51
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
52
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
53
|
Yurov YB, Vorsanova SG, Demidova IA, Kravets VS, Vostrikov VM, Soloviev IV, Uranova NA, Iourov IY. [Genomic instability in the brain: chromosomal mosaicism in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 116:86-91. [PMID: 28091506 DOI: 10.17116/jnevro201611611186-91] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM Experimental verification of the hypothesis about the possible involvement of the mosaic genome variations (mosaic aneuploidy) in the pathogenesis of a number of mental illnesses, including schizophrenia and autism: a genetic study of the level of mosaic genome variations in cells of the brain autopsy tissues in healthy controls and schizophrenia. MATERIAL AND METHODS Autopsy brain tissues of 15 unaffected controls and 15 patients with schizophrenia were analyzed by molecular cytogenetic methods to determine the frequency of chromosomal mutations (the mosaic aneuploidy) in neural human cells. The original collection of chromosome-enumeration DNA probes to autosomes 1, 9, 15, 16, 18 and the sex chromosomes X and Y was used for the interphase cytogenetic analysis of chromosomes in the cells of the brain. RESULTS AND CONCLUSION The frequency of low-level aneuploidy per individual chromosome was 0.54% (median - 0.53%; 95% confidence interval (CI) CI - 0.41-1.13%) in controls and 1.66% (median - 1.55%; 95% CI -1.32-2.12%) in schizophrenia (p=0.000013). Thus, the three-fold increase in aneuploidy frequency in the brain in schizophrenia was detected. It is suggested that mosaic aneuploidy, as a significant biological marker of genomic instability, may lead to genеtic imbalance and abnormal functional activity of neural cells and neural networks in schizophrenia.
Collapse
Affiliation(s)
- Y B Yurov
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - S G Vorsanova
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - I A Demidova
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | - V S Kravets
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia
| | | | | | - N A Uranova
- Mental Health Research Center, Moscow, Russia
| | - I Y Iourov
- Mental Health Research Center, Moscow, Russia; Veltishev Clinical Research Institute of Pediatrics, Moscow, Russia; Pirogov Russian National Research Medical University, Minzdrav RF, Moscow, Russia; Moscow State University of Psychology and Education, Moscow, Russia
| |
Collapse
|
54
|
Simonova VV, Vetchinova AS, Novosadova EV, Khaspekov LG, Illarioshkin SN. Genome Editing and the Problem of Tetraploidy in Cell Modeling of the Genetic Form of Parkinsonism. BIOCHEMISTRY (MOSCOW) 2018; 83:1040-1045. [PMID: 30472942 DOI: 10.1134/s0006297918090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The prevalent form of familial parkinsonism is caused by mutations in the LRRK2 gene encoding for the mitochondrial protein kinase. In the review, we discuss possible causes of appearance of tetraploid cells in neuronal precursors obtained from induced pluripotent stem cells from patients with the LRRK2-associated form of parkinsonism after genome editing procedure. As LRRK2 protein participates in cell proliferation and maintenance of the nuclear envelope, spindle fibers, and cytoskeleton, mutations in the LRRK2 gene can affect protein functions and lead, via various mechanisms, to the mitotic machinery disintegration and chromosomal aberration. These abnormalities can appear at different stages of fibroblast reprogramming; therefore, editing of the LRRK2 nucleotide sequence should be done during or before the reprogramming stage.
Collapse
Affiliation(s)
- V V Simonova
- Research Center of Neurology, Moscow, 125367, Russia
| | | | - E V Novosadova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | - L G Khaspekov
- Research Center of Neurology, Moscow, 125367, Russia.
