51
|
Chen H, Garbutt CC, Spentzos D, Choy E, Hornicek FJ, Duan Z. Expression and Therapeutic Potential of SOX9 in Chordoma. Clin Cancer Res 2017; 23:5176-5186. [PMID: 28606919 DOI: 10.1158/1078-0432.ccr-17-0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Conventional chemotherapeutic agents are ineffective in the treatment of chordoma. We investigated the functional roles and therapeutic relevance of the sex-determining region Y (SRY)-box 9 (SOX9) in chordoma.Experimental Design: SOX9 expression was examined by immunohistochemistry (IHC) using 50 chordoma tissue samples. SOX9 expression in chordoma cell lines was examined by Western blot and immunofluorescent assays. We used synthetic human SOX9 siRNA to inhibit the expression of SOX9. Cell proliferation ability and cytotoxicity of inhibiting SOX9 were assessed by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and clonogenic assays. The effect of SOX9 knockdown on chordoma cell motility was evaluated by a wound-healing assay and a Transwell invasion chamber assay. Knockdown of SOX9 induced apoptosis, cell-cycle arrest, as well as decreased expression of cancer stem cell markers were determined by Western blot and flow cytometric assays. The effect of the combination of SOX9 siRNA and the chemotherapeutic drug doxorubicin/cisplatin on chordoma cells was assessed by an MTT assay.Results: Tissue microarray and IHC analysis showed that SOX9 is broadly expressed in chordomas and that higher expression levels of SOX9 correlated with a poor prognosis. RNA interference (RNAi)-mediated knockdown of SOX9 inhibited chordoma cell growth, decreased cell motility, and induced apoptosis as well as cell-cycle arrest. Moreover, the combination of SOX9 inhibition and chemotherapeutic drugs had an enhanced anti-cancer effect on chordoma cells.Conclusions: Our results demonstrate that SOX9 plays a crucial role in chordoma. Targeting SOX9 provides a new rationale for treatment of chordoma. Clin Cancer Res; 23(17); 5176-86. ©2017 AACR.
Collapse
Affiliation(s)
- Hua Chen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Cassandra C Garbutt
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dimitrios Spentzos
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
52
|
An Integrative Developmental Genomics and Systems Biology Approach to Identify an In Vivo Sox Trio-Mediated Gene Regulatory Network in Murine Embryos. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630873 PMCID: PMC5467288 DOI: 10.1155/2017/8932583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted manner. Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and systems biology approach offers to complement the reductionist methodology of current developmental biology and provide a more comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio using mouse embryos, we provide evidence for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and by Morpholino knockdown in zebrafish and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently, a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled by the Sox trio in the intricate process of normal embryogenesis.
Collapse
|
53
|
Abstract
Glioblastoma remains the most common and deadliest type of brain tumor and contains a population of self-renewing, highly tumorigenic glioma stem cells (GSCs), which contributes to tumor initiation and treatment resistance. Developmental programs participating in tissue development and homeostasis re-emerge in GSCs, supporting the development and progression of glioblastoma. SOX1 plays an important role in neural development and neural progenitor pool maintenance. Its impact on glioblastoma remains largely unknown. In this study, we have found that high levels of SOX1 observed in a subset of patients correlate with lower overall survival. At the cellular level, SOX1 expression is elevated in patient-derived GSCs and it is also higher in oncosphere culture compared to differentiation conditions in conventional glioblastoma cell lines. Moreover, genetic inhibition of SOX1 in patient-derived GSCs and conventional cell lines decreases self-renewal and proliferative capacity in vitro and tumor initiation and growth in vivo. Contrarily, SOX1 over-expression moderately promotes self-renewal and proliferation in GSCs. These functions seem to be independent of its activity as Wnt/β-catenin signaling regulator. In summary, these results identify a functional role for SOX1 in regulating glioma cell heterogeneity and plasticity, and suggest SOX1 as a potential target in the GSC population in glioblastoma.
