51
|
Qiu JJ, Yin J, Qian W, Liu JH, Huang ZX, Yu HP, Ji L, Zeng XX. A Novel Multiresolution-Statistical Texture Analysis Architecture: Radiomics-Aided Diagnosis of PDAC Based on Plain CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:12-25. [PMID: 32877335 DOI: 10.1109/tmi.2020.3021254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Early screening of PDAC (pancreatic ductal adenocarcinoma) based on plain CT (computed tomography) images is of great significance. Therefore, this work conducted a radiomics-aided diagnosis analysis of PDAC based on plain CT images. We explored a novel MSTA (multiresolution-statistical texture analysis) architecture to extract texture features and built machine learning models to classify PDACs and HPs (healthy pancreases). We also performed significance tests of differences to analyze the relationships between histopathological characteristics and texture features. The MSTA architecture originates from the analysis of histopathological characteristics and combines multiresolution analysis and statistical analysis to extract texture features. The MSTA architecture achieved better experimental results than the traditional architecture that scales the coefficient matrices of the multiresolution analysis. In the validation of the classifications, the MSTA architecture achieved an accuracy of 81.19% and an AUC (area under the ROC (receiver operating characteristic) curve) of 0.88 (95% confidence interval: 0.84-0.92). In the test of the classifications, it achieved an accuracy of 77.66% and an AUC of 0.79 (95% confidence interval: 0.71-0.87). Moreover, the significance tests of differences showed that the extracted texture features may be relevant to the histopathological characteristics. The MSTA architecture is beneficial for the radiomics-aided diagnosis of PDAC based on plain CT images. Its texture features can potentially enhance radiologists' imaging interpretation abilities.
Collapse
|
52
|
Ravina K, Lin L, Liu CY, Thomas D, Hasson D, Wang LV, Russin JJ. Prospects of Photo- and Thermoacoustic Imaging in Neurosurgery. Neurosurgery 2020; 87:11-24. [PMID: 31620798 DOI: 10.1093/neuros/nyz420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022] Open
Abstract
The evolution of neurosurgery has been, and continues to be, closely associated with innovations in technology. Modern neurosurgery is wed to imaging technology and the future promises even more dependence on anatomic and, perhaps more importantly, functional imaging. The photoacoustic phenomenon was described nearly 140 yr ago; however, biomedical applications for this technology have only recently received significant attention. Light-based photoacoustic and microwave-based thermoacoustic technologies represent novel biomedical imaging modalities with broad application potential within and beyond neurosurgery. These technologies offer excellent imaging resolution while generally considered safer, more portable, versatile, and convenient than current imaging technologies. In this review, we summarize the current state of knowledge regarding photoacoustic and thermoacoustic imaging and their potential impact on the field of neurosurgery.
Collapse
Affiliation(s)
- Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Li Lin
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Tianqiao and Chrissy Chen Brain-machine Interface Center, California Institute of Technology, Pasadena, California
| | - Debi Thomas
- Department of Surgery, University of California Davis, Davis, California
| | - Denise Hasson
- Division of Critical Care Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
53
|
Scotson CP, van Veelen A, Williams KA, Koebernick N, McKay Fletcher D, Roose T. Developing a system for in vivo imaging of maize roots containing iodinated contrast media in soil using synchrotron XCT and XRF. PLANT AND SOIL 2020; 460:647-665. [PMID: 34720206 PMCID: PMC8550435 DOI: 10.1007/s11104-020-04784-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/25/2020] [Indexed: 06/13/2023]
Abstract
AIMS We sought to develop a novel experimental system which enabled application of iodinated contrast media to in vivo plant roots intact in soil and was compatible with time-resolved synchrotron X-ray computed tomography imaging. The system was developed to overcome issues of low contrast to noise within X-ray computed tomography images of plant roots and soil environments, the latter of which can complicate image processing and result in the loss of anatomical information. METHODS To demonstrate the efficacy of the system we employ the novel use of both synchrotron X-ray computed tomography and synchrotron X-ray fluorescence mapping to capture the translocation of the contrast media through root vasculature into the leaves. RESULTS With the application of contrast media we identify fluid flow in root vasculature and visualise anatomical features, which are otherwise often only observable in ex vivo microscopy, including: the xylem, metaxylem, pith, fibres in aerenchyma and leaf venation. We are also able to observe interactions between aerenchyma cross sectional area and solute transport in the root vasculature with depth. CONCLUSIONS Our novel system was capable of successfully delivering sufficient contrast media into root and leaf tissues such that anatomical features could be visualised and internal fluid transport observed. We propose that our system could be used in future to study internal plant transport mechanisms and parameterise models for fluid flow in plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-020-04784-x.
Collapse
Affiliation(s)
- Callum P. Scotson
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Arjen van Veelen
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
- Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - Katherine A. Williams
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Nicolai Koebernick
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
| | - Dan McKay Fletcher
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| | - Tiina Roose
- Bioengineering Sciences Research Group, Department of Mechanical Engineering, School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ UK
| |
Collapse
|
54
|
Haim Zada M, Gallimidi Z, Schlesinger−Laufer M, Nyska A, Domb AJ. Biodegradable Breast Tissue Marker Clip. ACS APPLIED BIO MATERIALS 2020; 3:7439-7453. [DOI: 10.1021/acsabm.0c00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Moran Haim Zada
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Zehava Gallimidi
- Department of Medical Imaging, Rambam Healthcare Campus, Haifa 3199, Israel
| | | | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University and Consultant in Toxicologic Pathology, Timrat 36576, Israel
| | - Abraham J. Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
55
|
Rich LJ, Damasco JA, Bulmahn JC, Kutscher HL, Prasad PN, Seshadri M. Photoacoustic and Magnetic Resonance Imaging of Hybrid Manganese Dioxide-Coated Ultra-small NaGdF 4 Nanoparticles for Spatiotemporal Modulation of Hypoxia in Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12113294. [PMID: 33172178 PMCID: PMC7694772 DOI: 10.3390/cancers12113294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Tumor hypoxia is a documented negative prognostic factor that contributes to treatment resistance in head and neck cancer. In the present study, we use non-invasive magnetic resonance imaging (MRI) and photoacoustic imaging (PAI) to evaluate the ability of ultra-small manganese dioxide coated nanoparticles to modulate tumor oxygenation in vitro and in vivo. Our results highlight the utility of MRI and PAI in mapping tumor hypoxia and nanoparticle delivery and demonstrate the potential of image-guided nanodelivery in alleviating tumor hypoxia in head and neck cancer. Abstract There is widespread interest in developing agents to modify tumor hypoxia in head and neck squamous cell carcinomas (HNSCC). Here, we report on the synthesis, characterization, and potential utility of ultra-small NaYF4:Nd3+/NaGdF4 nanocrystals coated with manganese dioxide (usNP-MnO2) for spatiotemporal modulation of hypoxia in HNSCC. Using a dual modality imaging approach, we first visualized the release of Mn2+ using T1-weighted magnetic resonance imaging (MRI) and modulation of oxygen saturation (%sO2) using photoacoustic imaging (PAI) in vascular channel phantoms. Combined MRI and PAI performed in patient-derived HNSCC xenografts following local and systemic delivery of the hybrid nanoparticles enabled mapping of intratumoral nanoparticle accumulation (based on T1 contrast enhancement) and improvement in tumor oxygenation (increased %sO2) within the tumor microenvironment. Our results demonstrate the potential of hybrid nanoparticles for the modulation of tumor hypoxia in head and neck cancer. Our findings also highlight the potential of combined MRI-PAI for simultaneous mapping nanoparticle delivery and oxygenation changes in tumors. Such imaging methods could be valuable in the precise selection of patients that are likely to benefit from hypoxia-modifying nanotherapies.
Collapse
Affiliation(s)
- Laurie J. Rich
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA;
| | - Jossana A. Damasco
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
| | - Julia C. Bulmahn
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
| | - Hilliard L. Kutscher
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
- Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Anesthesiology, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Paras N. Prasad
- Department of Chemistry and the Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (J.A.D.); (J.C.B.); (H.L.K.)
- Correspondence: (P.N.P.); (M.S.)
| | - Mukund Seshadri
- Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA;
- Department of Dentistry and Maxillofacial Prosthetics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
- Correspondence: (P.N.P.); (M.S.)
| |
Collapse
|
56
|
Abstract
Magnetic nanostructures and nanomaterials play essential roles in modern bio medicine and technology. Proper surface functionalization of nanoparticles (NPs) allows the selective bonding thus application of magnetic forces to a vast range of cellular structures and biomolecules. However, the spherical geometry of NPs poises a series of limitations in various potential applications. Mostly, typical spherical core shell structure consists of magnetic and non-magnetic layers have little tunability in terms of magnetic responses, and their single surface functionality also limits chemical activity and selectivity. In comparison to spherical NPs, nanowires (NWs) possess more degrees of freedom in achieving magnetic and surface chemical tenability. In addition to adjustment of magnetic anisotropy and inter-layer interactions, another important feature of NWs is their ability to combine different components along their length, which can result in diverse bio-magnetic applications. Magnetic NWs have become the candidate material for biomedical applications owing to their high magnetization, cheapness and cost effective synthesis. With large magnetic moment, anisotropy, biocompatibility and low toxicity, magnetic NWs have been recently used in living cell manipulation, magnetic cell separation and magnetic hyperthermia. In this review, the basic concepts of magnetic characteristics of nanoscale objects and the influences of aspect ratio, composition and diameter on magnetic properties of NWs are addressed. Some underpinning physical principles of magnetic hyperthermia (MH), magnetic resonance imaging (MRI) and magnetic separation (MS) have been discussed. Finally, recent studies on magnetic NWs for the applications in MH, MRI and MS were discussed in detail.
