast carcinoma cells. OSM was observed to bind to ECM proteins collagen types I and XI, laminin, and fibronectin in a pH-dependent fashion, suggesting a role for electrostatic bonds that involves charged amino acids of both the ECM and OSM. The C-terminal extensions of 24 kDa and 26 kDa OSM, which contains six and thirteen basic amino acids, respectively, enhanced electrostatic binding to ECM at pH 6.5-7.5 when compared to 22 kDa OSM. The highest levels of OSM binding to ECM, though, were observed at acidic pH 5.5, where all forms of OSM bound to ECM proteins to a similar extent. This indicates additional electrostatic binding properties independent of the OSM C-terminal extensions. The reducing agent dithiothreitol also inhibited the binding of OSM to ECM suggesting a role for disulfide bonds in OSM immobilization. OSM immobilized to ECM was protected from cleavage by tumor-associated proteases and maintained activity following incubation at acidic pH for extended periods of time. Importantly, immobilized OSM remained biologically active and was able to induce and sustain the phosphorylation of STAT3 in T47D and ZR-75-1 human breast cancer cells over prolonged periods, as well as increase levels of STAT1 and STAT3 protein expression. Immobilized OSM also induced epithelial-mesenchymal transition-associated morphological changes in T47D cells. Taken together, these data indicate that OSM binds to ECM in a bioactive state that may have important implications for the development of chronic inflammation and tumor metastasis.
Collapse
Affiliation(s)
- Randall E Ryan
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Bryan Martin
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States; Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Liliana Mellor
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Reed B Jacob
- Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Ken Tawara
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Owen M McDougal
- Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States; Department of Chemistry and Biochemistry, 1910 University Drive, Boise, ID 83725, United States
| | - Julia Thom Oxford
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States
| | - Cheryl L Jorcyk
- Department of Biological Sciences, 1910 University Drive, Boise, ID 83725, United States; Biomolecular Research Center, 1910 University Drive, Boise, ID 83725, United States.
| |
Collapse
|
66
|
|
67
|
Ou H, Li Y, Kang M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS One 2014; 9:e109929. [PMID: 25365510 PMCID: PMC4217720 DOI: 10.1371/journal.pone.0109929] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023] Open
Abstract
The present study is to investigate the role of microRNA-21 (miR-21) in nasopharyngeal carcinoma (NPC) and the mechanisms of regulation of PTEN by miR-21. Fifty-four tissue samples were collected from 42 patients with NPC and 12 healthy controls. Human NPC cell lines CNE-1, CNE-2, TWO3 and C666-1 were used for cell assays. To investigate the expression of miR-21, RT-PCR was employed. RT-PCR, Western blotting, and immunohistochemistry were used to measure the expression of STAT3 mRNA and STAT3 protein. To test the effect of miR-21 on the cell growth and apoptosis of NPC cells in vitro, transfection of CNE1 and CNE2 cell lines and flow cytometry were performed. TUNEL assay was used to detect DNA fragmentation. To validate whether miR-21 directly recognizes the 3'-UTRs of PTEN mRNA, luciferase reporter assay was employed. miR-21 expression was increased in NPC tissues compared with control and the same result was found in NPC cell lines. Notably, increased expression of miR-21 was directly related to advanced clinical stage and lymph node metastasis. STAT3, a transcription factor activated by IL-6, directly activated miR-21 in transformed NPC cell lines. Furthermore, miR-21 markedly inhibited PTEN tumor suppressor, leading to increased AKT activity. Both in vitro and in vivo assays revealed that miR-21 enhanced NPC cell proliferation and suppressed apoptosis. miR-21, activated by STAT3, induced proliferation and suppressed apoptosis in NPC by targeting PTEN-AKT pathway.