Collapse
|
54
|
Moradi A, Ghasemi F, Anvari K, Hassanian SM, Simab SA, Ebrahimi S, Hesari A, Forghanifard MM, Boroushaki MT, ShahidSales S, Avan A. The cross-regulation between SOX15 and Wnt signaling pathway. J Cell Physiol 2017; 232:3221-3225. [DOI: 10.1002/jcp.25802] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Moradi
- Department of Biology, Damghan Branch; Islamic Azad University; Damghan Iran
| | - Faezeh Ghasemi
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Biotechnology; Faculty of Medicine; Arak University of Medical Sciences; Arak Iran
| | - Kazem Anvari
- Cancer Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Biochemistry, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Saeideh Ahmadi Simab
- Cancer Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Amirreza Hesari
- Department of Biology, Damghan Branch; Islamic Azad University; Damghan Iran
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | | | - Mohammad Taher Boroushaki
- Department of Pharmacology and Pharmacological Research Center of Medicinal Plants; Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Amir Avan
- Metabolic syndrome Research center, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
55
|
Abstract
Sex-determining region Y (SRY)-box 9 (SOX9) is a member of the SOX transcription factor family. Increasing evidence has reported that SOX9 plays different roles in various types of malignancies. However, the role of SOX9 in papillary thyroid cancer (PTC) is still unclear. The aim of this study was to investigate the role of SOX9 in PTC. Our results showed that SOX9 was upregulated in PTC tissues and cell lines. In addition, knockdown of SOX9 significantly inhibited PTC proliferation, colony formation, migration, and invasion, as well as epithelial-mesenchymal transition (EMT) phenotype in TPC-1 and BCPAP cells. Moreover, knockdown of SOX9 significantly inhibited the expression levels of β-catenin, cyclin D1, and c-Myc in PTC cells. In conclusion, this is the first report demonstrating that knockdown of SOX9 inhibited PTC cell proliferation, invasion, and the EMT process via suppressing Wnt/β-catenin signaling pathway. Thus, SOX9 may act as a novel molecular target for the prevention and treatment of PTC.
Collapse
Affiliation(s)
- Jie Huang
- Department of General Surgery, Weifang People's Hospital, Weifang, P.R. China
| | | |
Collapse
|
56
|
Yin H, Sheng Z, Zhang X, Du Y, Qin C, Liu H, Dun Y, Wang Q, Jin C, Zhao Y, Xu T. Overexpression of SOX18 promotes prostate cancer progression via the regulation of TCF1, c-Myc, cyclin D1 and MMP-7. Oncol Rep 2016; 37:1045-1051. [PMID: 27922675 DOI: 10.3892/or.2016.5288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Sex determining region Y (SRY)-box 18 (SOX18) gene encodes transcription factors that have been recently confirmed to be overexpressed in various human types of cancer and maintain the malignant behavior of cancer cells. However, the role and its potential function in prostate cancer (PCa) has not been demonstrated and the mechanisms of SOX18 involved in tumor progression remain largely unclear. In the present study, the expression of SOX18 was analyzed in 98 PCa and 81 adjacent non-tumor tissues using immunohistochemistry. The data showed that SOX18 was overexpressed in 72 of 98 (73.5%) PCa tissues compared with that in 28 of 81 (34.6%) non-tumor tissues. In addition, the expression of SOX18 was related with the clinical features of patients with PCa. To explore the potential role of SOX18 in PCa cells, Cell Counting Kit-8 (CCK-8), migration, invasion and xenograft assays were performed. Our data showed that knockdown of SOX18 decreased the proliferation, migration and invasion of PCa cells in vitro, in addition to the tumor growth in vivo. Markedly, SOX18 knockdown caused the decreased expression of TCF1, c-Myc, cyclin D1 and MMP-7. In conclusion, SOX18 was overexpressed in PCa and may regulate the malignant capacity of cells via the upregulation of TCF1, c-Myc, cyclin D1 and MMP-7.
Collapse
Affiliation(s)
- Huaqi Yin
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Zhengzuo Sheng
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaowei Zhang
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Caipeng Qin
- Department of Urology, Peking University International Hospital, Beijing, P.R. China
| | - Huixin Liu
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Yaojun Dun
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Qi Wang
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Chengyue Jin
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| | - Yanhui Zhao
- Department of Urology, Central Hospital of Qingdao City, Qingdao, P.R. China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
57
|
Mishra S, Tripathi R, Singh S. Crosstalk of proteins, miRNAs involved in metastatic and epithelial–mesenchymal transition pathways. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1256843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
58
|
Silencing of SOX12 by shRNA suppresses migration, invasion and proliferation of breast cancer cells. Biosci Rep 2016; 36:BSR20160053. [PMID: 27582508 PMCID: PMC5052717 DOI: 10.1042/bsr20160053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/26/2016] [Indexed: 01/20/2023] Open
Abstract
Sex determining region Y-box protein 12 (SOX12) is essential for embryonic development and cell fate determination. The role of SOX12 in tumorigenesis of breast cancer is not well-understood. Here, we found that SOX12 mRNA expression was up-regulated in human breast cancer tissues. To clarify the roles of SOX12 in breast cancer, we used lentiviral small hairpin RNAs (shRNAs) to suppress its expression in two breast cancer cells with relatively higher expression of SOX12 (BT474 and MCF-7). Our findings strongly suggested that SOX12 was critical for cell migration and invasion of breast cancer cells. We found that silencing of SOX12 significantly decreased the mRNA and protein levels of MMP9 and Twist, while notably increased E-cadherin. Moreover, SOX12 knockdown significantly inhibited the proliferation of breast cancer cells in vitro and the growth of xenograft tumors in vivo Flow cytometry analysis revealed that breast cancer cells with SOX12 knockdown showed cell cycle arrest and decreased mRNA and protein levels of PCNA, CDK2 and Cyclin D1. Taken together, SOX12 plays an important role in growth inhibition through cell-cycle arrest, as well as migration and invasion of breast cancer cells.