Collapse
Affiliation(s)
- Aiman Mukhtar
- The State Key Laboratory of Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
57
|
Noncontrast Magnetic Resonance Imaging of Perforators for Preoperative Evaluation of Anterolateral Thigh Flaps. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e3174. [PMID: 33173687 PMCID: PMC7647644 DOI: 10.1097/gox.0000000000003174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/14/2020] [Indexed: 11/26/2022]
Abstract
The anterolateral thigh (ALT) flap is a commonly utilized perforator-based flap in reconstructive surgery. Although previous studies have used various angiographic techniques to preoperatively image ALT perforators, none have investigated the efficacy of noncontrast magnetic resonance imaging (MRI). Our study investigates the efficacy of our institutional fat suppression noncontrast MRI sequence to characterize the number, location, and course of dominant skin perforators in the ALT for preoperative planning.
Collapse
|
58
|
Abstract
Endoleak remains a significant challenge to endovascular aneurysm repair, particularly as evolving techniques and devices have allowed treatment of increasingly complex aneurysm anatomy with increasing number of device components. Intervention is recommended for both type I and III endoleaks due to their risk of rupture, and endovascular techniques are the favored modality with placement of a bridging endograft over the endoleak defect. Conversion to open surgical repair remains the definitive option in cases where less invasive methods have failed or are precluded. In this article, the authors review evidence on the etiology, incidence, diagnosis, and current techniques for type III endoleak management.
Collapse
Affiliation(s)
- Jordan B. Stoecker
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia D. Glaser
- Division of Vascular Surgery and Endovascular Therapy, University of Pennsylvania Health System, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
59
|
Tavakoli AA, Reichert M, Blank T, Dinter D, Weckbach S, Buchheidt D, Schoenberg SO, Attenberger U. Findings in whole body MRI and conventional imaging in patients with fever of unknown origin-a retrospective study. BMC Med Imaging 2020; 20:94. [PMID: 32767967 PMCID: PMC7412796 DOI: 10.1186/s12880-020-00493-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background To analyse the influence of whole body (wb)-MRI on patient management compared to routine diagnostic tests in patients with fever of unknown origin (FUO). Methods Twenty-four patients with FUO, defined as illness of more than three weeks with fever greater than 38.3 °C, underwent wb-MRI at a 1.5 T MR-system. The MR-protocol consisted of the following sequences: axial T1 VIBE, coronal T2-TIRM and a coronal echoplanar diffusion weighted sequence (overall acquisition time 29:39 min:s). Furthermore, laboratory findings, chest-x-ray, abdominal ultrasound, CT-scans and/or PET-CT scans were evaluated and compared to the wb-MRI findings in regard to treatment changes. Results Wb-MRI yielded a correct diagnosis in 70% of the patients. In 46% the inflammatory focus was exclusively detected by wb-MRI. Focus detection by wb-MRI led to a subsequent change of the clinical management in 92% of the patients. In 6 patients both a wb-MRI and a PET-CT were performed yielding the correct diagnosis in the same 4 of 6 patients for both imaging modalities. Conclusions Wb-MRI appears to be of value in the evaluation of FUO patients, allowing for optimized treatment by increasing diagnostic certainty. Due to its lack of nephrotoxicity and ionizing radiation it may be preferred over standard imaging techniques and PET-CT in the future. However, given the low number of patients in our trial, further prospective studies have to be performed to confirm our results.
Collapse
Affiliation(s)
- Anoshirwan Andrej Tavakoli
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany. .,Department of Radiology, German Cancer Research Center (Dkfz), Heidelberg, Germany.
| | - Miriam Reichert
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Tanja Blank
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | - Dietmar Dinter
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany.,Radiologie Schwetzingen, Schwetzingen, Germany
| | - Sabine Weckbach
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany.,Department of Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology, University Medical Center Mannheim, Mannheim, Germany
| | - Stefan Oswald Schoenberg
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| | | |
Collapse
|
60
|
Uman S, Wang LL, Thorn SL, Liu Z, Duncan JS, Sinusas AJ, Burdick JA. Imaging of Injectable Hydrogels Delivered into Myocardium with SPECT/CT. Adv Healthc Mater 2020; 9:e2000294. [PMID: 32543053 PMCID: PMC7482444 DOI: 10.1002/adhm.202000294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Injectable hydrogels are being widely explored for treatment after myocardial infarction (MI) through mechanical bulking or the delivery of therapeutics. Despite this interest, there have been few approaches to image hydrogels upon injection to identify their location, volume, and pattern of delivery, features that are important to understand toward clinical translation. Using a hyaluronic acid (HA) hydrogel as an example, the aim of this study is to introduce radiopacity to hydrogels by encapsulating a clinically used contrast agent (Omnipaque Iohexol, GE Healthcare) for imaging upon placement in the myocardium. Specifically, iohexol is encapsulated into shear-thinning and self-healing hydrogels formed through the mixing of HA-hydrazide and HA-aldehyde. Upon examination of a range of iohexol concentrations, a concentration of 100 mg mL-1 iohexol is deemed optimal based on the greatest contrast, while maintaining hydrogel mechanical properties and acceptable injection forces. In an acute porcine model of MI, hybrid single-photon emission computed tomography/computed tomography (SPECT/CT) perfusion imaging is performed immediately and 3-4 days after hydrogel delivery to assess radiopacity and verify the hydrogel location within the perfusion defect. Hybrid SPECT/CT imaging demonstrates excellent radiopacity of the hydrogel within the perfusion defect immediately after intramyocardial hydrogel injection, demonstrating the feasibility of this method for short-term noninvasive hydrogel monitoring.
Collapse
Affiliation(s)
- Selen Uman
- Department of Bioengineering, University of Pennsylvania, 210 33rd Street, Philadelphia, PA, 19104, USA
| | - Leo L Wang
- Department of Bioengineering, University of Pennsylvania, 210 33rd Street, Philadelphia, PA, 19104, USA
| | - Stephanie L Thorn
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, Yale Translational Research Imaging Center, DANA-3, P.O. Box 208017, New Haven, CT, 06520-8017, USA
| | - Zhao Liu
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, Yale Translational Research Imaging Center, DANA-3, P.O. Box 208017, New Haven, CT, 06520-8017, USA
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, Yale Translational Research Imaging Center, DANA-3, P.O. Box 208017, New Haven, CT, 06520-8017, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 33rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
61
|
Yin J, Qiu JJ, Qian W, Ji L, Yang D, Jiang JW, Wang JR, Lan L. A radiomics signature to identify malignant and benign liver tumors on plain CT images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:683-694. [PMID: 32568166 DOI: 10.3233/xst-200675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In regular examinations, it may be difficult to visually identify benign and malignant liver tumors based on plain computed tomography (CT) images. RCAD (radiomics-based computer-aided diagnosis) has proven to be helpful and provide interpretability in clinical use. OBJECTIVE This work aims to develop a CT-based radiomics signature and investigate its correlation with malignant/benign liver tumors. METHODS We retrospectively analyzed 168 patients of hepatocellular carcinoma (malignant) and 117 patients of hepatic hemangioma (benign). Texture features were extracted from plain CT images and used as candidate features. A radiomics signature was developed from the candidate features. We performed logistic regression analysis and used a multiple-regression coefficient (termed as R) to assess the correlation between the developed radiomics signature and malignant/benign liver tumors. Finally, we built a logistic regression model to classify benign and malignant liver tumors. RESULTS Thirteen features were chosen from 1223 candidate features to constitute the radiomics signature. The logistic regression analysis achieved an R = 0.6745, which was much larger than Rα = 0.3703 (the critical value of R at significant level α = 0.001). The logistic regression model achieved an average AUC of 0.87. CONCLUSIONS The developed radiomics signature was statistically significantly correlated with malignant/benign liver tumors (p < 0.001). It has potential to help enhance physicians' diagnostic abilities and play an important role in RCADs.
Collapse
Affiliation(s)
- Jin Yin
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia-Jun Qiu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Qian
- Department of Electric and Computer Engineering, University of Texas El Paso, El Paso, TX, USA
| | - Lin Ji
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Wen Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Ren Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Lan
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
62
|
A S, F H, S V, I A. Influence Blocking by Gadolinium in Calcium Diffusion on Synapse Model: A Monte Carlo Simulation Study. J Biomed Phys Eng 2020; 10:251-260. [PMID: 32637369 PMCID: PMC7321394 DOI: 10.31661/jbpe.v0i0.1155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Gadolinium (Gd3+) is a chemical element belonging to the lanthanide group and commonly used in magnetic resonance imaging (MRI) as a contrast agent. However, recently, gadolinium has been reported deposition in the body after a patient receives multiple injections. Gadolinium is a potent block and competes with calcium diffusion into the presynaptic. There has not been a precise mechanism of gadolinium blocking calcium channel as a channel of calcium diffusion to presynaptic until now. OBJECTIVE This study aims to investigate the mechanism of calcium influx model and the effect of neurotransmitter release to the synaptic cleft influenced by the presence of Gd3+. MATERIAL AND METHODS Monte Carlo Cell simulation was used to analyze simulation and also Blender was used to create and visualize the model for synapse. The synapse modeled by a form resembling the actual synapse base on a spherical shape. RESULTS The presence of gadolinium around the presynaptic has been disturbing diffusion of calcium influx presynaptic. The result shows that the presence of gadolinium around the presynaptic has caused a decrease in the amount of calcium influx presynaptic. These factors contribute to reducing the establishment of the active membrane, then the amount of synaptic vesicle docking and finally the amount of released neurotransmitter. CONCLUSION Gadolinium and calcium compete with each other across of calcium channel. The presence of gadolinium has caused a chain effect for signal transmission at the chemical synapse, reducing the amount of active membrane, synaptic vesicle docking, and releasing neurotransmitter.
