51
|
Homeostatic regulation of AMPA receptor expression at single hippocampal synapses. Proc Natl Acad Sci U S A 2008; 105:775-80. [PMID: 18174334 DOI: 10.1073/pnas.0706447105] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostatic synaptic response is an important measure in confining neuronal activity within a narrow physiological range. Whether or not homeostatic plasticity demonstrates synapse specificity, a key feature characteristic of Hebbian-type plasticity, is largely unknown. Here, we report that in cultured hippocampal neurons, alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid subtype glutamate receptor (AMPAR) accumulation is increased selectively in chronically inhibited single synapses, whereas the neighboring normal synapses remain unaffected. This synapse-specific homeostatic regulation depends on the disparity of synaptic activity and is mediated by GluR2-lacking AMPARs and PI3-kinase signaling. These results demonstrate the existence of synaptic specificity and the crucial role of AMPAR-gated calcium in homeostatic plasticity in central neurons.
Collapse
|
52
|
Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses. J Neurosci 2007; 27:11651-62. [PMID: 17959808 DOI: 10.1523/jneurosci.2671-07.2007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many central excitatory synapses undergo developmental alterations in the molecular and biophysical characteristics of postsynaptic ionotropic glutamate receptors via changes in subunit composition. Concerning AMPA receptors (AMPARs), glutamate receptor 2 subunit (GluR2)-containing, Ca2+-impermeable AMPARs (CI-AMPARs) prevail at synapses between mature principal neurons; however, accumulating evidence indicates that GluR2-lacking, Ca2+-permeable AMPARs (CP-AMPARs) contribute at these synapses early in development. Here, we used a combination of imaging and electrophysiological recording techniques to investigate potential roles for CP-AMPARs at developing hippocampal mossy fiber-CA3 pyramidal cell (MF-PYR) synapses. We found that transmission at nascent MF-PYR synapses is mediated by a mixed population of CP- and CI-AMPARs as evidenced by polyamine-dependent inwardly rectifying current-voltage (I-V) relationships, and partial philanthotoxin sensitivity of synaptic events. CP-AMPAR expression at MF-PYR synapses is transient, being limited to the first 3 postnatal weeks. Moreover, the expression of CP-AMPARs is regulated by the PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-containing protein interacting with C kinase 1 (PICK1), because MF-PYR synapses in young PICK1 knock-out mice are philanthotoxin insensitive with linear I-V relationships. Strikingly, MF-PYR transmission via CP-AMPARs is selectively depressed during depolarization-induced long-term depression (DiLTD), a postsynaptic form of MF-PYR plasticity observed only at young MF-PYR synapses. The selective depression of CP-AMPARs during DiLTD was evident as a loss of postsynaptic CP-AMPAR-mediated Ca2+ transients in PYR spines and reduced rectification of MF-PYR synaptic currents. Preferential targeting of CP-AMPARs during DiLTD is further supported by a lack of DiLTD in young PICK1 knock-out mice. Together, these findings indicate that the transient participation of CP-AMPARs at young MF-PYR synapses dictates the developmental window to observe DiLTD.
Collapse
|
53
|
Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 2007; 54:447-60. [PMID: 17481397 PMCID: PMC1993808 DOI: 10.1016/j.neuron.2007.04.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 01/21/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.
Collapse
Affiliation(s)
- Michael D Ehlers
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
54
|
Tsuriel S, Geva R, Zamorano P, Dresbach T, Boeckers T, Gundelfinger ED, Garner CC, Ziv NE. Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biol 2007; 4:e271. [PMID: 16903782 PMCID: PMC1540708 DOI: 10.1371/journal.pbio.0040271] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 06/14/2006] [Indexed: 01/03/2023] Open
Abstract
Recent studies suggest that central nervous system synapses can persist for weeks, months, perhaps lifetimes, yet little is known as to how synapses maintain their structural and functional characteristics for so long. As a step toward a better understanding of synaptic maintenance we examined the loss, redistribution, reincorporation, and replenishment dynamics of Synapsin I and ProSAP2/Shank3, prominent presynaptic and postsynaptic matrix molecules, respectively. Fluorescence recovery after photobleaching and photoactivation experiments revealed that both molecules are continuously lost from, redistributed among, and reincorporated into synaptic structures at time-scales of minutes to hours. Exchange rates were not affected by inhibiting protein synthesis or proteasome-mediated protein degradation, were accelerated by stimulation, and greatly exceeded rates of replenishment from somatic sources. These findings indicate that the dynamics of key synaptic matrix molecules may be dominated by local protein exchange and redistribution, whereas protein synthesis and degradation serve to maintain and regulate the sizes of local, shared pools of these proteins. To understand processes involved in synaptic maintenance, the authors examine the loss, redistribution, reincorporation and replenishment dynamics of two key synaptic proteins, Synapsin I and ProSAP2/Shank3.