Collapse
|
59
|
Orriols M, Varona S, Aguiló S, Galán M, Martínez González J, Rodríguez C. [Inflammation inhibits vascular fibulin-5 expression: Involvement of transcription factor SOX9]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2016; 28:271-280. [PMID: 27692634 DOI: 10.1016/j.arteri.2016.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Fibulin-5 (FBLN5) is an elastogenic protein critically involved in extracellular matrix (ECM) remodelling, a key process in abdominal aortic aneurysm (AAA). However, the possible contribution of FBLN5 to AAA development has not been addressed. METHODS Expression levels were determined by real-time PCR and Western blot in human abdominal aorta from patients with AAA or healthy donors, as well as in human aortic vascular smooth muscle cells (VSMC). Lentiviral transduction, transient transfections, and chromatin immunoprecipitation (ChIP) assays were also performed. RESULTS The expression of FBLN5 in human AAA was significantly lower than in healthy donors. FBLN5 mRNA and protein levels and their secretion to the extracellular environment were down-regulated in VSMC exposed to inflammatory stimuli. Interestingly, FBLN5 transcriptional activity was inhibited by TNFα and lipopolysaccharide (LPS), and depends on a SOX response element. In fact, SOX9 expression was reduced in VMSC induced by inflammatory mediators and in human AAA, and correlated with that of FBLN5. Furthermore, SOX9 over-expression limited the reduction of FBLN5 expression induced by cytokines in VSMC. Finally, it was observed that SOX9 interacts with FBLN5 promoter, and that this binding was reduced upon TNFα exposure. CONCLUSIONS FBLN5 downregulation in human AAA could contribute to extracellular matrix remodelling induced by the inflammatory component of the disease.
Collapse
Affiliation(s)
- Mar Orriols
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | - Saray Varona
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | - Silvia Aguiló
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | - María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España
| | | | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona, España.
| |
Collapse
|
60
|
Olbromski M, Grzegrzolka J, Jankowska-Konsur A, Witkiewicz W, Podhorska-Okolow M, Dziegiel P. MicroRNAs modulate the expression of the SOX18 transcript in lung squamous cell carcinoma. Oncol Rep 2016; 36:2884-2892. [DOI: 10.3892/or.2016.5102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2016] [Indexed: 11/06/2022] Open
|
61
|
Cuvertino S, Filiciotto G, Masurekar A, Saha V, Lacaud G, Kouskoff V. SOX7 promotes the maintenance and proliferation of B cell precursor acute lymphoblastic cells. Oncotarget 2016; 8:64974-64983. [PMID: 29029405 PMCID: PMC5630305 DOI: 10.18632/oncotarget.10472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent type of cancer in children. Despite progresses in curative treatment, intensive chemotherapy regimens still cause life threatening complications. A better understanding of the molecular mechanisms underlying the emergence and maintenance of BCP-ALL is fundamental for the development of novel therapies. Here, we establish that SOX7 is frequently and specifically expressed in BCP-ALL and that the expression of this transcription factor does not correlate with any specific cytogenetic abnormalities. Using human leukemia model systems, we establish that the down-regulation of SOX7 in BCP-ALL causes a significant decrease in proliferation and clonogenicity in vitro that correlates with a delay in leukemia initiation and burden in vivo. Overall, these results identify a novel and important functional role for the transcription factor SOX7 in promoting the maintenance of BCP-ALL.