Collapse
Affiliation(s)
- Sutresno A
- PhD, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institute Teknologi Bandung Jl. Ganesha 10 Bandung 40132, Indonesia
| | - Haryanto F
- PhD, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institute Teknologi Bandung Jl. Ganesha 10 Bandung 40132, Indonesia
| | - Viridi S
- PhD, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institute Teknologi Bandung Jl. Ganesha 10 Bandung 40132, Indonesia
| | - Arif I
- PhD, Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institute Teknologi Bandung Jl. Ganesha 10 Bandung 40132, Indonesia
| |
Collapse
|
63
|
Guimaraes L, Babaei Jandaghi A, Menezes R, Grant D, Cattral M, Jhaveri KS. Assessment of biliary anatomy in potential living liver donors: Added value of gadoxetic acid-enhanced T1 MR Cholangiography (MRC) including utilization of controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique in comparison to T2W-MRC. Magn Reson Imaging 2020; 70:64-72. [PMID: 32320722 DOI: 10.1016/j.mri.2020.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess the added value of gadoxetic-acid-enhanced T1-weighted magnetic resonance Cholangiography (T1W-MRC) including controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-Volumetric Interpolated Breathhold (VIBE) technique compared to T2-weighted MR Cholangiography (T2W-MRC) in depicting biliary anatomy in potential living liver donors. METHODS Eighty-five potential donors including 34 men with a mean age of 35.6 years (range, 18-55 years) and 51 women with a mean age of 36.7 years (range, 23-57 years), were enrolled in this ethics-approved retrospective study. Image quality for depiction of bile ducts was evaluated by two readers in consensus in 3 separate reading sessions: 1) T2W-MRC alone, 2) T1W-MRC alone (including CAIPI-VIBE and generalized autocalibrating partially parallel acquisitions (GRAPPA)-VIBE techniques, and 3) combined T1W/T2W-MRC. Accuracy of T2W-MRC, T1W-MRC, and combined T1W/T2W-MRC for the identification/classification of the biliary variants was calculated using intraoperative cholangiogram (IOC) as the reference standard. Image quality and reader diagnostic confidence provided by CAIPI-VIBE technique was compared with GRAPPA-VIBE technique. Datasets were compared using the Wilcoxon signed-rank test. RESULTS Image quality for depiction of the bile ducts was significantly superior in the combined T1W/T2W-MRC group, when compared to each of T2W-MRC and T1W-MRC groups independently (P value = 0.001-0.034). The combination of CAIPI-VIBE and GRAPPA-VIBE was superior compared to each of the sequences individually. The accuracy of T2W-MRC and T1W-MRC was 93% and 91%, respectively. T1W-MRC depicted four biliary variants better than T2W-MRC. Two variants not well seen in T2W-MRC were clearly shown on T1W-MRC. CONCLUSION Gadoxetic-acid-enhanced T1W-MRC and conventional T2W-MRC techniques are complementary for depiction of biliary variants in potential liver donors and the combination of the two improves the results. The combination of CAIPI-VIBE and GRAPPA-VIBE techniques appear to be complementary for optimal diagnostic yield of T1W-MRC.
Collapse
Affiliation(s)
- Luis Guimaraes
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ali Babaei Jandaghi
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto, ON, Canada
| | - Ravi Menezes
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - David Grant
- Division of General Surgery, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Mark Cattral
- Division of General Surgery, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Kartik S Jhaveri
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
64
|
Gholami YH, Yuan H, Wilks MQ, Maschmeyer R, Normandin MD, Josephson L, El Fakhri G, Kuncic Z. A Radio-Nano-Platform for T1/T2 Dual-Mode PET-MR Imaging. Int J Nanomedicine 2020; 15:1253-1266. [PMID: 32161456 PMCID: PMC7049573 DOI: 10.2147/ijn.s241971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/09/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to develop a chelate-free radiolabeled nanoparticle platform for simultaneous positron emission tomography (PET) and magnetic resonance (MR) imaging that provides contrast-enhanced diagnostic imaging and significant image quality gain by integrating the high spatial resolution of MR with the high sensitivity of PET. Methods A commercially available super-paramagnetic iron oxide nanoparticle (SPION) (Feraheme®, FH) was labeled with the [89Zr]Zr using a novel chelate-free radiolabeling technique, heat-induced radiolabeling (HIR). Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and radio-thin layer chromatography (radio-TLC). Characterization of the non-radioactive isotope 90Zr-labeled FH was performed by transmission electron microscopy (TEM). Simultaneous PET-MR phantom imaging was performed with different 89Zr-FH concentrations. The MR quantitative image analysis determined the contrast-enhancing properties of FH. The signal-to-noise ratio (SNR) and full-width half-maximum (FWHM) of the line spread function (LSF) were calculated before and after co-registering the PET and MR image data. Results High RCY (92%) and RCP (98%) of the [89Zr]Zr-FH product was achieved. TEM analysis confirmed the 90Zr atoms adsorption onto the SPION surface (≈ 10% average radial increase). Simultaneous PET-MR scans confirmed the capability of the [89Zr]Zr-FH nano-platform for this multi-modal imaging technique. Relative contrast image analysis showed that [89Zr]Zr-FH can act as a dual-mode T1/T2 contrast agent. For co-registered PET-MR images, higher spatial resolution (FWHM enhancement ≈ 3) and SNR (enhancement ≈ 8) was achieved at a clinical dose of radio-isotope and Fe. Conclusion Our results demonstrate FH is a highly suitable SPION-based platform for chelate-free labeling of PET tracers for hybrid PET-MR. The high RCY and RCP confirmed the robustness of the chelate-free HIR technique. An overall image quality gain was achieved compared to PET- or MR-alone imaging with a relatively low dosage of [89Zr]Zr-FH. Additionally, FH is suitable as a dual-mode T1/T2 MR image contrast agent. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: http://youtu.be/Me_QBfX7I3s
Collapse
Affiliation(s)
- Yaser Hadi Gholami
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia.,Bill Walsh Translational Cancer Research Laboratory, The Kolling Institute, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Hushan Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard Maschmeyer
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zdenka Kuncic
- Faculty of Science, School of Physics, The University of Sydney, Sydney, NSW, Australia.,Sydney Vital Translational Cancer Research Centre, St Leonards, NSW, Australia.,The University of Sydney Nano Institute, Sydney, NSW, Australia
| |
Collapse
|
65
|
Lowerison MR, Huang C, Lucien F, Chen S, Song P. Ultrasound localization microscopy of renal tumor xenografts in chicken embryo is correlated to hypoxia. Sci Rep 2020; 10:2478. [PMID: 32051485 PMCID: PMC7015937 DOI: 10.1038/s41598-020-59338-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Ultrasound localization microscopy (ULM) permits the reconstruction of super-resolved microvascular images at clinically relevant penetration depths, which can be potentially leveraged to provide non-invasive quantitative measures of tissue hemodynamics and hypoxic status. We demonstrate that ULM microbubble data processing methods, applied to images acquired with a Verasonics Vantage 256 system, can provide a non-invasive imaging surrogate biomarker of tissue oxygenation status. This technique was applied to evaluate the microvascular structure, vascular perfusion, and hypoxia of a renal cell carcinoma xenograft model grown in the chorioallantoic membrane of chicken embryos. Histological microvascular density was significantly correlated to ULM measures of intervessel distance (R = -0.92, CI95 = [-0.99,-0.42], p = 0.01). The Distance Metric, a measure of vascular tortuosity, was found to be significantly correlated to hypoxyprobe quantifications (R = 0.86, CI95 = [0.17, 0.99], p = 0.03). ULM, by providing non-invasive in vivo microvascular structural information, has the potential to be a crucial clinical imaging modality for the diagnosis and therapy monitoring of solid tumors.
Collapse
Affiliation(s)
- Matthew R Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
66
|
Abstract
BACKGROUND Since the inception of magnetic resonance imaging, thousands of studies have appeared in the literature reporting on multiple imaging techniques. However, there is a paucity of neuroimaging research programs developed by nurse scientists. OBJECTIVES The purpose of this article is to introduce the nurse scientist to complex neuroimaging methods with the ultimate goal of creating impetus for future use of brain imaging in nursing research. METHODS This article reviews common neuroimaging methods, presents vocabulary frequently used in neuroimaging work, provides information on access to resources in neuroimaging education, and discusses considerations for use of neuroimaging in research. RESULTS Ten imaging modalities are reviewed, including structural and functional magnetic resonance imaging, computed tomography, positron emission tomography, and encephalography. DISCUSSION Choosing an imaging modality for research depends on the nature of the research question, needs of the patient population of interest, and resources available to the novice and seasoned nurse scientist. Neuroimaging has the potential to innovate the study of symptom science and encourage interdisciplinary collaboration in research.
Collapse
|
67
|
Powell AC, Wang Y, Smith GL, Long JW, Deshmukh UU, Friedman DP, Roth CG, Sundaram B. Outpatient facility-based order variation in combined imaging. PLoS One 2019; 14:e0224735. [PMID: 31725755 PMCID: PMC6855465 DOI: 10.1371/journal.pone.0224735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Combined computed tomography (CT) occurs when one anatomical area is simultaneously imaged both without and with contrast, or two overlapping anatomical areas are imaged concurrently. While this has been studied in a Traditional Medicare population, it has not been studied in other populations subject to prior authorization. This study explores between-facility variation in ordering and receiving orders to render combined CT in a mixed commercial and Medicare Advantage population. METHODS Orders for CT abdomen (without/with contrast), CT thorax (without/with contrast), and concurrent CT brain and sinus authorized by a prior authorization company from 2013-2017, pertaining to patients with commercial or Medicare Advantage health plans from one national insurer, were extracted. Orders were issued and rendered by both hospitals and nonhospitals. The analysis was performed separately for each anatomical area in two ways: orders were grouped by ordering facility, and by designated rendering facility. For each facility, the ratio of combined to total orders was calculated, and analysis of variance was used to determine whether there were significant differences in this rate by year. The association between health plan type and combined imaging rates was assessed. RESULTS Combined rates [ratio±standard deviation] for abdomen, thorax, and brain/sinus were 0.306±0.246, 0.089±0.142, and 0.002±0.01 respectively when the analysis was conducted according to ordering facility, and 0.311±0.178, 0.096±0.113, and 0.001±0.006 when the analysis was conducted according to designated rendering facility. Combined CT abdomen and CT thorax rates decreased monotonically from 2013 to 2017, decreases that were significant (P < .01) regardless of whether orders were grouped by ordering or rendering facility. Combined CT abdomen and CT thorax rates significantly differed between orders pertaining to people with commercial and Medicare Advantage plans. DISCUSSION Variability was greater when orders were grouped by ordering facility, rather than rendering facility. Health plan type may influence whether a patient receives combined CT.