Collapse
Affiliation(s)
- Shlomo Tsuriel
- The Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa, Israel
- The Department of Physiology, Technion Faculty of Medicine, Haifa, Israel
| | - Ran Geva
- The Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa, Israel
- The Department of Physiology, Technion Faculty of Medicine, Haifa, Israel
| | - Pedro Zamorano
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Thomas Dresbach
- Institute of Anatomy and Cell Biology II, University of Heidelberg, Heidelberg, Germany
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Craig C Garner
- Department of Psychiatry and Behavioral Science, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Noam E Ziv
- The Rappaport Family Institute for Research in the Medical Sciences, Technion Faculty of Medicine, Haifa, Israel
- The Department of Physiology, Technion Faculty of Medicine, Haifa, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
55
|
Thiagarajan TC, Lindskog M, Malgaroli A, Tsien RW. LTP and adaptation to inactivity: Overlapping mechanisms and implications for metaplasticity. Neuropharmacology 2007; 52:156-75. [PMID: 16949624 DOI: 10.1016/j.neuropharm.2006.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 11/16/2022]
Abstract
LTP and other rapidly induced forms of synaptic modification tune individual synaptic weights, whereas slower forms of plasticity such as adaptation to inactivity are thought to keep neurons within their firing limits and preserve their capability for information processing. Here we describe progress in understanding the relationship between LTP and adaptation to inactivity. A prevailing view is that adaptation to inactivity is purely postsynaptic, scales synaptic strength uniformly across all synapses, and thus preserves relative synaptic weights without interfering with signatures of prior LTP or the relative capacity for future LTP. However, recent evidence in hippocampal neurons indicates that, like LTP, adaptation to AMPA receptor blockade can draw upon a repertoire of synaptic expression mechanisms including enhancement of presynaptic vesicular turnover and increased quantal amplitude mediated by recruitment of homomeric GluR1 AMPA receptors. These pre- and postsynaptic changes appeared coordinated and preferentially expressed at subset of synapses, thereby increasing the variability of miniature EPSCs. In contrast to the NMDA receptor-, Ca2+ entry-dependent induction of LTP, adaptation to inactivity may be mediated by attenuation of voltage-sensitive L-type Ca2+ channel function. The associated intracellular signaling involves elevation of betaCaMKII, which in turn downregulates alphaCaMKII, a key player in LTP. Thus, adaptation to inactivity and LTP are not strictly independent with regard to mechanisms of signaling and expression. Indeed, we and others have found that responses to LTP-inducing stimuli can be sharply altered by prior inactivity, suggesting that the slow adaptation changes the rules of plasticity-an interesting example of "metaplasticity".