Collapse
Affiliation(s)
- Hesheng Ou
- College of Pharmacy, Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
| | - Yumei Li
- College of Pharmacy, Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
| | - Min Kang
- The First Affiliated Hospital, Guangxi Medical University, Nanning City, Guangxi Province, P.R. China
- * E-mail:
| |
Collapse
|
68
|
LI YONGGUANG, XIA HONGJUAN, TAO JIANPING, XIN PING, LIU MINGYA, LI JINGBO, ZHU WEI, WEI MENG. GRIM-19-mediated Stat3 activation is a determinant for resveratrol-induced proliferation and cytotoxicity in cervical tumor-derived cell lines. Mol Med Rep 2014; 11:1272-7. [DOI: 10.3892/mmr.2014.2797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 07/21/2014] [Indexed: 11/06/2022] Open
|
69
|
Aoyagi K, Kouhuji K, Kizaki J, Isobe T, Hashimoto K, Shirouzu K. Molecular targeting to treat gastric cancer. World J Gastroenterol 2014; 20:13741-55. [PMID: 25320512 PMCID: PMC4194558 DOI: 10.3748/wjg.v20.i38.13741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/13/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
Trastuzumab that targets human epidermal growth factor receptor 2 (HER2) protein is the only approved molecular targeting agent for treating gastric cancer in Japan and the outcomes have been favorable. However, trastuzumab is effective for only 10% to 20% of the population with gastric cancer that expresses HER2 protein. Molecular targeting therapy with bevacizumab against vascular endothelial growth factors (VEGF) and with cetuximab and panitumumab against the epidermal growth factors pathway that have been approved for treating colorectal cancer are not considered effective for treating gastric cancer according to several clinical trials. However, ramucirumab that targets VEGF receptor-2 prolonged overall survival in a large phase III clinical trial and it might be an effective molecular targeting therapy for gastric cancer. The significance of molecular targeting therapy for gastric cancer remains controversial. A large-scale randomized clinical trial of novel molecular targeting agents with which to treat gastric cancer is needed.
Collapse
|
70
|
Wang YX, Cai H, Jiang G, Zhou TB, Wu H. Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition. Asian Pac J Cancer Prev 2014; 15:6791-8. [DOI: 10.7314/apjcp.2014.15.16.6791] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
71
|
Zhu H, Chen X, Chen B, Chen B, Fan J, Song W, Xie Z, Jiang D, Li Q, Zhou M, Sun D, Zhao Y. Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression. Cancer Lett 2014; 354:142-52. [PMID: 25130172 DOI: 10.1016/j.canlet.2014.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is a major challenge to the clinical treatment of esophageal cancer. The stress response gene activating transcription factor 4 (ATF4) is involved in homeostasis and cellular protection. However, relatively little is known about the expression and function of ATF4 in esophageal squamous cell carcinoma (ESCC) MDR. In this study, we investigate the potential role and mechanisms of ATF4 in ESCC MDR. We demonstrated that overexpression of ATF4 promotes the MDR phenotype in ESCC cells, while depletion of ATF4 in the MDR ESCC cell line induces drug re-sensitization. We also demonstrated that ATF4 transactivates STAT3 expression by directly binding to the signal transducers and activators of transcription 3 (STAT3) promoter, resulting in MDR in ESCC cells. Significantly, inhibition of STAT3 by small interfering RNA (siRNA) or a selective inhibitor (JSI-124) reintroduces therapeutic sensitivity. In addition, increased Bcl-2, survivin, and MRP1 expression levels were observed in ATF4-overexpressing cells. In conclusion, ATF4 may promote MDR in ESCC cells through the up-regulation of STAT3 expression, and thus is an attractive therapeutic target to combat therapeutic resistance in ESCC.
Collapse
Affiliation(s)
- Hongwu Zhu
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Xiong Chen
- Department of Oncology, Fuzhou General Hospital of the Nanjing Military Command of the PLA, Fuzhou, China
| | - Bin Chen
- Department of Oncology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Bei Chen
- Department of Oncology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Jianyong Fan
- Department of Dermatology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Weibing Song
- Department of Gerontology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Ziying Xie
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Dan Jiang
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Qiuqiong Li
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Meihua Zhou
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Dayong Sun
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China.
| | - Yagang Zhao
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China.