Collapse
Affiliation(s)
| | - Yan Wang
- HealthHelp, Houston, TX, United States of America
| | | | - James W. Long
- Humana Inc., Louisville, KY, United States of America
| | | | - David P. Friedman
- HealthHelp, Houston, TX, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Christopher G. Roth
- HealthHelp, Houston, TX, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Baskaran Sundaram
- HealthHelp, Houston, TX, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
68
|
Hejazinia H, Poonaki E, Elmi M, Esfandiar M, Boroujeni VV, Assadi A, Ebrahimi SES, Hamedani MP, Ardestani MS. Investigation Of Reducing Omniscan Toxicity Using Intracellular And Targeted N-Acetylcysteine Lysine Complex. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180913101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The main issue is finding the most efficient method in the treatment of cancer in terms of early and accurate diagnostic. One of the most modern diagnostic techniques is imaging methods. The accuracy and detection speed of MRI and CT SCAN are high.Methods:The most important complication of iodinated contrast agents in medical imaging is severe renal toxicity Nephrogenic Systemic Fibrosis (NSF). In order to reduce the cytotoxicity of kidney cells caused by the usage of iodized contrast agents a complex agent should be designed. The two drugs which have been used for the synthesis of this compound are L -lysine amino acid and NAcetyl- Cysteine (NAC).Results:The synthesis of this complex due to two dimer molecules with each other and NAC greatly a helper for an antioxidant activity and L-lysine amino acid helps in drug entry into the cells. However, helping for an antioxidant activity heavily reinforce and eventually will successfully reduce the cytotoxicity. When its exposure to HEK 293 cell line (P<0.05). The reduction in toxicity at the dosage of 100 µM has been showed as the greatest reduction. The amount of renal toxicity was reported 40% in Omniscan.Conclusion:Omniscan was tested when iodinated contrast medium was combined with the synthesized 2NAC-LYS-OMNISCAN complex and the human embryonic kidney 293 (HEK293) cell line. Then, the cytotoxicity was reduced to 10 %. On the other hand, the viability increased from 60 % to 90 %, or in other words, the cytotoxicity was reduced from 40 % to 10 %.
Collapse
Affiliation(s)
- Hadi Hejazinia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Poonaki
- Department of Biotechnology, I.A.U of Damghan, Damghan, Iran
| | - Mitra Elmi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Mohammad Esfandiar
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vala Vahedian Boroujeni
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Artin Assadi
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | | | - Morteza Pirali Hamedani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Shin SH, Wendland MF, Zhang B, Tran A, Tang A, Vandsburger MH. Noninvasive imaging of renal urea handling by CEST-MRI. Magn Reson Med 2019; 83:1034-1044. [PMID: 31483529 DOI: 10.1002/mrm.27968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Renal function is characterized by concentration of urea for removal in urine. We tested urea as a CEST-MRI contrast agent for measurement of the concentrating capacity of distinct renal anatomical regions. METHODS The CEST contrast of urea was examined using phantoms with different concentrations and pH levels. Ten C57BL/6J mice were scanned twice at 7 T, once following intraperitoneal injection of 2M 150 µL urea and separately following an identical volume of saline. Kidneys were segmented into regions encompassing the cortex, outer medulla, and inner medulla and papilla to monitor spatially varying urea concentration. Z-spectra were acquired before and 20 minutes after injection, with dynamic scanning of urea handling performed in between via serial acquisition of CEST images acquired following saturation at +1 ppm. RESULTS Phantom experiments revealed concentration and pH-dependent CEST contrast of urea that was both acid- and base-catalyzed. Z-spectra acquired before injection showed significantly higher CEST contrast in the inner medulla and papilla (2.3% ± 1.9%) compared with the cortex (0.15% ± 0.75%, P = .011) and outer medulla (0.12% ± 0.58%, P = .008). Urea infusion increased CEST contrast in the inner medulla and papilla by 2.1% ± 1.9% (absolute), whereas saline infusion decreased CEST contrast by -0.5% ± 2.0% (absolute, P = .028 versus urea). Dynamic scanning revealed that thermal drift and diuretic status are confounding factors. CONCLUSION Urea CEST has a potential of monitoring renal function by capturing the spatially varying urea concentrating ability of the kidneys.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core, University of California, Berkeley, Berkeley, California
| | - Brandon Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - An Tran
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Albert Tang
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California
| |
Collapse
|
70
|
Bao D, Zhou J, Hao Y, Yang X, Jiao W, Hu Y, Wang X. The Effects of Fatiguing Aerobic Exercise on the Cerebral Blood Flow and Oxygen Extraction in the Brain: A Piloting Neuroimaging Study. Front Neurol 2019; 10:654. [PMID: 31293499 PMCID: PMC6598428 DOI: 10.3389/fneur.2019.00654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
The fatigue in aerobic exercise affects the task performance. In addition to the fatigue in the muscular system, the diminished performance may arise from the altered cerebral blood supply and oxygen extraction. However, the effects of the fatiguing aerobic exercise on the ability of brain to regulate the cerebral blood flow (CBF) and to extract the oxygen are not fully understood. In this pilot study, we aim to quantify such effects via advanced functional MRI techniques. Twenty healthy younger elite athletes were recruited. In the screening visit, one circle ergometer test was used to screen the maximal relative oxygen consumption (VO2max). Eleven eligible participants then completed the next MRI visit after 7 days. These participants completed a 2-min pulsed arterial spin labeling (ASL) using the PICORE/QUIPSS II and 5-min asymmetric spin echo (ASE) scan at baseline and immediately after the aerobic circle ergometer test. The CBF was then measured using the ASL images and the oxygen consumption of the brain was quantified using oxygen extraction fractions (OEF) derived from the ASE images. The test time, VO2max, and anaerobic threshold were also recorded. As compared to baseline, participants had significant reduction of global CBF (p = 0.003). Specifically, the CBF in bilateral striatum, left middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG) decreased significantly (p < 0.005, K > 20). No significant changes of the OEFs were observed. Participants with greater OEF within the right striatum at baseline had longer test time, greater anaerobic threshold and relative VO2max (r2 > 0.51, p < 0.007). Those with longer test time had less reduction of CBF within the right IFG (r2 = 0.55, p = 0.006) and of OEF within the left striatum (r2 = 0.52, p = 0.008). Additionally, greater anaerobic threshold was associated with less reduction of OEF within the left MTG (r2 = 0.49, p = 0.009). This pilot study provided first-of-its-kind evidence suggesting that the fatiguing aerobic exercise alters the cerebral blood supply in the brain, but has no significant effects on the ability of brain to extract oxygenation. Future studies are warranted to further establish the CBF and OEF as novel markers for physical and physiological function to help the assessment in the sports science and clinics.
Collapse
Affiliation(s)
- Dapeng Bao
- Sport Science Research Center, Beijing Sport University, Beijing, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Ying Hao
- Peking University, Academy for Advanced Interdisciplinary Studies, Beijing, China
| | - Xuedong Yang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Wei Jiao
- Sport Science Research Center, Beijing Sport University, Beijing, China
| | - Yang Hu
- Sport Science Research Center, Beijing Sport University, Beijing, China
| | - Xiaoying Wang
- Peking University, Academy for Advanced Interdisciplinary Studies, Beijing, China.,Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
71
|
Toxicity Evaluation of a Novel Magnetic Resonance Imaging Marker, CoCl2-N-Acetylcysteine, in Rats. J Toxicol 2019; 2018:9173452. [PMID: 30631353 PMCID: PMC6304599 DOI: 10.1155/2018/9173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/31/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
C4 (cobalt dichloride-N-acetylcysteine [1% CoCl2:2% NAC]) is a novel magnetic resonance imaging contrast marker that facilitates visualization of implanted radioactive seeds in cancer brachytherapy. We evaluated the toxicity of C4. Rats were assigned to control (0% CoCl2:NAC), low-dose (0.1% CoCl2:2% NAC), reference-dose (C4), and high-dose (10% CoCl2:2% NAC) groups. Agent was injected into the left quadriceps femoris muscle of the rats. Endpoints were organ and body weights, hematology, and serum chemistry and histopathologic changes of tissues at 48 hours and 28 and 63 days after dosing. Student's t tests were used. No abnormalities in clinical signs, terminal body and organ weights, or hematologic and serum chemistry were noted, and no gross or histopathologic lesions of systemic tissue toxicity were found in any treatment group at any time point studied. At the site of injection, concentration-dependent acute responses were observed in all treatment groups at 48 hours after dosing and were recovered by 28 days. No myofiber degeneration or necrosis was observed at 28 or 63 days in any group. In conclusion, a single intramuscular dose of C4 produced no acute or chronic systemic toxicity or inflammation in rats, suggesting that C4 may be toxicologically safe for clinical use in cancer brachytherapy.
Collapse
|
72
|
Poonja S, Power A, Mah JK, Fine NM, Greenway SC. Current Cardiac Imaging Approaches in Duchenne Muscular Dystrophy. J Clin Neuromuscul Dis 2018; 20:85-93. [PMID: 30439754 DOI: 10.1097/cnd.0000000000000204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular condition caused by mutations in the dystrophin gene leading to skeletal muscle weakness and dilated cardiomyopathy. The prevalence of DMD-related cardiomyopathy increases with age and is almost universal by the third decade of life. Myocardial fibrosis and progressive left ventricular dysfunction lead to the development of heart failure and premature death. With modern advances in medical and surgical management for patients with DMD increasing their life expectancy, cardiac dysfunction represents an increasing cause of morbidity and mortality in these patients. Early diagnosis of dilated cardiomyopathy before symptom development enables the initiation of potentially disease-modifying therapies, but requires regular dedicated imaging surveillance with sufficient sensitivity to detect subclinical changes in cardiac structure and function. Currently, transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR) are commonly used and have complementary roles. TTE is rapid and readily available, whereas CMR is the gold standard for the quantification of ventricular structure and function and can detect the presence and extent of myocardial fibrosis, an increasingly appreciated marker for early disease. This review describes the clinical applications, advantages, and disadvantages of cardiac imaging screening and surveillance for the myocardial manifestations of DMD, with a particular focus on TTE and CMR.
