51
|
Polyene Macrolide Antibotic Derivatives: Preparation, Overcoming Drug Resistance, and Prospects for Use in Medical Practice (Review). Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01922-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
52
|
A promising nystatin nanocapsular hydrogel as an antifungal polymeric carrier for the treatment of topical candidiasis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
53
|
Gennari CGM, Selmin F, Minghetti P, Cilurzo F. Medicated Foams and Film Forming Dosage Forms as Tools to Improve the Thermodynamic Activity of Drugs to be Administered Through the Skin. Curr Drug Deliv 2019; 16:461-471. [PMID: 30657040 PMCID: PMC6637090 DOI: 10.2174/1567201816666190118124439] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/22/2022]
Abstract
Medicated foams and film forming systems are dosage forms formulated to undergo a con-trolled metamorphosis when applied on the skin. Indeed, due to the presence of propellant or a particular air-spray foam pump, a liquid can generate foam when applied on the stratum corneum, or a liquid or conventional dosage form can form on the skin a continuous film as a consequence of the solvent evapora-tion. Thanks to these controlled modifications, the drug thermodynamic activity increases favoring the skin penetration and, therefore, the bioavailability with respect to conventional semi-solid and liquid dosage forms. Furthermore, the available clinical data also evidence that these dosage forms improve the patient’s compliance. The main formulative aspects of medicated foams and film forming systems are reviewed with the aim to underline the possible advantages in terms of biopharmaceutical performances and pa-tient’s adherence.
Collapse
Affiliation(s)
- Chiara G M Gennari
- Department of Pharmaceutical Sciences, University of Milan, Via G. Colombo, 71 - 20133 Milan, Italy
| | - Francesca Selmin
- Department of Pharmaceutical Sciences, University of Milan, Via G. Colombo, 71 - 20133 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, University of Milan, Via G. Colombo, 71 - 20133 Milan, Italy
| | - Francesco Cilurzo
- Department of Pharmaceutical Sciences, University of Milan, Via G. Colombo, 71 - 20133 Milan, Italy
| |
Collapse
|
54
|
Qurt MS, Esentürk İ, Birteksöz Tan S, Erdal MS, Araman A, Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Lakhani P, Patil A, Majumdar S. Challenges in the Polyene- and Azole-Based Pharmacotherapy of Ocular Fungal Infections. J Ocul Pharmacol Ther 2018; 35:6-22. [PMID: 30481082 DOI: 10.1089/jop.2018.0089] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Polyenes and azoles constitute 2 major drug classes in the antifungal armamentarium used to treat fungal infections of the eye such as fungal keratitis, endophthalmitis, conjunctivitis, and blepharitis. These classes of drugs have come to occupy an important niche in ophthalmic antifungal therapy due to their broad spectrum of activity against a variety of filamentous and yeast-like fungi. Natamycin suspension (Natacyn®), a polyene antifungal drug, is currently the only US FDA-approved formulation for treating ophthalmic fungal infections, whereas the other polyene and azole antifungals such as amphotericin B, fluconazole, itraconazole, ketoconazole, miconazole, voriconazole, and posaconazole are routinely used off-label in the clinical setting. Despite potent antifungal activity, the clinical utility of these agents in ophthalmic infections has been challenged by their physicochemical properties, the unique ocular anatomy and physiology, selective antifungal activity, ocular and systemic toxicity, emergence of resistance and cross-resistance, and absence of reliable techniques for developing a robust in vitro-in vivo correlation. This review discusses the aforementioned challenges and the common approaches undertaken to circumnavigate the difficulties associated with the polyene- and azole-based pharmacotherapy of ophthalmic fungal infections.
Collapse
Affiliation(s)
- Prit Lakhani
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi
| | - Akash Patil
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi
| | - Soumyajit Majumdar
- 1 Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, Mississippi.,2 Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi
| |
Collapse
|
56
|
Li J, Li Z, Liang Z, Han L, Feng H, He S, Zhang J. Fabrication of a drug delivery system that enhances antifungal drug corneal penetration. Drug Deliv 2018; 25:938-949. [PMID: 29658325 PMCID: PMC6058611 DOI: 10.1080/10717544.2018.1461278] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fungal keratitis (FK) remains a severe eye disease, and effective therapies are limited by drug shortages and critical ocular barriers. Despite the high antifungal potency and broad spectrum of econazole, its strong irritant and insolubility in water hinder its ocular application. We designed and fabricated a new drug delivery system based on a polymeric vector for the ocular antifungal application of econazole. This novel system integrates the advantages of its constituent units and exhibits superior comprehensive performance. Using the new system, drug content was significantly increased more than 600 folds. The results of in vivo and in vitro experiments demonstrated that the econazole-loaded formulation exhibited significantly enhanced corneal penetration after a single topical ocular administration, excellent antifungal activity, and good tolerance in rabbits. Drug concentrations and ocular relative bioavailability in the cornea were 59- and 29-time greater than those in the control group, respectively. Following the topical administration of one eye drop (50 μL of 0.3% w/v econazole) in fungus-infected rabbits, a high concentration of antimycotic drugs in the cornea and aqueous humor was sustained and effective for 4 h. The mechanism of corneal penetration was also explored using dual fluorescent labeling. This novel drug delivery system is a promising therapeutic approach for oculomycosis and could serve as a candidate strategy for use with various hydrophobic drugs to overcome barriers in the treatment of many other ocular diseases.