Collapse
Affiliation(s)
- Tara C Thiagarajan
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, B105 Beckman Center, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
56
|
Rabinowitch I, Segev I. The Interplay Between Homeostatic Synaptic Plasticity and Functional Dendritic Compartments. J Neurophysiol 2006; 96:276-83. [PMID: 16554518 DOI: 10.1152/jn.00074.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) is an important mechanism attributed with the slow regulation of the neuron's activity. Whenever activity is chronically enhanced, HSP weakens the weights of the synapses in the dendrites and vice versa. Because dendritic morphology and its electrical properties partition the dendritic tree into functional compartments, we set out to explore the interplay between HSP and dendritic compartmentalization. For this purpose, we used a detailed model of a CA1 pyramidal neuron receiving a large number of activity-dependent plastic synapses and developed a novel approach for specifying functional dendritic subunits. We found that the degree of dendritic compartmentalization and the location-specificity of HSP are strongly tied. A local HSP mechanism, operating at the level of the individual synapse, will regard the neuron as a multiunit distributed system, each unit consisting of many synapses, and will thus support dendritic compartmentalization, whereas a global HSP mechanism, modifying all synapses in unison, will treat the neuron as a single centralized unit. Both local and global HSP can successfully counterbalance persistent, cell-wide perturbations of dendritic activity. The spatial distribution of synaptic weights throughout the dendrites will markedly differ under the local versus global HSP mechanisms. We suggest an experimental paradigm to unravel which type of HSP mechanism operates in the dendritic tree. The answer to this question will have important implications to our understanding of the functional organization of the neuron.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Interdisciplinary Center for Neural Computation and Department of Neurobiology, Institute for Life Sciences, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
57
|
Lu HC, Butts DA, Kaeser PS, She WC, Janz R, Crair MC. Role of efficient neurotransmitter release in barrel map development. J Neurosci 2006; 26:2692-703. [PMID: 16525048 PMCID: PMC6675166 DOI: 10.1523/jneurosci.3956-05.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical maps are remarkably precise, with organized arrays of thalamocortical afferents (TCAs) that project into distinct neuronal modules. Here, we present evidence for the involvement of efficient neurotransmitter release in mouse cortical barrel map development using barrelless mice, a loss-of-function mutant of calcium/calmodulin-activated adenylyl cyclase I (AC1), and mice with a mutation in Rab3-interacting molecule 1alpha (RIM1alpha), an active zone protein that regulates neurotransmitter release. We demonstrate that release efficacy is substantially decreased in barrelless TCAs. We identify RIMs as important phosphorylation targets for AC1 in the presynaptic terminal. We further show that RIM1alpha mutant mice have reduced TCA neurotransmitter release efficacy and barrel map deficits, although not as severe as those found in barrelless mice. This supports the role of RIM proteins in mediating, in part, AC1 signaling in barrel map development. Finally, we present a model to show how inadequacies in presynaptic function can interfere with activity-dependent processes in neuronal circuit formation. These results demonstrate how efficient synaptic transmission mediated by AC1 function contributes to the development of cortical barrel maps.
Collapse
Affiliation(s)
- Hui-Chen Lu
- Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Craig AM, Graf ER, Linhoff MW. How to build a central synapse: clues from cell culture. Trends Neurosci 2006; 29:8-20. [PMID: 16337695 PMCID: PMC2820512 DOI: 10.1016/j.tins.2005.11.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/31/2005] [Accepted: 11/10/2005] [Indexed: 01/10/2023]
Abstract
Central neurons develop and maintain molecularly distinct synaptic specializations for excitatory and inhibitory transmitters, often only microns apart on their dendritic arbor. Progress towards understanding the molecular basis of synaptogenesis has come from several recent studies using a coculture system of non-neuronal cells expressing molecules that generate presynaptic or postsynaptic "hemi-synapses" on contacting neurons. Together with molecular properties of these protein families, such studies have yielded interesting clues to how glutamatergic and GABAergic synapses are assembled. Other clues come from heterochronic cultures, manipulations of activity in subsets of neurons in a network, and of course many in vivo studies. Taking into account these data, we consider here how basic parameters of synapses--competence, placement, composition, size and longevity--might be determined.