Collapse
Affiliation(s)
- Sabrina Poonja
- Department of Paediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alyssa Power
- Department of Paediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean K Mah
- Department of Paediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nowell M Fine
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Steven C Greenway
- Department of Paediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
73
|
Suárez-García S, Arias-Ramos N, Frias C, Candiota AP, Arús C, Lorenzo J, Ruiz-Molina D, Novio F. Dual T 1/ T 2 Nanoscale Coordination Polymers as Novel Contrast Agents for MRI: A Preclinical Study for Brain Tumor. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38819-38832. [PMID: 30351897 DOI: 10.1021/acsami.8b15594] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
In the last years, extensive attention has been paid on designing and developing functional imaging contrast agents for providing accurate noninvasive evaluation of pathology in vivo. However, the issue of false-positives or ambiguous imaging and the lack of a robust strategy for simultaneous dual-mode imaging remain to be fully addressed. One effective strategy for improving it is to rationally design magnetic resonance imaging (MRI) contrast agents (CAs) with intrinsic T1/ T2 dual-mode imaging features. In this work, the development and characterization of one-pot synthesized nanostructured coordination polymers (NCPs) which exhibit dual mode T1/ T2 MRI contrast behavior is described. The resulting material comprises the combination of different paramagnetic ions (Fe3+, Gd3+, Mn2+) with selected organic ligands able to induce the polymerization process and nanostructure stabilization. Among them, the Fe-based NCPs showed the best features in terms of colloidal stability, low toxicity, and dual T1/ T2 MRI contrast performance overcoming the main drawbacks of reported CAs. The dual-mode CA capability was evaluated by different means: in vitro phantoms, ex vivo and in vivo MRI, using a preclinical model of murine glioblastoma. Interestingly, the in vivo MRI of Fe-NCPs show T1 and T2 high contrast potential, allowing simultaneous recording of positive and negative contrast images in a very short period of time while being safer for the mouse. Moreover, the biodistribution assays reveals the persistence of the nanoparticles in the tumor and subsequent gradual clearance denoting their biodegradability. After a comparative study with commercial CAs, the results suggest these nanoplatforms as promising candidates for the development of dual-mode MRI CAs with clear advantages.
Collapse
Affiliation(s)
- S Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - N Arias-Ramos
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina , 08193 Cerdanyola del Vallès , Spain
| | - C Frias
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - A P Candiota
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina , 08193 Cerdanyola del Vallès , Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - C Arús
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina , 08193 Cerdanyola del Vallès , Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - J Lorenzo
- Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| | - D Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
| | - F Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB, Bellaterra , 08193 Barcelona , Spain
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Barcelona , Spain
| |
Collapse
|
74
|
Kim B, Kim SY, Kim KW, Jang HY, Jang JK, Song GW, Lee SG. MRI in donor candidates for living donor liver transplant: Technical and practical considerations. J Magn Reson Imaging 2018; 48:1453-1467. [DOI: 10.1002/jmri.26257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bohyun Kim
- Department of Radiology; Ajou University Medical Center, Ajou University School of Medicine; Suwon South Korea
| | - So Yeon Kim
- Department of Radiology and the Research Institute of Radiology; University of Ulsan College of Medicine, Asan Medical Center; Seoul South Korea
| | - Kyoung Won Kim
- Department of Radiology and the Research Institute of Radiology; University of Ulsan College of Medicine, Asan Medical Center; Seoul South Korea
| | - Hye Young Jang
- Department of Radiology and the Research Institute of Radiology; University of Ulsan College of Medicine, Asan Medical Center; Seoul South Korea
| | - Jong Keon Jang
- Department of Radiology and the Research Institute of Radiology; University of Ulsan College of Medicine, Asan Medical Center; Seoul South Korea
| | - Gi Won Song
- Department of Surgery, Division of Hepatobiliary and Liver Transplantation Surgery, Asan Medical Center; University of Ulsan College of Medicine; Seoul South Korea
| | - Sung Gyu Lee
- Department of Surgery, Division of Hepatobiliary and Liver Transplantation Surgery, Asan Medical Center; University of Ulsan College of Medicine; Seoul South Korea
| |
Collapse
|
75
|
Shen D, Edelman RR, Robinson JD, Haji-Valizadeh H, Messina M, Giri S, Koktzoglou I, Rigsby CK, Kim D. Single-Shot Coronary Quiescent-Interval Slice-Selective Magnetic Resonance Angiography Using Compressed Sensing: A Feasibility Study in Patients With Congenital Heart Disease. J Comput Assist Tomogr 2018; 42:739-746. [PMID: 29958198 PMCID: PMC6138547 DOI: 10.1097/rct.0000000000000760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether it is feasible to visualize the coronary origins in patients with congenital heart disease (CHD) using single-shot coronary quiescent-interval slice-selective (QISS) magnetic resonance angiography (MRA) with compressed sensing (CS). METHODS This retrospective study leveraged a parent study, which aimed to compare breath-hold, 2.1-fold accelerated, 2-shot coronary QISS MRA and clinical standard contrast-enhanced (CE) MRA in 14 patients with CHD (mean age, 17.0 ± 8.6 years, 6 females and 8 males). We evaluated the feasibility of single-shot coronary QISS MRA by retrospectively undersampling the 2-shot data set by an additional factor of 2, performing CS reconstruction, and comparing the retrospectively derived single-shot QISS MRA to 2-shot coronary QISS MRA and clinical standard CE MRA. For quantitative analysis, structural similarity index and normalized root mean square error were calculated. For qualitative analysis, 2 experienced readers scored the conspicuity of coronary origins on a 5-point Likert scale (1 = nondiagnostic, 2 = poor, 3 = clinically acceptable, 4 = good, 5 = excellent). RESULTS Compared with 2-shot QISS, single-shot QISS produced normalized root mean square error of 5.8% ± 0.8% and structural similarity index of 95.4% ± 1.6%, suggesting high data fidelity by CS reconstruction. Compared with the mean conspicuity scores for clinical CE MRA (4.2 ± 0.5 and 4.1 ± 0.6 for right and left coronary origins, respectively), the mean conspicuity scores were not significantly different (P > 0.3) for 2-shot QISS (4.4 ± 0.9 and 4.2 ± 1.1, respectively) and single-shot QISS with CS (4.3 ± 1.1 and 3.8 ± 1.3, respectively) and deemed clinically acceptable to good (scores ≥3.0). CONCLUSIONS This study shows that it is feasible to visualize the coronary origins in patients with CHD with clinically acceptable to good image quality using single-shot coronary QISS MRA with CS.
Collapse
Affiliation(s)
- Daming Shen
- Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Department of Radiology, Northwestern University, Chicago, Illinois, United States
| | - Robert R. Edelman
- Department of Radiology, Northwestern University, Chicago, Illinois, United States
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
| | - Joshua D. Robinson
- Division of Pediatric Cardiology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States
| | - Hassan Haji-Valizadeh
- Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
- Department of Radiology, Northwestern University, Chicago, Illinois, United States
| | - Marci Messina
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States
| | - Shivraman Giri
- Cardiovascular MR R&D, Siemens Healthineers, Chicago, Illinois, United States
| | - Ioannis Koktzoglou
- Department of Radiology, NorthShore University HealthSystem, Evanston, Illinois, United States
- Department of Radiology, University of Chicago Pritzker School of Medicine, Chicago, Illinois, United States
| | - Cynthia K. Rigsby
- Department of Radiology, Northwestern University, Chicago, Illinois, United States
- Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, United States
| | - Daniel Kim
- Department of Radiology, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
76
|
Xu W, Sun J, Li L, Peng X, Zhang R, Wang B. Melanin-manganese nanoparticles with ultrahigh efficient clearance in vivo for tumor-targeting T 1 magnetic resonance imaging contrast agent. Biomater Sci 2018; 6:207-215. [PMID: 29210372 DOI: 10.1039/c7bm00635g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endogenous biomaterials in organisms, with native biocompatibility and biodegradability, appear more advantageous in the development of nanoscale diagnostic and therapeutic systems for future clinical translation. Herein, a novel tumor-targeting Magnetic Resonance Imaging (MRI) contrast agent was developed based on Mn2+-chelating ultrasmall water-soluble melanin nanoparticles (MNP-PEG-Mn). The nanoparticles, with a size of about 5.6 nm, presented high chelation stability and showed negligible cytotoxicity as estimated by MTT assay. Moreover, the r1 longitudinal relaxivity (20.56 mM-1 s-1) of MNP-PEG-Mn was much higher than that of Gadodiamide (6.00 mM-1 s-1), which is a clinically approved MRI contrast agent. In vivo MRI experiments revealed excellent tumor-targeting specificity after tumor-bearing mice were intravenously injected with MNP-PEG-Mn. Additionally, MNP-PEG-Mn could be excreted via renal and hepatobiliary pathways with negligible toxicity to body tissues. These preliminary results indicated the clinically translatable potential of MNP-PEG-Mn as a T1 MRI contrast agent for tumor-targeted imaging.
Collapse
Affiliation(s)
- Wen Xu
- Department of imaging of Shanxi Provincial Cancer Hospital, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Platform of Shanxi Scientific and Technological Innovation, Taiyuan 030001, China
| | | | | | | | | | | |
Collapse
|
77
|
Ban Q, Bai T, Duan X, Kong J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci 2018; 5:190-210. [PMID: 27990534 DOI: 10.1039/c6bm00600k] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the cutting-edge field of cancer therapy, noninvasive photothermal therapy (PTT) has received great attention because it is considered to overcome the drawbacks of conventional surgery, radiotherapy and chemotherapy of severe body injuries and side effects on the immune system. The construction of PTT therapeutic and theranostic nanoplatforms is the key issue in achieving tumor targeting, imaging and therapy in a synergetic manner. In this review, we focus on the recent advances in constructing PTT therapeutic and theranostic nanoplatforms by integrating nanomaterials and functional polymers. The noninvasive photothermal cancer therapy mechanism and achievement strategies of PTT therapeutic and theranostic nanoplatforms are presented as well as the innovative construction strategies and perspectives for the future. Owing to their high tumor ablation efficiency, biological availability and low- or non-toxicity, PTT therapeutic and theranostic nanoplatforms are promising and emerging in medicine and clinical applications.