Collapse
Affiliation(s)
- Jingguo Li
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| | - Zhanrong Li
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| | - Zhen Liang
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| | - Lei Han
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| | - Huayang Feng
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| | - Siyu He
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| | - Junjie Zhang
- a Henan Key Laboratory of Ophthalmology and Visual Science , Henan Eye Hospital, People's Hospital of Zhengzhou University , Zhengzhou , P. R. China
| |
Collapse
|
57
|
Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci 2018; 14:117-129. [PMID: 32104444 PMCID: PMC7042486 DOI: 10.1016/j.ajps.2018.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
Occurrence of skin fungal infections is increasing nowadays and their presence is more prominent in patients suffering from immunocompromised diseases like AIDS. Skin fungal infections are a major cause of visits by patients to dermatology clinics. Although, a large number of antifungal agents are available for treatment of skin fungal infections, but, their toxic profile and physicochemical characteristics reduce therapeutic outcome. When these antifungal agents are delivered topically using conventional formulations like creams and gels, they may cause various side effects like redness, burning, and swelling at the site of application. Therefore, various vesicular formulations (phospholipid based or non phospholipid based) have been explored by pharmaceutical scientists to treat skin fungal infections topically. Vesicular formulation explored for the purpose are liposomes, ethosomes, transfersomes, transethosomes, niosomes, spanlastics, oleic acid vesicles, and nanoparticles. These formulations show various advantages like bioavailability enhancement of bioactives, high skin permeation power, no side effects at application site, dosing frequency reduction, and sustained drug release. Therefore, in the present article, we have discussed about the utility of various vesicular nanocarrier systems to treat skin fungal infections.
Collapse
Affiliation(s)
- Shivani Verma
- Department of Pharmaceutics, Rayat-Bahra College of Pharmacy, Hoshiarpur, Punjab 146001, India.,I. K. Gujral Punjab Technical University, Jalandhar, Punjab 144601, India
| | - Puneet Utreja
- I. K. Gujral Punjab Technical University, Jalandhar, Punjab 144601, India.,Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, PCTE Group of Institutes, Ludhiana, Punjab 142021, India
| |
Collapse
|
58
|
Coêlho EDS, Lopes GLN, Pinheiro IM, Holanda JNPD, Alves MMDM, Carvalho Nogueira N, Carvalho FADA, Carvalho ALM. Emulgel based on amphotericin B and bacuri butter (Platonia insignis Mart.) for the treatment of cutaneous leishmaniasis: characterization and in vitro assays. Drug Dev Ind Pharm 2018; 44:1713-1723. [DOI: 10.1080/03639045.2018.1492610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elvilene de Sousa Coêlho
- Postgraduate Program of Pharmaceutical Sciences (PPGCF), Federal University of Piauí, Teresina, Brazil
| | - Gláucia Laís Nunes Lopes
- Postgraduate Program of Pharmaceutical Sciences (PPGCF), Federal University of Piauí, Teresina, Brazil
| | - Iluska Martins Pinheiro
- Postgraduate Program of Pharmaceutical Sciences (PPGCF), Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | | |
Collapse
|
59
|
Ultrashort Self-Assembling Peptide Hydrogel for the Treatment of Fungal Infections. Gels 2018; 4:gels4020048. [PMID: 30674824 PMCID: PMC6209295 DOI: 10.3390/gels4020048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
The threat of antimicrobial resistance to society is compounded by a relative lack of new clinically effective licensed therapies reaching patients over the past three decades. This has been particularly problematic within antifungal drug development, leading to a rise in fungal infection rates and associated mortality. This paper highlights the potential of an ultrashort peptide, (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFKK-OH), encompassing hydrogel-forming and antifungal properties within a single peptide motif, thus overcoming formulation (e.g., solubility, drug loading) issues associated with many currently employed highly hydrophobic antifungals. A range of fungal susceptibility (colony counts) and cell cytotoxicity (MTS cell viability, LIVE/DEAD staining® with fluorescent microscopy, haemolysis) assays were employed. Scanning electron microscopy confirmed the nanofibrous architecture of our self-assembling peptide, existing as a hydrogel at concentrations of 1% w/v and above. Broad-spectrum activity was demonstrated against a range of fungi clinically relevant to infection (Aspergillus niger, Candida glabrata, Candida albicans, Candida parapsilosis and Candida dubliniensis) with greater than 4 log10 CFU/mL reduction at concentrations of 0.5% w/v and above. We hypothesise antifungal activity is due to targeting of anionic components present within fungal cell membranes resulting in membrane disruption and cell lysis. NapFFKK-OH demonstrated reduced toxicity against mammalian cells (NCTC 929, ARPE-19) suggesting increased selectivity for fungal cells. However, further studies relating to safety for systemic administration is required, given the challenges toxicity has presented in the wider context of antimicrobial peptide drug development. Overall this study highlights the promise of NapFFKK-OH hydrogels, particularly as a topical formulation for the treatment of fungal infections relating to the skin and eyes, or as a hydrogel coating for the prevention of biomaterial related infection.
Collapse
|
60
|
Deng P, Teng F, Zhou F, Song Z, Meng N, Liu N, Feng R. Y-shaped methoxy poly (ethylene glycol)-block-poly (epsilon-caprolactone)-based micelles for skin delivery of ketoconazole: in vitro study and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:296-304. [DOI: 10.1016/j.msec.2017.04.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 01/27/2023]
|
61
|
Nizeyimana H, Zhou DD, Liu XF, Pan XT, Liu C, Lu CW, Hao JL. Clinical efficacy of conjunctival flap surgery in the treatment of refractory fungal keratitis. Exp Ther Med 2017; 14:1109-1113. [PMID: 28810564 PMCID: PMC5525570 DOI: 10.3892/etm.2017.4605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 04/10/2017] [Indexed: 11/13/2022] Open
Abstract
The aim of the present study was to investigate the use and effectiveness of a selective, partial, pedunculated (tongue-shaped) conjunctival flap (CF) for the treatment of refractory fungal keratitis (FK) with or without perforation. A total of 31 cases of corneal diseases treated by CF surgery between April 2014 and October 2015 were evaluated. Among the 31 cases, 16 cases (male:female, 11:5) with FK were selected. Logistic regression analysis was used to investigate factors associated with complications of CF surgery. A higher prevalence of FK was identified among male farmers compared with female farmers, in which plant trauma was the most prevalent cause of the disease. Only 4 patients had experienced corneal perforation prior to CF surgery. Patients aged 61–80 years had a higher prevalence of FK (50%) compared with other age groups; however, there was no statistically significant correlation between the prevalence of FK and sex or age. It was also demonstrated that age, sex, combined surgery and surgery duration were not significantly associated with post-surgical complications. All CF surgeries were performed following corneal ulcer scraping; however, 4 patients (12.5%) required additional surgery. The visual acuity of participants post-surgery decreased in 4 cases and remained unchanged in 12 cases. A total of 3 study patients experienced post-surgical complications of corneal perforation (1 patient) and purulent exudate spreading (2 patients). The post-surgical outcome was good for all study participants as the surgeries were able to control infection and preserve the eyeball, with the potential of future corneal transplant. These results suggest that CF surgery may be a useful alternative treatment for refractory FK in countries such as China where there is lack of cornea donors.