Collapse
Affiliation(s)
- Sara Cuvertino
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.,Present address: Genetic Medicine, Institute of Human Development, University of Manchester, St Mary's Hospital, Manchester M13 9WL, UK
| | - Genny Filiciotto
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Ashish Masurekar
- Children's Cancer Group, Institute of Cancer Sciences, The University of Manchester, Manchester M20 4BX, UK
| | - Vaskar Saha
- Children's Cancer Group, Institute of Cancer Sciences, The University of Manchester, Manchester M20 4BX, UK.,TCS Translational Cancer Research Centre, Tata Medical Centre, Kolkata 700156, India
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
62
|
Orriols M, Varona S, Martí-Pàmies I, Galán M, Guadall A, Escudero JR, Martín-Ventura JL, Camacho M, Vila L, Martínez-González J, Rodríguez C. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 2016; 110:431-42. [DOI: 10.1093/cvr/cvw082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
|
63
|
Suppression of SOX18 by siRNA inhibits cell growth and invasion of breast cancer cells. Oncol Rep 2016; 35:3721-7. [DOI: 10.3892/or.2016.4746] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/27/2016] [Indexed: 11/05/2022] Open
|
64
|
Zhao Y, Liu ZG, Tang J, Zou RF, Chen XY, Jiang GM, Qiu YF, Wang H. High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. Onco Targets Ther 2016; 9:1671-7. [PMID: 27051302 PMCID: PMC4807932 DOI: 10.2147/ott.s101344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The aim of the study was to detect the expression of Sox10 in human nasopharyngeal carcinoma (NPC) and investigate the relationship between its expression and the clinicopathological characteristics of NPC patients. Patients and methods Tumor specimens (n=105) were retrospectively collected from patients with NPC diagnosed between 2004 and 2005 who presented at Hunan Cancer Hospital. Immunohistochemistry analyses were performed to characterize the expression of Sox10 in NPC. Kaplan–Meier survival and Cox regression analyses were employed to evaluate the prognosis of 105 NPC patients. Results The results showed that Sox10 was markedly overexpressed in human NPC tissues. Analysis of clinicopathological parameters showed that high Sox10 expression was significantly correlated with the clinical stage (P=0.032), T classification (P=0.034), and lymph node metastasis (P=0.03). Cox regression analyses further showed that Sox10 expression was an independent prognostic factor for overall survival (P=0.005). This is the first time Sox10 has shown its importance in predicting NPC progressiveness and survival outcomes. Conclusion Sox10 serves as a potential biomarker for NPC patients. It may hopefully become a novel therapeutic target for NPC patients.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Changsha, Hunan, People's Republic of China
| | - Zhi-Gang Liu
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Changsha, Hunan, People's Republic of China
| | - Jiao Tang
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Changsha, Hunan, People's Republic of China
| | - Ren-Fang Zou
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Changsha, Hunan, People's Republic of China
| | - Xiao-Yan Chen
- Department of Pathology, Central South University, Changsha, Hunan, People's Republic of China
| | - Guan-Min Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan-Fang Qiu
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Changsha, Hunan, People's Republic of China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
65
|
Petrovic I, Milivojevic M, Popovic J, Schwirtlich M, Rankovic B, Stevanovic M. SOX18 Is a Novel Target Gene of Hedgehog Signaling in Cervical Carcinoma Cell Lines. PLoS One 2015; 10:e0143591. [PMID: 26588701 PMCID: PMC4654472 DOI: 10.1371/journal.pone.0143591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 11/06/2015] [Indexed: 02/08/2023] Open
Abstract
Although there is much evidence showing functional relationship between Hedgehog pathway, in particular Sonic hedgehog, and SOX transcription factors during embryonic development, scarce data are available regarding their crosstalk in cancer cells. SOX18 protein plays an important role in promoting tumor angiogenesis and therefore emerged as a promising potential target in antiangiogenic tumor therapy. Recently it became evident that expression of SOX18 gene in tumors is not restricted to endothelium of accompanying blood and lymphatic vessels, but in tumor cells as well.In this paper we have identified human SOX18 gene as a novel target gene of Hedgehog signaling in cervical carcinoma cell lines. We have presented data showing that expression of SOX18 gene is regulated by GLI1 and GLI2 transcription factors, final effectors of Hedgehog signaling, and that modulation of Hedgehog signaling activity in considerably influence SOX18 expression. We consider important that Hedgehog pathway inhibitors reduced SOX18 expression, thus showing, for the first time, possibility for manipulationwith SOX18 gene expression. In addition, we analyzed the role of SOX18 in malignant potential of cervical carcinoma cell line, and showed that its overexpression has no influence on cells proliferation and viability, but substantially promotes migration and invasion of cells in vitro. Pro-migratory effect of SOX18 suggests its role in promoting malignant spreading, possibly in response to Hedgehog activation.
Collapse
Affiliation(s)
- Isidora Petrovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
- * E-mail:
| | - Milena Milivojevic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Jelena Popovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Branislava Rankovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| | - Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O.BOX 23, 11000 Belgrade, Serbia
| |
Collapse
|
66
|
Wang J, Zeng H, Li H, Zhang J, Wang S. Roles of sex-determining region Y-box 2 in cell pluripotency and tumor-related signaling pathways. Mol Clin Oncol 2015; 3:1203-1207. [PMID: 26807221 DOI: 10.3892/mco.2015.639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/14/2015] [Indexed: 01/10/2023] Open
Abstract
The sex-determining region Y-box 2 (SOX2) gene, a member of the Sry-like high-mobility group box (SOX) gene family, encodes the transcription factor Sox2, which significantly contributes to the regulation of cell pluripotency. Sox2 is closely associated with early embryonic development, neural differentiation and other biological processes. An inreasing number of recent studies suggest that Sox2 exerts a positive effect on malignant tumors. According to these results, Sox2 is expected to become a novel target for cancer therapy by unveiling the mechanism through which it affects the biological behavior of tumors. Therefore, it is crucial to elucidate the detailed association of Sox2 with malignant tumors. The aim of this study was to review the role of Sox2 in pluripotency maintenance, early embryonic development and neural differentiation, as well as investigate the detailed mechanism through which Sox2 regulates cancer stem cells and tumorigenesis.