Collapse
Affiliation(s)
- Qingfu Ban
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Ting Bai
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
78
|
Thapa B, Diaz-Diestra D, Santiago-Medina C, Kumar N, Tu K, Beltran-Huarac J, Jadwisienczak WM, Weiner BR, Morell G. T 1- and T 2-weighted Magnetic Resonance Dual Contrast by Single Core Truncated Cubic Iron Oxide Nanoparticles with Abrupt Cellular Internalization and Immune Evasion. ACS APPLIED BIO MATERIALS 2018; 1:79-89. [PMID: 30094416 PMCID: PMC6077774 DOI: 10.1021/acsabm.8b00016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 11/28/2022]
Abstract
![]()
Conventional T1- or T2-weighted single mode
contrast-enhanced magnetic resonance imaging (MRI) may produce false
results. Thereby, there is a need to develop dual contrast agents,
T1- and T2-weighted, for more accurate MRI imaging.
The dual contrast agents should possess high magnetic resonance (MR)
relaxivities, targeted tumor linking, and minimum recognition by the
immune system. We have developed nitrodopamine-PEG grafted single
core truncated cubic iron oxide nanoparticles (ND-PEG-tNCIOs) capable
of producing marked dual contrasts in MRI with enhanced longitudinal
and transverse relaxivities of 32 ± 1.29 and 791 ± 38.39
mM–1 s–1, respectively. Furthermore,
the ND-PEG-tNCIOs show excellent colloidal stability in physiological
buffers and higher cellular internalization in cancerous cells than
in phagocytic cells, indicating the immune evasive capability of the
nanoparticles. These findings indicate that tNCIOs are strong candidates
for dual contrast MRI imaging, which is vital for noninvasive real-time
detection of nascent cancer cells in vivo and for monitoring stem
cells transplants.
Collapse
Affiliation(s)
- Bibek Thapa
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States.,Department of Physics, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
| | - Daysi Diaz-Diestra
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States.,Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
| | - Carlene Santiago-Medina
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States.,Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
| | - Nitu Kumar
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States
| | - Kaixiong Tu
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
| | - Juan Beltran-Huarac
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States.,Department of Environmental Health, Harvard University, Boston, Massachusetts 02115-5810, United States
| | - Wojciech M Jadwisienczak
- School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701-2769, United States
| | - Brad R Weiner
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States.,Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
| | - Gerardo Morell
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico 00926-2614, United States.,Department of Physics, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico 00925-2537, United States
| |
Collapse
|
79
|
D'Abate F, Oladokun D, La Leggia A, Hinchliffe R, Thompson M, Holt P, de Bruin J, Loftus I, Patterson B. Transthoracic Ultrasound Evaluation of Arch and Descending Thoracic Aortic Pathology. Eur J Vasc Endovasc Surg 2018; 55:658-665. [DOI: 10.1016/j.ejvs.2017.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022]
|
80
|
Cabrera-García A, Checa-Chavarria E, Pacheco-Torres J, Bernabeu-Sanz Á, Vidal-Moya A, Rivero-Buceta E, Sastre G, Fernández E, Botella P. Engineered contrast agents in a single structure for T 1-T 2 dual magnetic resonance imaging. NANOSCALE 2018; 10:6349-6360. [PMID: 29560985 DOI: 10.1039/c7nr07948f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T1-T2 dual-mode relaxivity requires the accurate assembly of T1 and T2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)4[Fe(CN)6] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)4[Fe(CN)6]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T1- and T2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.
Collapse
Affiliation(s)
- Alejandro Cabrera-García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Elisa Checa-Chavarria
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain and Centro de Investigación Biomédica en Red (CIBER-BBN), Spain
| | - Jesús Pacheco-Torres
- Unidad de Resonancia Magnética Funcional, Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | | | - Alejandro Vidal-Moya
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Germán Sastre
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | - Eduardo Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain and Centro de Investigación Biomédica en Red (CIBER-BBN), Spain
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
81
|
Matsuo S, Nakajima K, Takeishi Y, Nishimura T. Prognostic value of normal stress myocardial perfusion imaging and ventricular function in Japanese patients with chronic kidney disease: a study based on the J-ACCESS-3 database. Eur J Nucl Med Mol Imaging 2018; 45:1101-1107. [DOI: 10.1007/s00259-018-3956-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
|
82
|
Different clinical features of anaphylaxis according to cause and risk factors for severe reactions. Allergol Int 2018; 67:96-102. [PMID: 28602247 DOI: 10.1016/j.alit.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/20/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Anaphylaxis is a life-threatening allergic reaction. Several studies reported different anaphylactic reactions according to the causative substances. However, a comparison of anaphylaxis for each cause has not been done. This study was conducted to identify common causes of anaphylaxis, characteristics of anaphylactic reaction for each cause and to analyze the factors related to the severity of the reaction. METHODS Medical records of patients who visited the emergency room of Ewha Womans University Mokdong Hospital from March 2003 to April 2016 and diagnosed with anaphylactic shock were retrospectively reviewed. We compared the clinical features of anaphylaxis according to the cause. In addition, the severity of anaphylaxis was analyzed and contributing factors for severe anaphylaxis were reviewed. RESULTS A total of 199 patients with anaphylaxis were analyzed. Food was the most common cause (49.7%), followed by drug reaction (36.2%), bee venom (10.1%), and unknown cause (4.0%). Cardiovascular symptoms of syncope and hypotension were more common in drug-induced anaphylaxis. The incidence of severe anaphylaxis was the highest in anaphylaxis due to drugs (54.2%). Urticaria and other skin symptoms were significantly more common in food-induced anaphylaxis. Risk factors for severe anaphylaxis included older age, male, and drug-induced one. Epinephrine treatment of anaphylaxis was done for 69.7% and 56.9% of patients with food-induced and drug-induced anaphylaxis, respectively. CONCLUSIONS More severe anaphylaxis developed with drug treatment and in males. Low rate of epinephrine prescription was also observed. Male patients with drug induced anaphylaxis should be paid more attention.
Collapse
|
83
|
Choi D, Jeon S, You DG, Um W, Kim JY, Yoon HY, Chang H, Kim DE, Park JH, Kim H, Kim K. Iodinated Echogenic Glycol Chitosan Nanoparticles for X-ray CT/US Dual Imaging of Tumor. Nanotheranostics 2018; 2:117-127. [PMID: 29577016 PMCID: PMC5865266 DOI: 10.7150/ntno.18643] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Development of biopolymer-based imaging agents which can access rapidly and provide detailed information about the diseases has received much attention as an alternative to conventional imaging agents. However, development of biopolymer-based nanomaterials for tumor imaging still remains challenging due to their low sensitivity and image resolution. To surmount of these limitations, multimodal imaging agents have been developed, and they were widely utilized for theranostic applications. Herein, iodine containing echogenic glycol chitosan nanoparticles are developed for x-ray computed tomography (CT) and ultrasound (US) imaging of tumor diagnosis. X-ray CT/US dual-modal imaging probe was prepared by following below two steps. First, iodine-contained diatrizoic acid (DTA) was chemically conjugated to the glycol chitosan (GC) for the CT imaging. DTA conjugated GC (GC-DTA NPs) formed stable nanoparticles with an average diameter of 315 nm. Second, perfluoropentane (PFP), a US imaging agent, was physically encapsulated into GC-DTA NPs by O/W emulsion method yielding GC-DTA-PFP nanoparticles (GC-DTA-PFP NPs). The GC-DTA-PFP NPs formed nanoparticles in physiological condition, and they presented the strong x-ray CT, and US signals in phantom test in vitro. Importantly, GC-DTA-PFP NPs were effectively accumulated on the tumor site by enhanced permeation and retention (EPR) effects. Moreover, GC-DTA-PFP NPs showed x-ray CT, and US signals in tumor tissues after intratumoral and intravenous injection, respectively. Therefore, GC-DTA-PFP NPs indicated that x-ray CT/US dual-modal imaging using iodinated echogenic nanoparticles could be provided more comprehensive and accurate diagnostic information to diagnosis of tumor.
Collapse
Affiliation(s)
- Daeil Choi
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,Department of Chemical and Biomolecular Engineering and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Dong Gil You
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wooram Um
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jeong-Yeon Kim
- Molecular Imaging and Neurovascular Research Laboratory, Dongguk University College of Medicine, Goyang 10326, Repulblic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hyeyoun Chang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Dongguk University College of Medicine, Goyang 10326, Repulblic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
84
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mesenchymal-epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. RESULTS In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. CONCLUSIONS Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
85
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
86
|
Naseri N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1111-1121. [PMID: 28933183 DOI: 10.1080/21691401.2017.1379014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the great value of current exogenous contrast agents for providing main diagnostic information, they still have certain drawbacks such as short blood half life, nonspecific biodistribution, fast clearance, slight renal toxicity and poor contrast in fat patients. Nanoparticles (NPs) are used as novel contrast agents that represent a promising strategy for the non invasive diagnosis. As a platform, nanoparticulates are compatible for developing targeted contrast agents. Advances in nanotechnology will provide enhanced sensitivity and specificity for tumor imaging enabling earlier detection of metastases. This article focuses on fundamental issue such as biological interactions, clearance routes, coating of NPs and presents a wide discussion about most recent category of NPs that are used as contrast agents and thebenefits/concerns issues associated with their use in clinical procedures.