Collapse
Affiliation(s)
- Honorine Nizeyimana
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiao-Tao Pan
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Cong Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
62
|
Raju Y P, N H, Chowdary V H, Nair RS, Basha D J, N T. In vitro assessment of non-irritant microemulsified voriconazole hydrogel system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1539-1547. [PMID: 27887040 DOI: 10.1080/21691401.2016.1260579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Research was aimed on microemulsion-based hydrogel for voriconazole. Oleic acid and isopropyl myristate as lipid phases; tween 20: tween 80 as surfactants and PEG600 as cosurfactant were selected to formulate voriconazole microemulsions. The promising microemulsions in terms of zeta potential, pH, viscosity, and drug release were selected and developed into hydrogels using carbopol 934. Resulting microemulsion-based hydrogel (MBH) of voriconazole were evaluated for in vitro diffusion and ex vivo permeation. Antifungal potentials of MBH were assessed against selected fungal strains. Optimal MBH formulations, O6 and O8 had displayed their antifungal potentials with enlarged zone of inhibition against selected fungal strains.
Collapse
Affiliation(s)
- Prasanna Raju Y
- a Pharmaceutics Division , Sri Padmavathi School of Pharmacy , Tiruchanoor, Tirupati , India
| | - Hyndavi N
- a Pharmaceutics Division , Sri Padmavathi School of Pharmacy , Tiruchanoor, Tirupati , India
| | - Harini Chowdary V
- b Pharmaceutics Division , PES College of Pharmacy , Bangalore , India
| | - Rajesh S Nair
- c School of Pharmacy , The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih , Selangor , Malaysia
| | - Jamal Basha D
- b Pharmaceutics Division , PES College of Pharmacy , Bangalore , India
| | - Tejeswari N
- a Pharmaceutics Division , Sri Padmavathi School of Pharmacy , Tiruchanoor, Tirupati , India
| |
Collapse
|
63
|
Suñer-Carbó J, Boix-Montañés A, Halbaut-Bellowa L, Velázquez-Carralero N, Zamarbide-Ledesma J, Bozal-de-Febrer N, Calpena-Campmany AC. Skin permeation of econazole nitrate formulated in an enhanced hydrophilic multiple emulsion. Mycoses 2016; 60:166-177. [PMID: 27761948 DOI: 10.1111/myc.12575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/19/2016] [Accepted: 09/11/2016] [Indexed: 11/29/2022]
Abstract
Local delivery of imidazolic antifungals is limited by its extreme lipophilicity. Multiple emulsions (ME) are a potential vehicle to enhance the delivery of econazole nitrate (ECN), an antifungal targeted to deep-seated epidermal yeast infections. An 1% ECN hydrophilic ME was compared with a commercial formulation in terms of rheology, droplet size and in vitro antifungal activity against Candida species. Comparative in vitro drug release, human skin permeation and drug retention were investigated using vertical diffusion cells. Rheology demonstrated a pseudoplastic shear thinning with thixotropy facilitating skin residence. No significant aggregation or droplet size variations were observed during a 6-month stability storage. Both formulations exhibited similar release levels achieving asymptotic values in 5 h. ECN skin permeation levels from the multiple emulsion resulted to be significantly higher than those of the commercial formulation, attributable to differences in formulation polarity and excipients composition. Conversely, similar drug accumulation levels in skin were obtained (40-130 ppm). These concentrations resulted to be comparable with obtained MIC values (2-78 ppm), confirming the in vitro antimicrobial efficacy of both formulations. A similar skin retention and a higher permeation rate over the existing formulations is considered an improved approach to target the drug to deep epidermis.
Collapse
Affiliation(s)
- Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio Boix-Montañés
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut-Bellowa
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nelvis Velázquez-Carralero
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Joanna Zamarbide-Ledesma
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Nuria Bozal-de-Febrer
- Department of Microbiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
64
|
Development and characterization of the voriconazole loaded lipid-based nanoparticles. J Pharm Biomed Anal 2016; 132:184-189. [PMID: 27750101 DOI: 10.1016/j.jpba.2016.09.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022]
Abstract
The number of topical fungal infections is growing, mostly owing to immunosuppressive therapy. Several topical fungal infections, such as eye mycoses, can be treated by local administration of antimycotic drugs. One major group of the antifungal agents is triazole, such as voriconazole (VCZ), which is used as the first line treatment of aspergillosis. A disadvantage of VCZ is its low water solubility making the drug difficult to administer in a liquid preparation. The lipid-based nanoparticles (LNP) have attracted increasing attention due to their advantageous properties. Contrarily to the conventional carrier systems, LNP can improve the poor solubility of topically used drugs, such as VCZ. Therefore, LNP represents promising alternatives to traditional carrier systems. The aim of the study was to formulate VCZ loaded lipid-based nanoparticles (VCZ-LNP) by high pressure homogenization (HPH). The developed LNPs were characterized by particle size analysis, IR spectroscopy, differential scanning calorimetry, dialysis test and antifungal efficacy studies. The particle size of the optimized nanoparticles from the selected lipid base, Witepsol® W35, was 182±4.1nm after five cycles of homogenization at 600bar. The antifungal study confirmed that the optimized VCZ-LNP inhibited the fungus reproduction.