Collapse
Affiliation(s)
- Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Huijuan Zeng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Juanjuan Zhang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
67
|
Schmouth JF, Arenillas D, Corso-Díaz X, Xie YY, Bohacec S, Banks KG, Bonaguro RJ, Wong SH, Jones SJM, Marra MA, Simpson EM, Wasserman WW. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development. BMC Genomics 2015. [PMID: 26204903 PMCID: PMC4512088 DOI: 10.1186/s12864-015-1770-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. Results In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. Conclusions In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1770-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Current address: Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, H3A 2B4, Canada.
| | - David Arenillas
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Yuan-Yun Xie
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Slavita Bohacec
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Siaw H Wong
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Steven J M Jones
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
68
|
Sharma P, Sharma R. miRNA-mRNA crosstalk in esophageal cancer: From diagnosis to therapy. Crit Rev Oncol Hematol 2015; 96:449-62. [PMID: 26257289 DOI: 10.1016/j.critrevonc.2015.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/11/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022] Open
Abstract
The asymptomatic nature of esophageal cancer (EC) at early stages results in late clinical presentation leading to poor prognosis and limited success of therapeutic modalities. Efforts to identify diagnostic/prognostic markers have proven to be unsuccessful for translation into clinics. Hence, there is a pressing need for establishment of novel non-invasive biomarker for early diagnosis/better prognosis of EC. Recently, alteration in microRNA (miRNA) expression has emerged as an important hallmark of cancer. This review summarizes the differential expression of miRNAs in EC and addresses how their aberrant expression influences crucial biological processes such as apoptosis, cell proliferation, invasion and metastasis. Additionally, this review highlights the current status of circulating miRNA based diagnostic/prognostic markers. An effort has been made to find a connection between different miRNAs involved in EC and a detailed analysis has been done to screen out micoRNAs involved in prognosis and multidrug resistance. Further, investigation of these miRNAs would not only provide a gene therapy based strategy to prevent/treat cancer but also to reverse multidrug resistance leading to decreased requirement of harmful chemotherapeutic drugs.
Collapse
Affiliation(s)
- Priyanka Sharma
- Research Scholar, University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India.
| | - Rinu Sharma
- Assistant Professor, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C Dwarka, New Delhi 110078, India.
| |
Collapse
|
69
|
SOX 1, contrary to SOX 2, suppresses proliferation, migration, and invasion in human laryngeal squamous cell carcinoma by inhibiting the Wnt/β-catenin pathway. Tumour Biol 2015; 36:8625-35. [PMID: 26040764 DOI: 10.1007/s13277-015-3389-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y (SRY)-box protein 1 (SOX 1) has been reported to have the inhibiting effects on various cancer cells; however, the expression and effect of SOX 1 on laryngeal squamous cell carcinoma (LSCC) have not been determined. Therefore, the aim of this study was to assess the anti-proliferation and metastatic effects of SOX 1 and its related mechanisms on LSCC. According to our present study, first, we found that overexpression of SOX 1 could significantly inhibit proliferation and promote apoptosis in Tu212 cells. Additionally, overexpression of SOX 1 suppressed the migration and invasion potential of Tu212 cells via regulating Wnt/β-catenin pathway. Finally, we demonstrated for the first time that overexpression of SOX 1 could downregulate the expression of SOX 2, and co-expression of SOX 1 and SOX 2 could reverse the anti-tumor effect of SOX 1. In conclusion, our studies suggested that SOX 1 suppressed cell growth and invasion in Tu212 cells by inhibiting Wnt/β-catenin pathway, and the anti-tumor effect of SOX 1 could be weakened by SOX 2, which may be a potential molecular basis for clinical treatment of LSCC.