Collapse
Affiliation(s)
- Neda Naseri
- a Department of Medical Nanotechnology , School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences , Tehran , Iran
| | - Elham Ajorlou
- b Department of Medical Nanotechnology , Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Fatemeh Asghari
- a Department of Medical Nanotechnology , School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences , Tehran , Iran
| | - Younes Pilehvar-Soltanahmadi
- c Stem Cell Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,d Stem Cell and Regenerative Medicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
87
|
Justin C, Philip SA, Samrot AV. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0583-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
88
|
Stewart RC, Patwa AN, Lusic H, Freedman JD, Wathier M, Snyder BD, Guermazi A, Grinstaff MW. Synthesis and Preclinical Characterization of a Cationic Iodinated Imaging Contrast Agent (CA4+) and Its Use for Quantitative Computed Tomography of Ex Vivo Human Hip Cartilage. J Med Chem 2017; 60:5543-5555. [PMID: 28616978 PMCID: PMC6408935 DOI: 10.1021/acs.jmedchem.7b00234] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contrast agents that go beyond qualitative visualization and enable quantitative assessments of functional tissue performance represent the next generation of clinically useful imaging tools. An optimized and efficient large-scale synthesis of a cationic iodinated contrast agent (CA4+) is described for imaging articular cartilage. Contrast-enhanced CT (CECT) using CA4+ reveals significantly greater agent uptake of CA4+ in articular cartilage compared to that of similar anionic or nonionic agents, and CA4+ uptake follows Donnan equilibrium theory. The CA4+ CECT attenuation obtained from imaging ex vivo human hip cartilage correlates with the glycosaminoglycan content, equilibrium modulus, and coefficient of friction, which are key indicators of cartilage functional performance and osteoarthritis stage. Finally, preliminary toxicity studies in a rat model show no adverse events, and a pharmacokinetics study documents a peak plasma concentration 30 min after dosing, with the agent no longer present in vivo at 96 h via excretion in the urine.
Collapse
Affiliation(s)
- Rachel C. Stewart
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States
| | - Amit N. Patwa
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Hrvoje Lusic
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Jonathan D. Freedman
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Michel Wathier
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| | - Brian D. Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, 1 Overland Street, RN 115, Boston, Massachusetts 02215, United States
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, United States
- Ionic Pharmaceuticals, Boston, Massachusetts 02445, United States
| |
Collapse
|
89
|
Serkova NJ. Nanoparticle-Based Magnetic Resonance Imaging on Tumor-Associated Macrophages and Inflammation. Front Immunol 2017; 8:590. [PMID: 28588582 PMCID: PMC5439008 DOI: 10.3389/fimmu.2017.00590] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 01/22/2023] Open
Abstract
The inflammatory response, mediated by tissue-resident or newly recruited macrophages, is an underlying pathophysiological condition for many diseases, including diabetes, obesity, neurodegeneration, atherosclerosis, and cancer. Paradoxically, inflammation is a double-edged sword in oncology. Macrophages are, generally speaking, the major drivers of inflammatory insult. For many solid tumors, high density of cells expressing macrophage-associated markers have generally been found in association with a poor clinical outcome, characterized by inflamed microenvironment, a high level of dissemination and resistance to conventional chemotherapies. On another hand, radiation treatment also triggers an inflammatory response in tumors (often referred to as pseudoprogression), which can be associated with a positive treatment response. As such, non-invasive imaging of cancer inflammation and tumor-associated macrophages (TAMs) provides a revolutionary diagnostic tool and monitoring strategy for anti-inflammatory, immuno- and radiotherapies. Recently, quantitative T2-weighted magnetic resonance imaging (qT2wMRI), using injection of superparamagnetic iron oxide nanoparticles (SPIONs), has been reported for the assessment of TAMs non-invasively in animal models and in human trials. The SPIONs are magnetic resonance imaging (MRI) contrast agents that significantly decrease T2 MR relaxation times in inflamed tissues due to the macrophage-specific uptake and retention. It has been shown that macrophage-populated tumors and metastases will accumulate iron oxide nanoparticles and decrease T2-relaxation time that will result in a negative (dark) contrast in qT2wMRI. Non-invasive imaging of TAMs using SPION holds a great promise for staging the inflammatory microenvironment of primary and metastatic tumors as well monitoring the treatment response of cancer patients treated with radiation and immunotherapy.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Anesthesiology, Anschutz Medical Center, Aurora, CO, USA.,Department of Radiology, Anschutz Medical Center, Aurora, CO, USA.,Department of Radiation Oncology, Anschutz Medical Center, Aurora, CO, USA.,Animal Imaging Shared Resources, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, CO, USA
| |
Collapse
|
90
|
Wang Z, Chen L, Huang C, Huang Y, Jia N. Albumin-mediated platinum nanocrystals for in vivo enhanced computed tomography imaging. J Mater Chem B 2017; 5:3498-3510. [PMID: 32264286 DOI: 10.1039/c7tb00561j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Contrast agents play a vital role in the enhanced examination of computed tomography (CT) imaging. However, traditional clinical small-molecule agents face a variety of drawbacks, such as low blood circulating time, difficult modification and potential toxic and side effects. Herein, a simple albumin-directed fabrication of platinum (Pt) nanocrystals was achieved for exploring the utilization in CT imaging. Ultrasmall nanoagents with a mean core size of 2.1 nm were obtained through a facile one-pot synthesis by the reduction of chloroplatinic acid hexahydrate (H2PtCl6·6H2O) using bovine serum albumin (BSA) as the biotemplate under room temperature. These synthesized well-dispersed nanocrystals exhibited good haemocompatibility and biocompatibility. Interestingly, it was demonstrated that the nanocrystals could serve as potential new and potent CT contrast agents, especially vital for in vivo imaging with prominent enhancement and metabolizable behaviours due to the combination of the higher X-ray attenuation property and prolonged imaging time, perhaps caused by the BSA modification. Furthermore, such ultrasmall platinum nanocrystals obtained from a feasible mild aqueous synthetic route for CT imaging has not been reported before. Thereby, this work also gives new insights for the protein-templated growth of biocompatible nanoparticulate contrast agents in future nanomedicines.
Collapse
Affiliation(s)
- Zhiming Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | |
Collapse
|
91
|
Savla R, Minko T. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 2017; 113:122-140. [PMID: 27374457 DOI: 10.1016/j.addr.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
The present review analyzes various approaches for the design and synthesis of different nanoparticles for imaging and therapy. Nanoparticles for computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and optical imaging are discussed. The influence of nanoparticle size, shape, surface charge, composition, surface functionalization, active targeting and other factors on imaging and therapeutic efficacy is analyzed. Cyto- and genotoxicity of nanoparticles are also discussed. Special attention in the review is paid to the imaging of apoptotic tissues and cells in different diseases.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States.
| |
Collapse
|
92
|
Guimarães MD, Noschang J, Teixeira SR, Santos MK, Lederman HM, Tostes V, Kundra V, Oliveira AD, Hochhegger B, Marchiori E. Whole-body MRI in pediatric patients with cancer. Cancer Imaging 2017; 17:6. [PMID: 28187778 PMCID: PMC5303228 DOI: 10.1186/s40644-017-0107-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
Cancer is the leading cause of natural death in the pediatric populations of developed countries, yet cure rates are greater than 70% when a cancer is diagnosed in its early stages. Recent advances in magnetic resonance imaging methods have markedly improved diagnostic and therapeutic approaches, while avoiding the risks of ionizing radiation that are associated with most conventional radiological methods, such as computed tomography and positron emission tomography/computed tomography. The advent of whole-body magnetic resonance imaging in association with the development of metabolic- and function-based techniques has led to the use of whole-body magnetic resonance imaging for the screening, diagnosis, staging, response assessment, and post-therapeutic follow-up of children with solid sporadic tumours or those with related genetic syndromes. Here, the advantages, techniques, indications, and limitations of whole-body magnetic resonance imaging in the management of pediatric oncology patients are presented.
Collapse
Affiliation(s)
- Marcos Duarte Guimarães
- Department of Imaging, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, Liberdade, São Paulo/SP, 01509-010, Brazil.,Universidade Federal do Vale do São Francisco (UNIVASF), Av. José de Sá Maniçoba, Petrolina, PE, 56304-917, Brazil
| | - Julia Noschang
- Department of Imaging, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, Liberdade, Sao Paulo/SP, 01509-010, Brazil.
| | - Sara Reis Teixeira
- Division of Radiology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto/ SP, 14049-090, Brazil
| | - Marcel Koenigkam Santos
- Division of Radiology, Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, Ribeirao Preto/ SP, 14049-090, Brazil
| | - Henrique Manoel Lederman
- Universidade Federal de São Paulo, Departamento de Diagnóstico Por Imagem, Disciplina de Diagnóstico por Imagem em Pediatria, Rua Napoleão de Barros, 800, Vila Clementino, Sao Paulo/SP, 04024002, Brazil
| | - Vivian Tostes
- Universidade Federal de São Paulo, Centro de Diagnóstico por Imagem do Instituto de Oncologia Pediátrica e Médica Radiologista do Centro de Diagnóstico por Imagem do Instituto de Oncologia Pediátrica, Rua Napoleão de Barros, 800, Vila Clementino, Sao Paulo/SP, 04024002, Brazil
| | - Vikas Kundra
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Alex Dias Oliveira
- Department of Imaging, AC Camargo Cancer Center, Rua Prof. Antônio Prudente, 211, Liberdade, Sao Paulo/SP, 01509-010, Brazil
| | - Bruno Hochhegger
- Department of Radiology, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Professor Anes Dias, 285, Centro Histórico, Porto Alegre/RS, 90020-090, Brazil
| | - Edson Marchiori
- Department of Radiology, Universidade Federal do Rio de Janeiro, Rua Thomaz Cameron, 438, Valparaíso, Petrópolis/RJ, 25685-129, Brazil
| |
Collapse
|
93
|
Abstract
Pancreatic diseases, chronic pancreatitis, pancreatic cancer and diabetes mellitus, taken together, occur in >10% of the world population. Pancreatic diseases, as with other diseases, benefit from early intervention and appropriate diagnosis. Although imaging technologies have given clinicians an unprecedented toolbox to aid in clinical decision-making, advances in these technologies and development of molecular-based diagnostic tools could enable physicians to identify diseases at an even earlier stage and, thereby, improve patient outcomes. In this Review, we discuss and identify gaps in the use of imaging techniques for the early detection and appropriate treatment stratification of various pancreatic diseases, including diabetes mellitus, acute and chronic pancreatitis and pancreatic cancer. Imaging techniques discussed are MRI, CT, PET and ultrasonography. Additionally, the identification of new molecular targets for imaging and the development of contrast agents that are able to give molecular information in noninvasive radionuclear imaging and ultrasonography are emerging areas of innovation that could lead to increased diagnostic accuracy and improved patient outcomes.