Collapse
|
65
|
Effects of Antifungal Soaked Silicone Hydrogel Contact Lenses on Candida albicans in an Agar Eye Model. Eye Contact Lens 2016; 42:313-7. [DOI: 10.1097/icl.0000000000000209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
66
|
Kassem AA, Mohsen AM, Ahmed RS, Essam TM. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.02.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
67
|
|
68
|
Lyu X, Zhao C, Yan ZM, Hua H. Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysis. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1161-71. [PMID: 27042008 PMCID: PMC4801147 DOI: 10.2147/dddt.s100795] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective To systematically review and assess the efficacy, different treatment protocols (formulation, dosage, and duration), and safety of nystatin for treating oral candidiasis. Methods Four electronic databases were searched for trials published in English till July 1, 2015. Randomized controlled trials comparing nystatin with other antifungal therapies or a placebo were included. Clinical and/or mycological cure was the outcome evaluation. A meta-analysis or descriptive study on the efficacy, treatment protocols, and safety of nystatin was conducted. Results The meta-analysis showed that nystatin pastille was significantly superior to placebo in treating denture stomatitis. Nystatin suspension was not superior to fluconazole in treating oral candidiasis in infants, children, or HIV/AIDS patients. The descriptive investigations showed that administration of nystatin suspension and pastilles in combination for 2 weeks might achieve a higher clinical and mycological cure rate, and using the nystatin pastilles alone might have a higher mycological cure rate, when compared with using nystatin suspensions alone. Nystatin pastilles at a dose of 400,000 IU resulted in a significantly higher mycological cure rate than that administrated at a dose of 200,000 IU. Furthermore, treatment with nystatin pastilles for 4 weeks seemed to have better clinical efficacy than treatment for 2 weeks. Descriptive safety assessment showed that poor taste and gastrointestinal adverse reaction are the most common adverse effects of nystatin. Conclusion Nystatin pastille was significantly superior to placebo in treating denture stomatitis, while nystatin suspension was not superior to fluconazole in treating oral candidiasis in infants, children, or HIV/AIDS patients. Indirect evidence from a descriptive study demonstrated that administration of nystatin pastille alone or pastille and suspension in combination is more effective than that of suspension alone; prolonged treatment duration for up to 4 weeks can increase the efficacy of nystatin. More well designed and high quality randomized control studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Xin Lyu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Chen Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Zhi-Min Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
69
|
Shukr MH. Novelin situgelling ocular inserts for voriconazole-loaded niosomes: design,in vitrocharacterisation andin vivoevaluation of the ocular irritation and drug pharmacokinetics. J Microencapsul 2016; 33:71-9. [DOI: 10.3109/02652048.2015.1128489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
70
|
Harini S, Venkatesh M, Radhakrishnan S, Fazil MHUT, Goh ETL, Rui S, Dhand C, Ong ST, Barathi VA, Beuerman RW, Ramakrishna S, Verma NK, Lakshminarayanan R. Antifungal properties of lecithin- and terbinafine-loaded electrospun poly(ε-caprolactone) nanofibres. RSC Adv 2016. [DOI: 10.1039/c6ra04755f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigated the effect of terbinafine- and egg lecithin-loaded PCL mats on mechanical properties, swellability, biocompatibility andin vitroandex vivoantifungal efficacy against pathogenic moulds and dermatophytes.
Collapse
Affiliation(s)
- Sriram Harini
- Singapore Eye Research Institute
- The Academia
- Singapore 169856
| | | | - Sridhar Radhakrishnan
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117584
- Center for Nanofibres and Nanotechnology
- National University of Singapore
| | | | | | - Sun Rui
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117584
| | - Chetna Dhand
- Singapore Eye Research Institute
- The Academia
- Singapore 169856
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
| | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute
- The Academia
- Singapore 169856
- Ophthalmology and Visual Sciences Academic Clinical Program
- Duke-NUS Graduate Medical School
| | - Roger W. Beuerman
- Singapore Eye Research Institute
- The Academia
- Singapore 169856
- Ophthalmology and Visual Sciences Academic Clinical Program
- Duke-NUS Graduate Medical School
| | - Seeram Ramakrishna
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117584
- Center for Nanofibres and Nanotechnology
- National University of Singapore
| | - Navin Kumar Verma
- Singapore Eye Research Institute
- The Academia
- Singapore 169856
- Lee Kong Chian School of Medicine
- Nanyang Technological University
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute
- The Academia
- Singapore 169856
- Ophthalmology and Visual Sciences Academic Clinical Program
- Duke-NUS Graduate Medical School
| |
Collapse
|
71
|
Duxfield L, Sultana R, Wang R, Englebretsen V, Deo S, Rupenthal ID, Al-Kassas R. Ocular delivery systems for topical application of anti-infective agents. Drug Dev Ind Pharm 2015; 42:1-11. [DOI: 10.3109/03639045.2015.1070171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Linda Duxfield
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Rubab Sultana
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Ruokai Wang
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Vanessa Englebretsen
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Samantha Deo
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Raida Al-Kassas
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand and
| |
Collapse
|
72
|
Bassi P, Kaur G. Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharm J 2015; 25:32-43. [PMID: 28223860 PMCID: PMC5310147 DOI: 10.1016/j.jsps.2015.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022] Open
Abstract
Bioadhesive films using tamarind seed polysaccharide were prepared for the treatment of candida vaginitis using nystatin as the model drug. Films were prepared by solvent casting method. A 32 factorial design was employed to study the effect of independent variables (polymer and plasticizer concentration) on a range of dependent variables namely mechanical, swelling, interfacial, and bioadhesive properties through response surface methodological approach, using Design Expert® software. Formulation composition that provided the most desired and optimized results was selected using desirability approach. Nystatin was solubilized using Tween 60 and was incorporated into the selected film. Drug solubilization and dispersion were confirmed by scanning electron microscopy and differential scanning calorimetry. The optimized film released 73.92 ± 2.54% of nystatin at the end of 8 h in simulated vaginal fluid and the release data showed best fit to Korsmeyer–Peppas model with R2 of 0.9990 and the release mechanism to be super case-II. The optimized film also showed appropriate anti candida activity through appearance of zone of inhibition during antifungal activity testing study.