Collapse
|
70
|
Zhang XF, Lv Y. Does the Sex-Determining Region on the Y Chromosome (SRY) Correlate with Gender Disparity in Liver Disease? Dig Dis Sci 2015; 60:1111-2. [PMID: 25875750 DOI: 10.1007/s10620-015-3539-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 12/09/2022]
Affiliation(s)
- Xu-Feng Zhang
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and Engineering, the 1st Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China,
| | | |
Collapse
|
71
|
Thu KL, Becker-Santos DD, Radulovich N, Pikor LA, Lam WL, Tsao MS. SOX15 and other SOX family members are important mediators of tumorigenesis in multiple cancer types. Oncoscience 2014; 1:326-35. [PMID: 25594027 PMCID: PMC4278306 DOI: 10.18632/oncoscience.46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022] Open
Abstract
SOX genes are transcription factors with important roles in embryonic development and carcinogenesis. The SOX family of 20 genes is responsible for regulating lineage and tissue specific gene expression patterns, controlling numerous developmental processes including cell differentiation, sex determination, and organogenesis. As is the case with many genes involved in regulating development, SOX genes are frequently deregulated in cancer. In this perspective we provide a brief overview of how SOX proteins can promote or suppress cancer growth. We also present a pan-cancer analysis of aberrant SOX gene expression and highlight potential molecular mechanisms responsible for their disruption in cancer. Our analyses indicate the prominence of SOX deregulation in different cancer types and reveal potential roles for SOX genes not previously described in cancer. Finally, we summarize our recent identification of SOX15 as a candidate tumor suppressor in pancreatic cancer and propose several research avenues to pursue to further delineate the emerging role of SOX15 in development and carcinogenesis.
Collapse
Affiliation(s)
- Kelsie L Thu
- BC Cancer Research Centre, Vancouver, B.C., Canada
| | | | | | | | - Wan L Lam
- BC Cancer Research Centre, Vancouver, B.C., Canada
| | - Ming-Sound Tsao
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network at the University of Toronto
| |
Collapse
|
72
|
Cui J, Xi H, Cai A, Bian S, Wei B, Chen L. Decreased expression of Sox7 correlates with the upregulation of the Wnt/β-catenin signaling pathway and the poor survival of gastric cancer patients. Int J Mol Med 2014; 34:197-204. [PMID: 24788044 DOI: 10.3892/ijmm.2014.1759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/15/2014] [Indexed: 01/12/2023] Open
Abstract
Sox7 is a tumor suppressor gene that plays an important role in the inhibition and progression of cancer. In the present study, we sought to investigate Sox7 expression in gastric cancer (GC) and its association with the Wnt/β-catenin signaling pathway. We also wished to determine its clinicopathological significance and prognostic implications. Sox7 expression and its effects on the Wnt/β-catenin signaling in vitro were assessed by reverse transcription-polymerase chain reaction using the AGS, MKN-45 and GES-1 gastric cell lines. We also used immunohistochemistry on paraffin-embedded tissue samples and western blot analysis on fresh tissue samples from patients with GC. The results revealed that Sox7 expression was significantly lower in the GC samples than in distal normal tissues, which was in accordance with our results obtained from our in vitro experiments on the cell lines. However, the expression levels of β-catenin were significantly higher. Sox7 and β-catenin expression significantly correlated with the depth of invasion, lymph node metastasis, distant metastasis and the TNM stage. Patient samples that were Sox7-negative correlated with a significantly shorter survival time. Multivariate survival analysis revealed that Sox7 and β-catenin had an independent effect on the survival of GC patients. Sox7 and β-catenin expression in GC had a negative liner correlation with each other. Our findings suggest that Sox7 plays an important role in inhibiting tumorigenesis and progression, and may be a potential marker for predicting the prognosis of patients with GC.
Collapse
Affiliation(s)
- Jianxin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hongqing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Aizhen Cai
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Shibo Bian
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
73
|
Stovall DB, Cao P, Sui G. SOX7: from a developmental regulator to an emerging tumor suppressor. Histol Histopathol 2013; 29:439-45. [PMID: 24288056 DOI: 10.14670/hh-29.10.439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SOX7 belongs to the SOX (SRY-related HMG-box) family of transcription factors that have been shown to regulate multiple biological processes, such as hematopoiesis, vasculogenesis and cardiogenesis during embryonic development. Recent studies indicate that several SOX family members play important roles in tumorigenesis. In this review, we introduce SOX7 gene and protein structures, and discuss its expression and functional role in cancer development and progression. SOX7 is frequently downregulated in many human cancers and its reduced expression correlates with poor prognoses of several cancers. Functional studies reveal many tumor suppressive properties of SOX7 in prostate, colon, lung, and breast cancers. To date, although a few target genes of SOX7 have been identified, SOX7-mediated gene expression has not been investigated in a cancer-relevant context. Our recent studies not only for the first time demonstrate a tumor suppressive role of SOX7 in a xenograft mouse model, but also unravel that many genes regulating cell death, growth and apoptosis are affected by SOX7, strongly supporting a pivotal role of SOX7 in tumorigenesis. Thus, currently available data clearly indicate a tumor suppressive role of SOX7, but the mechanisms underlying its gene expression and tumor suppressive activity remain undetermined. The research of SOX7 in cancers remains a fertile area to be explored.