| |
Collapse
|
72
|
Katsha A, Arras J, Soutto M, Belkhiri A, El-Rifai W. AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Mol Oncol 2014; 8:1419-28. [PMID: 24953013 DOI: 10.1016/j.molonc.2014.05.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/09/2014] [Accepted: 05/23/2014] [Indexed: 12/16/2022] Open
Abstract
Aurora kinase A is a frequently amplified and overexpressed gene in upper gastrointestinal adenocarcinomas (UGCs). Using in vitro cell models of UGCs, we investigated whether AURKA can regulate Signal Transducer and Activator of Transcription 3 (STAT3). Our data indicate that overexpression of AURKA in FLO-1 and AGS cells increase STAT3 phosphorylation at the Tyr705 site, whereas AURKA genetic depletion by siRNA results in decreased phosphorylation levels of STAT3 in FLO-1 and MKN45 cells. Immunofluorescence analysis showed that AURKA overexpression enhanced STAT3 nuclear translocation while AURKA genetic knockdown reduced the nuclear translocation of STAT3 in AGS and FLO-1 cells, respectively. Using a luciferase reporter assay, we demonstrated that AURKA expression induces transcriptional activity of STAT3. Pharmacological inhibition of AURKA by MLN8237 reduced STAT3 phosphorylation along with down-regulation of STAT3 pro-survival targets, BCL2 and MCL1. Moreover, by using clonogenic cells survival assay, we showed that MLN8237 single dose treatment reduced the ability of FLO-1 and AGS cells to form colonies. Additional experiments utilizing cell models of overexpression and knockdown of AURKA indicated that STAT3 upstream non-receptor tyrosine kinase Janus kinase 2 (JAK2) is mediating the effect of AURKA on STAT3. The inhibition of JAK2 using JAK2-specific inhibitor AZD1480 or siRNA knockdown, in presence of AURKA overexpression, abrogated the AURKA-mediated STAT3 activation. These results confirm that the AURKA-JAK2 axis is the main mechanism by which AURKA regulates STAT3 activity. In conclusion, we report, for the first time, that AURKA promotes STAT3 activity through regulating the expression and phosphorylation levels of JAK2. This highlights the importance of targeting AURKA as a therapeutic approach to treat gastric and esophageal cancers.
Collapse
Affiliation(s)
- Ahmed Katsha
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Janet Arras
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammed Soutto
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abbes Belkhiri
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Wael El-Rifai
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.
| |
Collapse
|
73
|
Park JM, Park SH, Hong KS, Han YM, Jang SH, Kim EH, Hahm KB. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis. Helicobacter 2014; 19:221-36. [PMID: 24646026 DOI: 10.1111/hel.12121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE In spite of cytoprotective and anti-inflammatory actions, conventional licorice extracts (c-lico) were limitedly used due to serious side effects of glycyrrhizin. As our group had successfully isolated special licorice extracts (s-lico) lowering troublesome glycyrrhizin, but increasing licochalcone A, we have compared anti-inflammatory, antioxidative, and cytoprotective actions of s-lico and c-lico against either in vitro or in vivo Helicobacter pylori infection. METHODS RT-PCR and Western blot were performed to check anti-inflammatory action and electron spin resonance (ESR) and DCFDA spectroscopy to check antioxidative action. s-lico or c-lico was pretreated 1 hours before H. pylori infection on AGS cells. Interleukin-10 deficient mice inoculated H. pylori and followed with high salt containing pallet diets to produce H. pylori-associated chronic atrophic gastritis and gastric tumors, during which s-lico or c-lico-containing pellet diets were administered up to 24 weeks. RESULTS s-lico had fabulous efficacy on scavenging ROS which was further confirmed by DCFDA study and ESR measurement. The expressions of COX-2, iNOS, VEGF, and IL-8 were increased after H. pylori infection, of which levels were significantly decreased with s-lico in a dose-dependent manner. s-lico significantly ameliorated hypoxia-induced or H. pylori-induced angiogenic activities. s-lico significantly ameliorated H. pylori-induced gastric damages as well as gastritis. Our animal model showed significant development of gastric tumors including adenoma and dysplasia relevant to H. pylori infection, and s-lico administration significantly attenuated incidence of H. pylori-induced gastric tumorigenesis. CONCLUSIONS Special licorice extracts can be anticipating substance afforded significant attenuation of either H. pylori-induced gastritis or tumorigenesis based on potent antioxidative, anti-inflammatory, and antimutagenic actions.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA University School of Medicine, Seoul, 135-081, Korea