Collapse
Affiliation(s)
- Pallavi Bassi
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gurpreet Kaur
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
73
|
Thapa RK, Han SD, Park HG, Son M, Jun JH, Kim JO. DA 5505: a novel topical formulation of terbinafine that enhances skin penetration and retention. Chem Pharm Bull (Tokyo) 2015; 63:525-30. [PMID: 25958812 DOI: 10.1248/cpb.c15-00108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Topical fungal infections can become severe if left untreated. Efficient treatment modalities for topical fungal infections aid the penetration of antifungal agents deep into viable skin layers. Terbinafine is a fungicidal agent that inhibits ergosterol, an essential fungal component. The main objective of this study was to evaluate skin permeation and retention of a terbinafine-loaded solution containing chitosan as a film former. Comparative assessment of skin permeation and retention was performed using a prepared formulation (DA 5505) and marketed formulations of terbinafine in murine and porcine skin. To mimic fungal infection of skin, keratinized skin was induced in NC/Nga mice. In comparison with the marketed formulations, DA 5505 exhibited significantly better skin permeation. The flux, permeation coefficient, and enhancement ratio of terbinafine were remarkably increased by DA 5505 in comparison with the marketed formulations, and lag time was dramatically reduced. DA 5505 significantly increased cumulative terbinafine retention in viable skin layers in comparison with the marketed solution, suggesting enhanced efficacy. Furthermore, DA 5505 exhibited superior skin permeation in normal skin and keratinized skin. Thus, the DA 5505 formulation has the potential to effectively deliver terbinafine to superficial and deep cutaneous fungal infections.
Collapse
|
74
|
Martín MJ, Calpena AC, Fernández F, Mallandrich M, Gálvez P, Clares B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr Polym 2015; 117:140-149. [DOI: 10.1016/j.carbpol.2014.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
75
|
Belakhov VV, Garabadzhiu AV. Kabachnik-fields phosphorylation of tetaraene macrolide antibiotic pimaricin. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s1070363215020103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Pretor S, Bartels J, Lorenz T, Dahl K, Finke JH, Peterat G, Krull R, Al-Halhouli AT, Dietzel A, Büttgenbach S, Behrends S, Reichl S, Müller-Goymann CC. Cellular Uptake of Coumarin-6 under Microfluidic Conditions into HCE-T Cells from Nanoscale Formulations. Mol Pharm 2014; 12:34-45. [DOI: 10.1021/mp500401t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- S. Pretor
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - J. Bartels
- Institut für Pharmakologie, Toxikologie und Klinische
Pharmazie, Technische Universität Braunschweig, Mendelssohnstraße
1, 38106 Braunschweig, Germany
| | - T. Lorenz
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - K. Dahl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - J. H. Finke
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - G. Peterat
- Institute for Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - R. Krull
- Institute for Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - A. T. Al-Halhouli
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - A. Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - S. Büttgenbach
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Straße 203, 38124 Braunschweig, Germany
| | - S. Behrends
- Institut für Pharmakologie, Toxikologie und Klinische
Pharmazie, Technische Universität Braunschweig, Mendelssohnstraße
1, 38106 Braunschweig, Germany
| | - S. Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| | - C. C. Müller-Goymann
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Mendelssohnstraße 1, 38106 Braunschweig, Germany
| |
Collapse
|
77
|
Liu X, Kruger P, Maibach H, Colditz PB, Roberts MS. Using skin for drug delivery and diagnosis in the critically ill. Adv Drug Deliv Rev 2014; 77:40-9. [PMID: 25305335 DOI: 10.1016/j.addr.2014.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/09/2014] [Accepted: 10/01/2014] [Indexed: 02/08/2023]
Abstract
Skin offers easy access, convenience and non-invasiveness for drug delivery and diagnosis. In principle, these advantages of skin appear to be attractive for critically ill patients given potential difficulties that may be associated with oral and parenteral access in these patients. However, the profound changes in skin physiology that can be seen in these patients provide a challenge to reliably deliver drugs or provide diagnostic information. Drug delivery through skin may be used to manage burn injury, wounds, infection, trauma and the multisystem complications that rise from these conditions. Local anaesthetics and analgesics can be delivered through skin and may have wide application in critically ill patients. To ensure accurate information, diagnostic tools require validation in the critically ill patient population as information from other patient populations may not be applicable.
Collapse
|
78
|
Tianyang Z, Ling Z, Huiyun X, Jijun H, Junjie Z. Determination of natamycin in rabbit cornea by high-performance liquid chromatography–tandem mass spectrometry with protective soaking extraction technology. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 969:53-9. [DOI: 10.1016/j.jchromb.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/04/2014] [Accepted: 08/03/2014] [Indexed: 11/16/2022]
|
79
|
Zhang YT, Wu ZH, Zhang K, Zhao JH, Ye BN, Feng NP. An in vitro and in vivo comparison of solid and liquid-oil cores in transdermal aconitine nanocarriers. J Pharm Sci 2014; 103:3602-3610. [PMID: 25187419 DOI: 10.1002/jps.24152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023]
Abstract
This study compared transdermal aconitine delivery using solid lipid nanoparticles (SLN) and microemulsion (ME) vehicles. Aconitine-loaded SLN and ME were formulated with the same surfactant, cosurfactant, and water content, with an equal amount of oil matrix (ATO 888 for SLN and ethyl oleate for ME). These nanosized formulations (70-90 nm) showed suitable pH values and satisfactory skin tissue biocompatibility. SLN contained a higher concentration of smaller nanoparticles, compared with that in ME. Neither of the nanocarriers penetrated across excised skin in their intact form. In vitro transdermal delivery studies found that transdermal aconitine flux was lower from SLN than from ME (p < 0.05), but skin aconitine deposition was higher using SLN (p < 0.05). Fluorescence-activated cell sorting indicated that in vitro uptake of fluorescently labeled SLN by human immortalized keratinocyte (HaCaT) cells was greater than that of ME, indicating that a transcellular pathway may contribute to cutaneous drug absorption more effectively from SLN. In vivo studies found that these formulations could loosen stratum corneum layers and increase skin surface crannies, which may also enhance transdermal aconitine delivery. SLN produced a more sustained aconitine release, indicating that compared with ME, this transdermal delivery vehicle may reduce the toxicity of this drug.