Collapse
Affiliation(s)
- Daniel B Stovall
- Department of Cancer Biology and Comprehensive Cancer Center, and Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Paul Cao
- Department of Cancer Biology and Comprehensive Cancer Center, and Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Guangchao Sui
- Department of Cancer Biology and Comprehensive Cancer Center, and Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
74
|
Zhu H, Tang J, Tang M, Cai H. Upregulation of SOX9 in osteosarcoma and its association with tumor progression and patients' prognosis. Diagn Pathol 2013; 8:183. [PMID: 24188461 PMCID: PMC3829210 DOI: 10.1186/1746-1596-8-183] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022] Open
Abstract
Objective SOX9 plays an important role in bone formation and tumorigenesis. However, its involvement in osteosarcoma is still unclear. The aim of this study was to investigate the expression pattern and the clinical significance of SOX9 in human osteosarcoma. Methods SOX9 mRNA and protein expression levels were detected by RT-PCR and Western blot assays, respectively, using 30 pairs of osteosarcoma and noncancerous bone tissues. Then, immunohistochemistry was performed to analyze the association of SOX9 expression in 166 osteosarcoma tissues with clinicopathological factors or survival of patients. Results SOX9 expression at mRNA and protein levels were both significantly higher in osteosarcoma tissues than those in corresponding noncancerous bone tissues (both P < 0.001). Immunohistochemical staining indicated that SOX9 localized to the nucleus and high SOX9 expression was observed in 120 of 166 (72.3%) osteosarcoma specimens. In addition, high SOX9 expression was more frequently occurred in osteosarcoma tissues with advanced clinical stage (P = 0.02), positive distant metastasis (P = 0.008) and poor response to chemotherapy (P = 0.02). Osteosarcoma patients with high SOX9 expression had shorter overall survival and disease-free survival (both P < 0.001). Furthermore, the multivariate analysis confirmed that upregulation of SOX9 was an independent and significant prognostic factor to predict poor overall survival and disease-free survival (both P = 0.006). Conclusions Our data show for the first time that SOX9 is upregulated in aggressive osteosarcoma tissues indicating that SOX9 may participate in the osteosarcoma progression. More importantly, SOX9 status is a useful prognostic factor for predicting the prognosis of osteosarcoma, suggesting that SOX9 may contribute to the optimization of clinical treatments for osteosarcoma patients. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1318085636110837.
Collapse
Affiliation(s)
| | | | | | - Haikang Cai
- Orthopaedics Department, Xuhui central hospital, No, 966, Middle Huaihai Road, Shanghai 200031, China.
| |
Collapse
|
75
|
Overexpression of meloe gene in melanomas is controlled both by specific transcription factors and hypomethylation. PLoS One 2013; 8:e75421. [PMID: 24086527 PMCID: PMC3783405 DOI: 10.1371/journal.pone.0075421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigens MELOE-1 and MELOE-2 are encoded by a messenger, called meloe, overexpressed in melanomas compared with other tumour cell types and healthy tissues. They are both able to elicit melanoma-specific T cell responses in melanoma patients, and MELOE-1-specific CD8 T cells have been involved in melanoma immunosurveillance. With the aim to develop immunotherapies targeting this antigen, we investigated the transcriptional mechanisms leading to the preferential expression of meloe messenger in the melanocytic lineage. We defined the minimal promoter region of meloe gene and identified binding motifs for a set of transcription factors. Using mutagenesis, co-transfection experiments and chromatin immunoprecipitation, we showed that transcription factors involved in meloe promoter activity in melanomas were the melanocytic specific SOX9 and SOX10 proteins together with the activated P-CREB protein. Furthermore, we showed that meloe promoter was hypomethylated in melanomas and melanocytes, and hypermethylated in colon cancer cell lines and mesotheliomas, thus explaining the absence of P-CREB binding in these cell lines. This was a second key to explain the overerexpression of meloe messenger in the melanocytic lineage. To our knowledge, such a dual transcriptional control conferring tissue-specificity has never been described for the expression of tumour antigens.