Collapse
Affiliation(s)
- Julien Dimastromatteo
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Building MR5, Charlottesville, Virginia 22903, USA
| | - Teresa Brentnall
- Division of Gastroenterology, Digestive Diseases Center, 1959 Northeast Pacific Street, Seattle, Washington 98195, USA
| | - Kimberly A Kelly
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Building MR5, Charlottesville, Virginia 22903, USA
| |
Collapse
|
94
|
Andrews PC, Bousrez G, Junk PC, Thielemann DT, Werrett MV. Synthesis and Characterisation of Heterobimetallic Lanthanoid O‐Based Cluster/Cages. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Guillaume Bousrez
- College of Science and Engineering James Cook University 4811 Townsville Queensland Australia
| | - Peter C. Junk
- College of Science and Engineering James Cook University 4811 Townsville Queensland Australia
| | | | | |
Collapse
|
95
|
Lyng H, Malinen E. Hypoxia in cervical cancer: from biology to imaging. Clin Transl Imaging 2017; 5:373-388. [PMID: 28804704 PMCID: PMC5532411 DOI: 10.1007/s40336-017-0238-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/24/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Hypoxia imaging may improve identification of cervical cancer patients at risk of treatment failure and be utilized in treatment planning and monitoring, but its clinical potential is far from fully realized. Here, we briefly describe the biology of hypoxia in cervix tumors of relevance for imaging, and evaluate positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques that have shown promise for assessing hypoxia in a clinical setting. We further discuss emerging imaging approaches, and how imaging can play a role in future treatment strategies to target hypoxia. METHODS We performed a PubMed literature search, using keywords related to imaging and hypoxia in cervical cancer, with a particular emphasis on studies correlating imaging with other hypoxia measures and treatment outcome. RESULTS Only a few and rather small studies have utilized PET with tracers specific for hypoxia, and no firm conclusions regarding preferred tracer or clinical potential can be drawn so far. Most studies address indirect hypoxia imaging with dynamic contrast-enhanced techniques. Strong evidences for a role of these techniques in hypoxia imaging have been presented. Pre-treatment images have shown significant association to outcome in several studies, and images acquired during fractionated radiotherapy may further improve risk stratification. Multiparametric MRI and multimodality PET/MRI enable combined imaging of factors of relevance for tumor hypoxia and warrant further investigation. CONCLUSIONS Several imaging approaches have shown promise for hypoxia imaging in cervical cancer. Evaluation in large clinical trials is required to decide upon the optimal modality and approach.
Collapse
Affiliation(s)
- Heidi Lyng
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
96
|
Powell AC, Levin DC, Kren EM, Beveridge RA, Long JW, Gupta AK. 2005 to 2014 CT and MRI Utilization Trends in the Context of a Nondenial Prior Authorization Program. Health Serv Res Manag Epidemiol 2017; 4:2333392817732018. [PMID: 35146072 PMCID: PMC8822442 DOI: 10.1177/2333392817732018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 11/17/2022] Open
Abstract
Purpose: Reducing unnecessary testing may benefit patients, as some computed tomography (CT) and magnetic resonance imaging (MRI) expose patients to contrast, and all CTs expose patients to radiation. This observational study with historical controls assessed shifts in CT and MRI utilization over a 9-year period after a private health insurer’s implementation of a nondenial, consultative prior authorization program. Methods/Materials: Normalized rates of exams per 1000 person-years were plotted over 2005 to 2014 for people with commercial and Medicare Advantage health plans in the San Antonio market, with 2005 utilization set as the baseline. The program was implemented at the start of 2006. Computed tomography and MRI utilization changes were compared with contemporaneous changes in low-tech plain film and ultrasound utilization. Results: Growth in high-tech imaging utilization decelerated or reversed during the period. In 2006, CT utilization dropped to between 76% and 90% of what it had been in 2005, depending on the plan. In 2014, it was between 52% and 88% of its initial level. MRI utilization declined to between 86% and 94% of its initial level in 2006, and then to between 50% and 75% in 2014. Ultrasound utilization was greater in 2014 than in 2005 for some plans. Plain film utilization declined between 2005 and 2014 for all plans. Conclusion: There was an immediate and sustained decline in CT and MRI utilization after the introduction of the program. While many factors may have impacted the long-term trends, the mixed trends in low-tech imaging suggest that a decline in low-tech imaging was not responsible for the decline in CT and MRI utilization.
Collapse
Affiliation(s)
| | - David C. Levin
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
97
|
Yuan J, Usman A, Das T, Patterson AJ, Gillard JH, Graves MJ. Imaging Carotid Atherosclerosis Plaque Ulceration: Comparison of Advanced Imaging Modalities and Recent Developments. AJNR Am J Neuroradiol 2016; 38:664-671. [PMID: 28007772 DOI: 10.3174/ajnr.a5026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Atherosclerosis remains the leading cause of long-term mortality and morbidity worldwide, despite remarkable advancement in its management. Vulnerable atherosclerotic plaques are principally responsible for thromboembolic events in various arterial territories such as carotid, coronary, and lower limb vessels. Carotid plaque ulceration is one of the key features associated with plaque vulnerability and is considered a notable indicator of previous plaque rupture and possible future cerebrovascular events. Multiple imaging modalities have been used to assess the degree of carotid plaque ulceration for diagnostic and research purposes. Early diagnosis and management of carotid artery disease could prevent further cerebrovascular events. In this review, we highlight the merits and limitations of various imaging techniques for identifying plaque ulceration.
Collapse
Affiliation(s)
- J Yuan
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK
| | - A Usman
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK
| | - T Das
- Department of Radiology (T.D., A.J.P., M.J.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - A J Patterson
- Department of Radiology (T.D., A.J.P., M.J.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - J H Gillard
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK
| | - M J Graves
- From the Department of Radiology (J.Y., A.U., J.H.G., M.J.G.), University of Cambridge, Cambridge, UK.,Department of Radiology (T.D., A.J.P., M.J.G.), Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| |
Collapse
|
98
|
Evaluation of a Program for Improving Advanced Imaging Interpretation. J Patient Saf 2016; 15:69-75. [PMID: 27984440 PMCID: PMC6407815 DOI: 10.1097/pts.0000000000000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objectives Self-referred imaging has grown rapidly, raising concerns about increased costs and compromised quality of care. A quality improvement program using imaging interpretation criteria was designed by a national payer to ensure that noninvasive diagnostic images are interpreted by appropriately trained physicians. The objective of this program evaluation was to compare self-referral rates before and after institution of the imaging interpretation criteria program. Methods The imaging interpretation criteria program allocated privileges to bill for advanced imaging interpretation according to physician specialty. Nonradiologist physicians could obtain exemptions by appeal. Some physicians were not restricted in their billing because of successful appeals of the restrictions or the timing of their contract renewals. Self-referral rates were compared between the period 12 months before and 25 months after the program was initiated using t tests. The preprogram and postprogram self-referral rate for computed tomography and magnetic resonance imaging in aggregate was calculated both for the physicians that came into contact with the program and nationally, and then was stratified based on physician appeal status and reimbursement restrictions. Results The program was associated with significantly less frequent self-referrals by physicians whose appeals were denied (17.4%–8.2%; P = 0.0011) and by physicians notified of the program but not subject to it (24.8%–18.5%; P = 0.026). Self-referrals in the program states declined from 19.9% to 13.7% (P < 0.01). Conclusions A significant reduction in image interpretations billed by physicians working outside of the scope of their training occurred after the implementation of the imaging interpretation criteria program.
Collapse
|
99
|
Nyssen L, Delanaye P, Le Goff C, Peeters S, Cavalier É. A simple LC-MS method for the determination of iohexol and iothalamate in serum, using ioversol as an internal standard. Clin Chim Acta 2016; 463:96-102. [DOI: 10.1016/j.cca.2016.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022]
|
100
|
In Vitro and In Vivo Assessment of Nonionic Iodinated Radiographic Molecules as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Tumor Perfusion Agents. Invest Radiol 2016; 51:155-62. [PMID: 26460826 DOI: 10.1097/rli.0000000000000217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate 4 nonionic x-ray iodinated contrast agents (CAs), commonly used in radiographic procedures, as novel chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) agents by assessing their in vitro exchange properties and preliminary in vivo use as tumor enhancing agents. MATERIALS AND METHODS The CEST properties, as function of pH (range, 5.5-7.9) and of radio frequency conditions (irradiation field strength range of 1-9 μT and time of 1-9 seconds), have been determined at 7 T and 310 K for 4 x-ray CAs commonly used in clinical settings, namely, iomeprol, iohexol, ioversol, and iodixanol. Their in vivo properties have been investigated upon intravenous injection in a murine HER2+ breast tumor model (n = 4 mice for each CA) using both computed tomography (CT) and MRI modalities. RESULTS The prototropic exchange rates measured for the 4 investigated iodinated molecules showed strong pH dependence with base catalyzed exchange rate that was faster for monomeric compounds (20-4000 Hz in the pH range of 5.5-7.9). Computed tomography quantification showed marked (up to 2 mg I/mL concentration) and prolonged accumulation (up to 30 minutes postinjection) inside tumor regions. Among the 4 agents we tested, iohexol and ioversol display good CEST contrast properties at 7 T, and in vivo results confirmed strong and prolonged contrast enhancement of the tumors, with elevated extravasation fractions (74%-91%). A strong and significant correlation was found between CT and CEST-MRI tumor-enhanced images (R = 0.70, P < 0.01). CONCLUSIONS The obtained results demonstrate that iohexol and ioversol, 2 commonly used radiographic compounds, can be used as MRI perfusion agents, particularly useful when serial images acquisitions are needed to complement CT information.
Collapse
|