| | | | | | | | | | | | | |
Collapse
|
74
|
rs744166 polymorphism of the STAT3 gene is associated with risk of gastric cancer in a Chinese population. BIOMED RESEARCH INTERNATIONAL 2014; 2014:527918. [PMID: 24864251 PMCID: PMC4017712 DOI: 10.1155/2014/527918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
The aim of this study was to explore the association between polymorphisms in signal transducer and activator of transcription protein 3 (STAT3) and the risk of gastric cancer. In the present study, a case-control study was conducted in which rs2293152 and rs744166 polymorphisms in STAT3 were analyzed in 209 Chinese patients with gastric cancer and 294 cancer-free controls. The genotypes were determined by polymerase chain reaction restriction fragment length polymorphism method. For the rs744166 polymorphism, the TC genotype (adjusted OR = 0.60, 95% CI = 0.39-0.92, and P = 0.020) and CC genotype (adjusted OR = 0.41, 95% CI = 0.21-0.80, and P = 0.009) were associated with a decreased risk of gastric cancer compared to the TT genotype. However, rs2293152 did not show any difference in gastric cancer risk between patients and controls in the CG/CC genotype compared to the GG genotype. Besides, the SNP effects were additive to the effects of environmental factors without any interaction between them in the susceptibility to gastric cancer. Collectively, rs744166 polymorphism might be significantly associated with a decreased risk of gastric cancer in a Chinese population. Additionally, polymorphisms in STAT3, along with environmental factors, might be associated with the development of gastric cancer.
Collapse
|
75
|
Yao J, Qian CJ, Ye B, Zhao ZQ, Wei J, Liang Y, Zhang X. Signal transducer and activator of transcription 3 signaling upregulates fascin via nuclear factor-κB in gastric cancer: Implications in cell invasion and migration. Oncol Lett 2014; 7:902-908. [PMID: 24527098 PMCID: PMC3919871 DOI: 10.3892/ol.2014.1804] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022] Open
Abstract
Fascin protein plays important roles in tumor metastasis and is prognostically relevant to human gastric cancer (GC). However, its role in the development and progression of GC has not been comprehensively investigated. In the present study, results revealed that upregulation of fascin by interleukin-6 promotes GC cell migration and invasion in a signal transducer and activator of transcription 3 (STAT3)-dependent manner in MKN45 cells. Furthermore, STAT3 directly regulated fascin expression and nuclear factor-κB (NF-κB) bound to the fascin promoter in a STAT3-dependent and Notch-independent manner. Therefore, results demonstrate that STAT3 and NF-κB are required for upregulation of fascin and for cell migration and invasion in MKN45 cells. Effects of the treatments on cell signaling were detected by qPCR, western blot analysis and chromatin immunoprecipitation (ChIP) assay. Cell migration and invasion were analyzed using in vitro scratch wound healing assay, transwell and Matrigel assays, and xenograft model. In addition, the STAT3-NF-κB-fascin signaling axis is identified as a therapeutic target for blocking GC cell invasion and migration.
Collapse
Affiliation(s)
- Jun Yao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Cui-Juan Qian
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China ; Insitute of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Bei Ye
- Department of Gastroenterology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Zhi-Qiang Zhao
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jie Wei
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Yong Liang
- Institute of Tumor, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Xin Zhang
- Department of Gastroenterology, Taizhou Municipal Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
76
|
The role of inflammation in gastric cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:235-57. [PMID: 24818726 DOI: 10.1007/978-3-0348-0837-8_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer, despite its declining incidence rate, is still the second cause of cancer-related death worldwide, killing 750,000 people each year and remaining the second common type of cancer. The best examples of inflammation-associated cancer in human beings may be gastric cancer. Understanding the molecular mechanism of the inflammation in gastric carcinogenesis is important for developing new strategies against gastric cancer.