Collapse
|
76
|
The regulation of SOX7 and its tumor suppressive role in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1645-1653. [PMID: 24012678 DOI: 10.1016/j.ajpath.2013.07.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/16/2013] [Accepted: 07/10/2013] [Indexed: 12/23/2022]
Abstract
Both epigenetic silencing and genetic deletion of tumor suppressors contribute to the development and progression of breast cancer. SOX7 is a transcription factor important to development, and its down-regulation has been reported in tumor tissues and cell lines of prostate, colon, and lung cancers. However, the regulation of SOX7 expression and its functional role in breast cancer have not been reported. The current study demonstrates that SOX7 mRNA and protein expression are down-regulated in breast cancer tissues and cell lines compared with adjacent normal tissues and nontumorigenic cells, respectively. The SOX7 promoter is hypermethylated in breast cancer cell lines compared with nontumorigenic cells, and the inhibition of DNA methylation increases SOX7 mRNA levels. With shRNA-mediated SOX7 silencing, nontumorigenic immortal breast cells display increased proliferation, migration, and invasion and form structures that resemble that of breast cancer cells in a three-dimensional culture system. Conversely, ectopic SOX7 expression inhibits proliferation, migration, and invasion of breast cancer cells in vitro and tumor growth in vivo. Importantly, we discovered that SOX7 transcript levels positively correlated with clinical outcome of 674 breast cancer patients. Overall, our data suggest that SOX7 acts as a tumor suppressor in breast cancer. SOX7 expression is likely regulated by multiple mechanisms and potentially serves as a prognostic marker for breast cancer patients.
Collapse
|
77
|
Guo X, Yang M, Gu H, Zhao J, Zou L. Decreased expression of SOX6 confers a poor prognosis in hepatocellular carcinoma. Cancer Epidemiol 2013; 37:732-6. [PMID: 23731550 DOI: 10.1016/j.canep.2013.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIM SOX6, a member of the D subfamily of sex determining region y-related transcription factors, plays critical roles in cell fate determination, differentiation and proliferation. It has been identified as a tumor suppressor or an oncogene in different human cancers. However, the role of SOX6 in the development and progression of hepatocellular carcinoma (HCC) has not been explored. The aim of this study was to investigate the expression of SOX6 in HCC and determine its correlation with tumor progression and prognosis. METHODS 130 HCC patients who had undergone curative liver resection were selected and immunohistochemistry, Western blotting, and quantitative real time polymerase chain reaction (Q-PCR) were performed to analyze SOX6 expression in the respective tumors. RESULTS Q-PCR, immunohistochemistry and Western blotting consistently confirmed the decreased expression of SOX6 at both mRNA and protein levels in HCC tissues compared with their adjacent nonneoplastic tissues (P<0.01). Additionally, the expression of SOX6, determined by immunohistochemistry, was negatively correlated with the tumor stage (P=0.003) and serum AFP (P=0.02). Moreover, HCC patients with lower SOX6 expression had worse 5-year disease-free survival and 5-year overall survival than those with high SOX6 expression (P=0.006 and 0.001, respectively). Furthermore, the Cox proportional hazards model showed that the decreased expression of SOX6 was an independent poor prognostic factor for both 5-year disease-free survival (hazards ratio [HR]=2.398, 95% confidence interval [CI]=1.601-5.993, P=0.01) and 5-year overall survival (HR=3.569, CI=1.381-7.290, P=0.008) in HCC. CONCLUSION These findings provide evidence for the first time that SOX6 expression was decreased in HCC, which correlated with poor prognosis, suggesting that SOX6 may be a novel and potential prognostic marker for HCC.
Collapse
|
78
|
Zhu Y, Li Y, Wei J, Liu X. The role of Sox genes in lung morphogenesis and cancer. Int J Mol Sci 2012; 13:15767-83. [PMID: 23443092 PMCID: PMC3546660 DOI: 10.3390/ijms131215767] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/26/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
The human lung consists of multiple cell types derived from early embryonic compartments. The morphogenesis of the lung, as well as the injury repair of the adult lung, is tightly controlled by a network of signaling pathways with key transcriptional factors. Lung cancer is the third most cancer-related death in the world, which may be developed due to the failure of regulating the signaling pathways. Sox (sex-determining region Y (Sry) box-containing) family transcriptional factors have emerged as potent modulators in embryonic development, stem cells maintenance, tissue homeostasis, and cancerogenesis in multiple processes. Recent studies demonstrated that the members of the Sox gene family played important roles in the development and maintenance of lung and development of lung cancer. In this context, we summarize our current understanding of the role of Sox family transcriptional factors in the morphogenesis of lung, their oncogenic potential in lung cancer, and their potential impact in the diagnosis, prognosis, and targeted therapy of lung cancer.
Collapse
Affiliation(s)
- Yongzhao Zhu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
- Institute of Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yong Li
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
| | - Jun Wei
- Institute of Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan 750004, China
- Authors to whom correspondence should be addressed; E-Mails: (J.W.); or (X.L.); Tel.: +86-951-674-3751 (J.W.); +86-951-206-2037 (X.L); Fax: +86-951-206-2699 (X.L.)
| | - Xiaoming Liu
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life science, Ningxia University, Yinchuan 750021, China; E-Mails: (Y.Z.); (Y.L.)
- Authors to whom correspondence should be addressed; E-Mails: (J.W.); or (X.L.); Tel.: +86-951-674-3751 (J.W.); +86-951-206-2037 (X.L); Fax: +86-951-206-2699 (X.L.)
| |
Collapse
|