Collapse
Affiliation(s)
- Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, Canada V6T 2B5.
| | | | | |
Collapse
|
59
|
Zhong WX, Dong ZF, Tian M, Cao J, Xu L, Luo JH. N-methyl-d-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. Neuroscience 2006; 141:1399-413. [PMID: 16766131 DOI: 10.1016/j.neuroscience.2006.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 03/12/2006] [Accepted: 04/28/2006] [Indexed: 11/29/2022]
Abstract
Long term potentiation in hippocampus, evoked by high-frequency stimulation, is mediated by two major glutamate receptor subtypes, alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptors and N-methyl-D-aspartate receptors. Receptor subunit composition and its interaction with cytoplasmic proteins constitute different pathways regulating synaptic plasticity. Here, we provide further evidence that N-methyl-D-aspartate receptor-mediated long term potentiation evoked at hippocampal CA1 region of rats induced by high-frequency stimulation of the Schaffer collateral-commissural pathway in vivo is not dependent on N-methyl-D-aspartate receptor subunit NR2B. Applying semi-quantitative immunoblotting, we found that in the whole tetanized hippocampus, synaptic expression of the N-methyl-D-aspartate and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptor subunits (NR1, NR2A, glutamate receptor 1) and their associated partners, e.g. synaptic associated protein 97, postsynaptic density protein 95, alpha subunit of Ca2+/calmodulin-dependent protein kinase II, neuronal nitricoxide synthase, increased 180 min post-high-frequency stimulation. Moreover, phosphorylation of Ca2+/calmodulin-dependent protein kinase II at thr286 and glutamate receptor 1 at ser831 was increased 30 min post-high-frequency stimulation and blocked by N-methyl-D-aspartate receptor antagonists (AP-5 and MK-801). In sham group and controls, these changes were not observed. The expression of several other synaptic proteins (NR2B, glutamate receptors 2/3, N-ethylmaleimide sensitive factor) was not affected by long term potentiation induction. In hippocampal homogenates, the level of these proteins remained unchanged. These data indicate that N-methyl-D-aspartate receptor-dependent long term potentiation in CA1 region in vivo mainly affects the synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus. The alteration of molecular aspects can play a role in regulating the long-lasting synaptic modification in hippocampal long term potentiation in vivo.
Collapse
Affiliation(s)
- W X Zhong
- Department of Neurobiology, Zhejiang University School of Medicine, 353 Yanan Road, Hangzhou 310006, PR China
| | | | | | | | | | | |
Collapse
|
60
|
Zhang LL, Pathak HR, Coulter DA, Freed MA, Vardi N. Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina. J Neurophysiol 2005; 95:2404-16. [PMID: 16371454 DOI: 10.1152/jn.00578.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA and glycine provide excitatory action during early development: they depolarize neurons and increase intracellular calcium concentration. As neurons mature, GABA and glycine become inhibitory. This switch from excitation to inhibition is thought to result from a shift of intracellular chloride concentration ([Cl-]i) from high to low, but in retina, measurements of [Cl-]i or chloride equilibrium potential (ECl) during development have not been made. Using the developing mouse retina, we systematically measured [Cl-]i in parallel with GABA's actions on calcium and chloride. In ganglion and amacrine cells, fura-2 imaging showed that before postnatal day (P) 6, exogenous GABA, acting via ionotropic GABA receptors, evoked calcium rise, which persisted in HCO3- -free buffer but was blocked with 0 extracellular calcium. After P6, GABA switched to inhibiting spontaneous calcium transients. Concomitant with this switch we observed the following: 6-methoxy-N-ethylquinolinium iodide (MEQ) chloride imaging showed that GABA caused an efflux of chloride before P6 and an influx afterward; gramicidin-perforated-patch recordings showed that the reversal potential for GABA decreased from -45 mV, near threshold for voltage-activated calcium channel, to -60 mV, near resting potential; MEQ imaging showed that [Cl-]i shifted steeply around P6 from 29 to 14 mM, corresponding to a decline of ECl from -39 to -58 mV. We also show that GABAergic amacrine cells became stratified by P4, potentially allowing GABA's excitatory action to shape circuit connectivity. Our results support the hypothesis that a shift from high [Cl-]i to low causes GABA to switch from excitatory to inhibitory.
Collapse
Affiliation(s)
- Ling-Li Zhang
- Deaprtment of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | |
Collapse
|
61
|
Rumbaugh G. Synapses fight over glutamate receptor 1. J Neurosci 2005; 25:8347-8. [PMID: 16162915 PMCID: PMC6725687 DOI: 10.1523/jneurosci.3209-05.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Gavin Rumbaugh
- Department of Neuroscience, The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|