Collapse
|
77
|
SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene 2013; 33:5491-500. [PMID: 24276240 DOI: 10.1038/onc.2013.495] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 10/09/2013] [Accepted: 10/11/2013] [Indexed: 12/17/2022]
Abstract
SALL4, a zinc-finger transcriptional factor for embryonic stem cell self-renewal and pluripotency, has been suggested to be involved in tumorigenesis. The role of SALL4 in human gastric cancer, however, remains largely unknown. In this study, we demonstrated that SALL4 was aberrantly expressed at both mRNA and protein levels in human gastric cancer tissues, and SALL4 level was highly correlated with lymph node metastasis. Enforced expression of SALL4 enhanced the proliferation and migration of human gastric cancer cells, whereas knockdown of SALL4 by siRNA led to the opposite effects. In addition, SALL4 overexpression promoted the growth and metastasis of gastric xenograft tumor in vivo. SALL4 overexpression induced epithelial-mesenchymal transition (EMT) in gastric cancer cells, with increased expression of Twist1, N-cadherin and decreased expression of E-cadherin. Moreover, SALL4 promoted the acquirement of stemness in gastric cancer cells through the induction of Bmi-1 and Lin28B. Taken together, our findings indicate that SALL4 has oncogenic roles in gastric cancer through the modulation of EMT and cell stemness, suggesting SALL4 as a novel target for human gastric cancer diagnosis and therapy.
Collapse
|
78
|
Wang Z, Si X, Xu A, Meng X, Gao S, Qi Y, Zhu L, Li T, Li W, Dong L. Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications. PLoS One 2013; 8:e75788. [PMID: 24116074 PMCID: PMC3792128 DOI: 10.1371/journal.pone.0075788] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 08/21/2013] [Indexed: 12/22/2022] Open
Abstract
Background The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays important roles in oncogenesis, angiogenesis, immunity, and tumor cell invasion. In the present study, we investigated the association of interleukin (IL)-6/STAT3 signaling pathway with T lymphocytes and clinical implication in patients with gastric cancer. Methods Seventy one patients who underwent gastrectomy due to gastric adenocarcinoma were studied. Blood samples were collected before and after surgical gastrectomy to quantify the levels of IL-6, IL-10 and VEGF using an enzyme-linked immunosorbent assay, as well as T lymphocyte subsets (CD3+, CD4+, CD8+, CD4+/CD8+) and natural killer (NK) cells by a flow cytometry. Furthermore, the expression of IL-6, survivin, STAT3, STAT3 phosphorylation (p-STAT3), and VEGF were determined in human gastric cancer and adjacent normal mucosa through Western blot and immunohistochemistry. Results Postoperative levels of IL-6, IL-10 and VEGF in serum were significantly lower than preoperative levels. Percentages of T-cell subsets and NK cells in blood were significantly increased after postoperative-week 1 as compared to preoperative group, which was further augmented at 1 month after gastrectomy. In addition, the expression of IL-6, survivin, STAT3, p-STAT3, and VEGF were increased in human gastric cancer tissues as compared to adjacent normal mucosa. Their expression was associated with TNM stage of gastric cancer. The level of STAT3 activation in clinical samples was correlated with IL-6 expression. All gastric tumor samples, which expressed p-STAT3, also expressed IL-6 with weak expression detected in adjacent normal mucosa. Conclusion Increased IL-6-induced activation of STAT3 was observed in neoplastic gastric tissue, which positively correlated with tumor progression. Moreover, IL-6 and STAT3 downstream signals such as IL-10 and VEGF were reduced in patients after removal of gastric cancer as compared to pre-operation. Therefore, inhibition of the IL-6/STAT3 signaling pathway may provide a new therapeutic strategy against gastric cancer.