Collapse
Affiliation(s)
- Yong-Tai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong-Hua Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ji-Hui Zhao
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei-Ni Ye
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nian-Ping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
80
|
Therapeutic efficacy of AS2077715 against experimental tinea pedis in guinea pigs in comparison with terbinafine. J Antibiot (Tokyo) 2014; 67:717-9. [DOI: 10.1038/ja.2014.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/08/2022]
|
81
|
In vitro and in vivo assessment of dermatophyte acquired resistance to efinaconazole, a novel triazole antifungal. Antimicrob Agents Chemother 2014; 58:4920-2. [PMID: 24867968 DOI: 10.1128/aac.02703-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efinaconazole is a novel triazole antifungal drug for the topical treatment of onychomycosis, a nail infection caused mainly by dermatophytes. We assessed the potential of efinaconazole to induce resistance in dermatophytes by continuous exposure of Trichophyton rubrum strains to efinaconazole in vitro (12 passages) and in a guinea pig onychomycosis model (8 weeks). There was no evidence of efinaconazole resistance development in the tested strains under the experimental conditions used.
Collapse
|
82
|
Lakshminarayanan R, Sridhar R, Loh XJ, Nandhakumar M, Barathi VA, Kalaipriya M, Kwan JL, Liu SP, Beuerman RW, Ramakrishna S. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats. Int J Nanomedicine 2014; 9:2439-58. [PMID: 24920895 PMCID: PMC4043707 DOI: 10.2147/ijn.s58487] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections.
Collapse
Affiliation(s)
- Rajamani Lakshminarayanan
- Singapore Eye Research Institute, Singapore ; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Radhakrishnan Sridhar
- Department of Mechanical Engineering, National University of Singapore, Singapore ; Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 3 Research Link, Singapore
| | | | - Veluchamy Amutha Barathi
- Singapore Eye Research Institute, Singapore ; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Madhaiyan Kalaipriya
- Department of Mechanical Engineering, National University of Singapore, Singapore ; Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | | | - Shou Ping Liu
- Singapore Eye Research Institute, Singapore ; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Roger Wilmer Beuerman
- Singapore Eye Research Institute, Singapore ; Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore ; Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore ; NUS Nanoscience and Nanotechnology Initiative, Singapore
| |
Collapse
|
83
|
Phan CM, Subbaraman L, Jones L. Contact lenses for antifungal ocular drug delivery: a review. Expert Opin Drug Deliv 2014; 11:537-46. [PMID: 24472171 DOI: 10.1517/17425247.2014.882315] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Fungal keratitis, a potentially blinding disease, has been difficult to treat due to the limited number of approved antifungal drugs and the taxing dosing regimen. Thus, the development of a contact lens (CL) as an antifungal drug delivery platform has the potential to improve the treatment of fungal keratitis. A CL can serve as a drug reservoir to continuously release drugs to the cornea, while limiting drug loss through tears, blinking, drainage and non-specific absorption. AREAS COVERED This review will provide a summary of currently available methods for delivering antifungal drugs from commercial and model CLs, including vitamin E coating, impregnated drug films, cyclodextrin-functionalized hydrogels, polyelectrolyte hydrogels and molecular imprinting. This review will also highlight some of the main factors that influence antifungal drug delivery with CLs. EXPERT OPINION Several novel CL materials have been developed, capable of extended drug release profiles with a wide range of antifungal drugs lasting from 8 h to as long as 21 days. However, there are factors, such as first-order release kinetics, effectiveness of continuous drug release, microbial resistance, ocular toxicity and potential complications from inserting a CL in an infected eye, that still need to be addressed before commercial applications can be realized.
Collapse
Affiliation(s)
- Chau-Minh Phan
- Centre for Contact Lens Research, School of Optometry and Vision Science , 200 University Avenue West, Waterloo, ON, N2L 3G1 , Canada +1 519 888 4567 Extn: 36547 ;
| | | | | |
Collapse
|
84
|
Marín-Quintero D, Fernandez-Campos F, Calpena-Campmany AC, Montes-López MJ, Clares-Naveros B, Del Pozo-Carrascosa A. Formulation Design and Optimization for the Improvement of Nystatin-Loaded Lipid Intravenous Emulsion. J Pharm Sci 2013; 102:4015-23. [DOI: 10.1002/jps.23711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 11/11/2022]
|
85
|
Gandra SCR, Nguyen S, Nazzal S, Alayoubi A, Jung R, Nesamony J. Thermoresponsive fluconazole gels for topical delivery: rheological and mechanical properties,in vitrodrug release and anti-fungal efficacy. Pharm Dev Technol 2013; 20:41-9. [DOI: 10.3109/10837450.2013.846376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
Zhou W, Wang Y, Jian J, Song S. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomedicine 2013; 8:3715-28. [PMID: 24106427 PMCID: PMC3792006 DOI: 10.2147/ijn.s51186] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The purpose of this study was to develop a self-aggregated nanoparticulate vehicle using an amphiphilic poly(lactic acid)-grafted-chitosan (PLA-g-CS) copolymer and to evaluate its potential for ocular delivery of amphotericin B. Methods A PLA-g-CS copolymer was synthesized via a “protection-graft-deprotection” procedure and its structure was confirmed by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra. Amphotericin B-loaded nanoparticles based on PLA-g-CS (AmB/PLA-g-CS) were prepared by the dialysis method and characterized for particle size, zeta potential, and encapsulation efficiency. Studies of these AmB/PLA-g-CS nanoparticles, including their mucoadhesive strength, drug release properties, antifungal activity, ocular irritation, ocular pharmacokinetics, and corneal penetration were performed in vitro and in vivo. Results Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, and X-ray diffraction spectra showed that the PLA chains were successfully grafted onto chitosan molecules and that crystallization of chitosan was suppressed. The self-aggregated PLA-g-CS nanoparticles had a core-shell structure with an average particle size of approximately 200 nm and zeta potentials higher than 30 mV. Amphotericin B was incorporated into the hydrophobic core of the nanoparticles with high encapsulation efficiency. Sustained drug release from the nanoparticles was observed in vitro. The ocular irritation study showed no sign of irritation after instillation of the PLA-g-CS nanoparticles into rabbit eyes. The minimal inhibitory concentration of the AmB/PLA-g-CS nanoparticles showed antifungal activity similar to that of free amphotericin B against Candida albicans. The in vivo ocular pharmacokinetic study suggested that the PLA-g-CS nanoparticles have the advantage of prolonging residence time at the ocular surface. The corneal penetration study showed that the PLA-g-CS nanoparticles could penetrate into the cornea. Conclusion Our results suggest that this nanoparticulate vehicle based on a PLA-g-CS copolymer might be a promising system for effective ocular delivery of amphotericin B.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | |
Collapse
|
87
|
Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:95-101. [DOI: 10.3109/21691401.2013.794351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
Novel microparticulate systems for the vaginal delivery of nystatin: Development and characterization. Carbohydr Polym 2013; 94:1-11. [DOI: 10.1016/j.carbpol.2013.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 11/16/2022]
|
89
|
Kumar L, Verma S, Bhardwaj A, Vaidya S, Vaidya B. Eradication of superficial fungal infections by conventional and novel approaches: a comprehensive review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:32-46. [DOI: 10.3109/21691401.2013.769446] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
90
|
In Vitro Uptake and Release of Natamycin From Conventional and Silicone Hydrogel Contact Lens Materials. Eye Contact Lens 2013; 39:162-8. [DOI: 10.1097/icl.0b013e31827a7a07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
91
|
Abstract
INTRODUCTION Cornea ulceration and infectious keratitis are leading causes of corneal morbidity and blindness. Infectious causes are among the most frequent and most severe. Management strategies for bacterial corneal ulcers have changed significantly over the last decades, however with a more limited progress in the treatment and management of nonbacterial, infectious ulcers. AREAS COVERED This paper provides an overview of the current principles, strategies and treatment choices for infectious corneal ulcers in adults. EXPERT OPINION Topical application with a broad-spectrum antimicrobial remains the preferred method for the pharmacological management of infectious corneal ulcers. Increasing reports of clinical failures and in vitro resistance to antibiotics to treat the most common infectious (bacterial) corneal ulcers are increasing concerns. New approaches for improvement in the pharmacological management of corneal ulcers should focus on strategies for a more rational and evidence-based use of current antimicrobials and development of products to modulate the host immune response and to neutralize microbial toxins and other immune modulators.
Collapse
Affiliation(s)
- Darlene Miller
- University of Miami Miller School of Medicine, Bascom Palmer Eye Institute, Anne Bates Leach Eye Hospital, Miami, Florida 33136, USA.
| |
Collapse
|
92
|
Lusiana, Reichl S, Müller-Goymann CC. Infected nail plate model made of human hair keratin for evaluating the efficacy of different topical antifungal formulations against Trichophyton rubrum in vitro. Eur J Pharm Biopharm 2013; 84:599-605. [PMID: 23419812 DOI: 10.1016/j.ejpb.2013.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/21/2012] [Accepted: 01/29/2013] [Indexed: 11/26/2022]
Abstract
A novel model of infected nail plate for testing the efficacy of topical antifungal formulations has been developed. This model utilized keratin film made of human hair keratin as a nail plate model. Subsequent to infection by Trichophyton rubrum, the common causative agent of onychomycosis, keratin films as infected nail plate models were treated with selected topical formulations, that is cream, gel, and nail lacquer. Bovine hoof was compared to keratin film. In contrast to the common antifungal susceptibility test, the antifungal drugs tested were applied as ready-to-use formulations because the vehicle may modify and control the drug action both in vitro and in vivo. Extrapolating the potency of an antifungal drug from an in vitro susceptibility test only would not be representative of the in vivo situation since these drugs are applied as ready-to-use formulations, for example as a nail lacquer. Although terbinafine has been acknowledged to be the most effective antifungal agent against T. rubrum, its antifungal efficacy was improved by its incorporation into an optimal formulation. Different gels proved superior to cream. Therefore, this study is able to discriminate between efficacies of different topical antifungal formulations based on their activities against T. rubrum.
Collapse
Affiliation(s)
- Lusiana
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | |
Collapse
|
93
|
Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int J Pharm 2013; 443:293-305. [PMID: 23333217 DOI: 10.1016/j.ijpharm.2012.12.049] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/24/2012] [Accepted: 12/29/2012] [Indexed: 01/11/2023]
|
94
|
Karsten E, Watson SL, Foster LJR. Diversity of microbial species implicated in keratitis: a review. Open Ophthalmol J 2012; 6:110-24. [PMID: 23248737 PMCID: PMC3520035 DOI: 10.2174/1874364101206010110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/22/2022] Open
Abstract
Background: Microbial keratitis is an infectious disease of the cornea characterised by inflammation and is considered an ophthalmic emergency requiring immediate attention. While a variety of pathogenic microbes associated with microbial keratitis have been identified, a comprehensive review identifying the diversity of species has not been completed. Methods: A search of peer-reviewed publications including case reports and research articles reporting microorganims implicated in keratitis was conducted. Search engines including PubMed, Scopus and Web of Science with years ranging from 1950-2012 were used. Results: 232 different species from 142 genera, representing 80 families were found to be implicated in microbial keratitis. Fungi exhibited the largest diversity with 144 species from 92 genera. In comparison, 77 species of bacteria from 42 genera, 12 species of protozoa from 4 genera and 4 types of virus were identified as the infectious agents. A comparison of their aetiologies shows reports of similarities between genera. Conclusions: The diversity of microbial species implicated in keratitis has not previously been reported and is considerably greater than suggested by incidence studies. Effective treatment is heavily reliant upon correct identification of the responsible microorganisms. Species identification, the risk factors associated with, and pathogenesis of microbial keratitis will allow the development of improved therapies. This review provides a resource for clinicians and researchers to assist in identification and readily source treatment information.