Collapse
Affiliation(s)
- Zhengguang Wang
- Key Laboratory of Antiinflammatory and Immunopharmacology, Department of Pharmacology, Ministry of Education, Key Laboratory of Chinese Medicine Research and Development, State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiulian Si
- Key Laboratory of Antiinflammatory and Immunopharmacology, Department of Pharmacology, Ministry of Education, Key Laboratory of Chinese Medicine Research and Development, State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Aman Xu
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangning Meng
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shile Gao
- Key Laboratory of Antiinflammatory and Immunopharmacology, Department of Pharmacology, Ministry of Education, Key Laboratory of Chinese Medicine Research and Development, State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yijun Qi
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Zhu
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tuanjie Li
- Department of Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiping Li
- Key Laboratory of Antiinflammatory and Immunopharmacology, Department of Pharmacology, Ministry of Education, Key Laboratory of Chinese Medicine Research and Development, State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (LD); (WL)
| | - Liuyi Dong
- Key Laboratory of Antiinflammatory and Immunopharmacology, Department of Pharmacology, Ministry of Education, Key Laboratory of Chinese Medicine Research and Development, State Administration of Traditional Chinese Medicine, Anhui Medical University, Hefei, Anhui, China
- * E-mail: (LD); (WL)
| |
Collapse
|
79
|
LI YONGGUANG, ZHU WEI, LI JINGBO, LIU MINGYA, WEI MENG. Resveratrol suppresses the STAT3 signaling pathway and inhibits proliferation of high glucose-exposed HepG2 cells partly through SIRT1. Oncol Rep 2013; 30:2820-8. [DOI: 10.3892/or.2013.2748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/21/2013] [Indexed: 11/06/2022] Open
|
80
|
Lu SM, Chen MR, Xuan JY, Liu LN, Lv S, Li Y. Relationship between STAT3 activation and epithelial-mesenchymal transition in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:2748-2753. [DOI: 10.11569/wcjd.v21.i26.2748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 (p-STAT3) in gastric carcinoma (GC) and to analyze their relationship with epithelial-mesenchymal transition (EMT), tumor invasion and metastasis.
METHODS: The expression of STAT3, p-STAT3, E-cadherin and Vimentin proteins in 53 GC specimens and matched normal gastric mucosal specimens was detected by immunohistochemistry. The correlation of expression of STAT3, p-STAT3, E-cadherin and Vimentin proteins with clinicopathological parameters of GC was analyzed.
RESULTS: The positive rates of STAT3, p-STAT3 and Vimentin expression were significantly higher and that of E-cadherin was significantly lower in GC than that in normal gastric mucosal tissues (all P < 0.01). The expression of STAT3, p-STAT3, E-cadherin and Vimentin proteins was significantly correlated with tumor differentiation, depth of invasion, lymph node metastasis and clinical stage (all P < 0.05), but not with gender, age, tumor size (all P > 0.05). STAT3 and p-STAT3 expression was negatively correlated with E-cadherin expression (r = -0.360, -0.335; P = 0.008, 0.014), but positively with Vimentin expression (r = 0.443, 0.346; P = 0.001, 0.011) in GC.
CONCLUSION: STAT3 and p-STAT3 protein expression is up-regulated in GC, and up-regulation of STAT3 and p-STAT3 protein expression in GC is significantly correlated with E-cadherin and Vimentin expression. These findings suggest that EMT may be mediated by the activation of the STAT3 signaling pathway.
Collapse
|
81
|
Inagaki-Ohara K, Kondo T, Ito M, Yoshimura A. SOCS, inflammation, and cancer. JAKSTAT 2013; 2:e24053. [PMID: 24069550 PMCID: PMC3772102 DOI: 10.4161/jkst.24053] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 12/25/2022] Open
Abstract
Signal transduction pathways elicited by cytokines and hormones have been shown to regulate distinct stages of development. Suppressor of cytokine signaling (SOCS) proteins are negative feedback regulators of cytokine signaling mediated by the JAK-STAT signaling pathway. In particular, SOCS1 and SOCS3 are potent inhibitors of JAKs and can play pivotal roles in inflammation, as well as in the development and progression of cancers. Abnormal expression of SOCS1 and SOCS3 in cancer cells has been reported in human carcinoma associated with dysregulation of signals from cytokine receptors, Toll-like receptors (TLRs), and hormone receptors, resulting in malignancies. In this review, we focus on the role of SOCS1 and SOCS3 in cancer development. In addition, the potential of SOCS as a therapeutic target and diagnostic aid will be discussed.
Collapse
Affiliation(s)
- Kyoko Inagaki-Ohara
- Department of Gastroenterology; Research Center for Hepatitis and Immunology; Research Institute; National Center for Global Health and Medicine (NCGM); Ichikawa, Japan
| | | | | | | |
Collapse
|