Collapse
Affiliation(s)
- Elisabeth Karsten
- Bio/Polymer Research Group, Centre for Advanced Macromolecular Design, School of Biotechnology and Biomolecular Sciences, Faculty of Science
| | | | | |
Collapse
|
95
|
Campos FF, Calpena Campmany AC, Delgado GR, Serrano OL, Naveros BC. Development and Characterization of a Novel Nystatin‐Loaded Nanoemulsion for the Buccal Treatment of Candidosis: Ultrastructural Effects and Release Studies. J Pharm Sci 2012; 101:3739-52. [DOI: 10.1002/jps.23249] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/15/2012] [Accepted: 06/11/2012] [Indexed: 11/06/2022]
|
96
|
Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine 2012; 7:4409-18. [PMID: 22923986 PMCID: PMC3423152 DOI: 10.2147/ijn.s33682] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To resolve problems of long treatment durations and frequent administration of the antifungal agent terbinafine (TB), solid lipid nanoparticles (SLNs) with the ability to load lipophilic drugs and nanosize were developed. The SLNs were manufactured by a microemulsion technique in which glyceryl monostearate (GMS), glyceryl behenate (Compritol® 888; Gattefossé), and glyceryl palmitostearate (Precirol® ATO 5; Gattefossé) were used as the solid lipid phases, Tween® and Cremophor® series as the surfactants, and propylene glycol as the cosurfactant to construct ternary phase diagrams. The skin of nude mice was used as a barrier membrane, and penetration levels of TB of the designed formulations and a commercial product, Lamisil® Once™ (Novartis Pharmaceuticals), in the stratum corneum (SC), viable epidermis, and dermis were measured; particle sizes were determined as an indicator of stability. The optimal SLN system contained a <5% lipid phase and >50% water phase. The addition of ethanol or etchants had no significant effect on enhancing the amount of TB that penetrated the skin layers, but it was enhanced by increasing the percentage of the lipid phase. Furthermore, the combination of GMS and Compritol® 888 was able to increase the stable amount of TB that penetrated all skin layers. For the ACP1-GM1 (4% lipid phase; Compritol® 888: GMS of 1:1) formulation, the amount of TB that penetrated the SC was similar to that of Lamisil® Once™, whereas the amount of TB of the dermis was higher than that of Lamisil® Once™ at 12 hours, and it was almost the same as that of Lamisil® Once™ at 24 hours. It was concluded that the application of ACP1-GM1 for 12 hours might have an efficacy comparable to that of Lamisil® Once™ for 24 hours, which would resolve the practical problem of the longer administration period that is necessary for Lamisil® Once™.
Collapse
Affiliation(s)
- Ying-Chen Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
97
|
Sharma P, Chawla A, Arora S, Pawar P. Novel drug delivery approaches on antiviral and antiretroviral agents. J Adv Pharm Technol Res 2012; 3:147-59. [PMID: 23057001 PMCID: PMC3459444 DOI: 10.4103/2231-4040.101007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Viruses have the property to replicate very fast in host cell. It can attack any part of host cell. Therefore, the clinical efficacy of antiviral drugs and its bioavailability is more important concern taken into account to treat viral infections. The oral and parenteral routes of drug administration have several shortcomings, however, which could lead to the search for formulating better delivery systems. Now, a day's novel drug delivery systems (NDDS) proved to be a better approach to enhance the effectiveness of the antivirals and improve the patient compliance and decrease the adverse effect. The NDDS have reduced the dosing frequency and shorten the duration of treatment, thus, which could lead the treatment more cost-effective. The development of NDDS for antiviral and antiretroviral therapy aims to deliver the drug devoid of toxicity, with high compatibility and biodegradability, targeting the drug to specific sites for viral infection and in some instances it also avoid the first pass metabolism effect. This article aims to discuss the usefulness of novel delivery approaches of antiviral agents such as niosomes, microspheres, microemulsions, nanoparticles that are used in the treatment of various Herpes viruses and in human immunodeficiency virus (HIV) infections.
Collapse
Affiliation(s)
- Pooja Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Anuj Chawla
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| | - Pravin Pawar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Rajpura, Patiala, Punjab, India
| |
Collapse
|
98
|
Kakkar S, Pal Kaur I. A novel nanovesicular carrier system to deliver drug topically. Pharm Dev Technol 2012; 18:673-85. [DOI: 10.3109/10837450.2012.685655] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
99
|
Fernández-Campos F, Clares Naveros B, López Serrano O, Alonso Merino C, Calpena Campmany AC. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses 2012; 56:70-81. [DOI: 10.1111/j.1439-0507.2012.02202.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
100
|
Fluoride enhances the activity of fungicides that destabilize cell membranes. Bioorg Med Chem Lett 2012; 22:3317-22. [PMID: 22460034 DOI: 10.1016/j.bmcl.2012.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 01/05/2023]
Abstract
Fluoride has long been known to inhibit bacterial and fungal cell growth most likely by blocking the functions of key metabolic enzymes. In this study, we demonstrate that antifungal compounds that disrupt cell membrane integrity exhibit improved ability to inhibit cell growth when used with millimolar concentrations of fluoride. Specifically, antifungal compounds of the polyene class and an antifungal peptide exhibit synergy with fluoride to inhibit the growth of various fungal species, including Candida albicans. Our results demonstrate that certain compounds can be found that increase the cellular uptake of fluoride, and provide new opportunities for creating antimicrobial compounds whose functions are enhanced when combined with otherwise sub-inhibitory concentrations of small ions.
Collapse
|