| | | |
Collapse
|
55
|
Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol 2018; 78:1026-1048. [PMID: 30027562 PMCID: PMC6214721 DOI: 10.1002/dneu.22626] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
Since the discovery of DNA, the normal developing and functioning brain has been assumed to be composed of cells with identical genomes, which remains the dominant view even today. However, this pervasive assumption is incorrect, as proven by increasing numbers of reports within the last 20 years that have identified multiple forms of somatically produced genomic mosaicism (GM), wherein brain cells-especially neurons-from a single individual show diverse alterations in DNA, distinct from the germline. Critically, these changes alter the actual DNA nucleotide sequences-in contrast to epigenetic mechanisms-and almost certainly contribute to the remarkably diverse phenotypes of single brain cells, including single-cell transcriptomic profiles. Here, we review the history of GM within the normal brain, including its major forms, initiating mechanisms, and possible functions. GM forms include aneuploidies and aneusomies, smaller copy number variations (CNVs), long interspersed nuclear element type 1 (LINE1) repeat elements, and single nucleotide variations (SNVs), as well as DNA content variation (DCV) that reflects all forms of GM with greatest coverage of large, brain cell populations. In addition, technical considerations are examined, along with relationships among GM forms and multiple brain diseases. GM affecting genes and loci within the brain contrast with current neural discovery approaches that rely on sequencing nonbrain DNA (e.g., genome-wide association studies (GWAS)). Increasing knowledge of neural GM has implications for mechanisms of development, diversity, and function, as well as understanding diseases, particularly considering the overwhelming prevalence of sporadic brain diseases that are unlinked to germline mutations. © 2018 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Suzanne Rohrback
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
- Present address:
Illumina, Inc.San DiegoCA 92122USA
| | - Benjamin Siddoway
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Christine S. Liu
- Biomedical Sciences Graduate Program, School of MedicineUniversity of California San DiegoLa JollaCalifornia92093
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCalifornia
| |
Collapse
|
56
|
Barrio-Alonso E, Hernández-Vivanco A, Walton CC, Perea G, Frade JM. Cell cycle reentry triggers hyperploidization and synaptic dysfunction followed by delayed cell death in differentiated cortical neurons. Sci Rep 2018; 8:14316. [PMID: 30254284 PMCID: PMC6156334 DOI: 10.1038/s41598-018-32708-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/14/2018] [Indexed: 11/09/2022] Open
Abstract
Cell cycle reentry followed by neuronal hyperploidy and synaptic failure are two early hallmarks of Alzheimer's disease (AD), however their functional connection remains unexplored. To address this question, we induced cell cycle reentry in cultured cortical neurons by expressing SV40 large T antigen. Cell cycle reentry was followed by hyperploidy in ~70% of cortical neurons, and led to progressive axon initial segment loss and reduced density of dendritic PSD-95 puncta, which correlated with diminished spike generation and reduced spontaneous synaptic activity. This manipulation also resulted in delayed cell death, as previously observed in AD-affected hyperploid neurons. Membrane depolarization by high extracellular potassium maintained PSD-95 puncta density and partially rescued both spontaneous synaptic activity and cell death, while spike generation remained blocked. This suggests that AD-associated hyperploid neurons can be sustained in vivo if integrated in active neuronal circuits whilst promoting synaptic dysfunction. Thus, cell cycle reentry might contribute to cognitive impairment in early stages of AD and neuronal death susceptibility at late stages.
Collapse
Affiliation(s)
- E Barrio-Alonso
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - A Hernández-Vivanco
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - C C Walton
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - G Perea
- Department of Functional and Systems Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - J M Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain.
| |
Collapse
|
57
|
|
58
|
Abstract
DNA mutations as a consequence of errors during DNA damage repair, replication, or mitosis are the substrate for evolution. In multicellular organisms, mutations can occur in the germline and also in somatic tissues, where they are associated with cancer and other chronic diseases and possibly with aging. Recent advances in high-throughput sequencing have made it relatively easy to study germline de novo mutations, but in somatic cells, the vast majority of mutations are low-abundant and can be detected only in clonal lineages, such as tumors, or single cells. Here we review recent results on somatic mutations in normal human and animal tissues with a focus on their possible functional consequences.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA;
| |
Collapse
|
59
|
Epigenetic and Cellular Diversity in the Brain through Allele-Specific Effects. Trends Neurosci 2018; 41:925-937. [PMID: 30098802 DOI: 10.1016/j.tins.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
The benefits of diploidy are considered to involve masking partially recessive mutations and increasing genetic diversity. Here, we review new studies showing evidence for diverse allele-specific expression and epigenetic states in mammalian brain cells, which suggest that diploidy expands the landscape of gene regulatory and expression programs in cells. Allele-specific expression has been thought to be restricted to a few specific classes of genes. However, new studies show novel genomic imprinting effects that are brain-region-, cell-type- and age-dependent. In addition, novel forms of random monoallelic expression that impact many autosomal genes have been described in vitro and in vivo. We discuss the implications for understanding the benefits of diploidy, and the mechanisms shaping brain development, function, and disease.
Collapse
|
60
|
Activation of the Cannabinoid Type 2 Receptor by a Novel Indazole Derivative Normalizes the Survival Pattern of Lymphoblasts from Patients with Late-Onset Alzheimer's Disease. CNS Drugs 2018; 32:579-591. [PMID: 29736745 DOI: 10.1007/s40263-018-0515-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alzheimer's disease is a multifactorial disorder for which there is no disease-modifying treatment yet. CB2 receptors have emerged as a promising therapeutic target for Alzheimer's disease because they are expressed in neuronal and glial cells and their activation has no psychoactive effects. OBJECTIVE The aim of this study was to investigate whether activation of the CB2 receptor would restore the aberrant enhanced proliferative activity characteristic of immortalized lymphocytes from patients with late-onset Alzheimer's disease. It is assumed that cell-cycle dysfunction occurs in both peripheral cells and neurons in patients with Alzheimer's disease, contributing to the instigation of the disease. METHODS Lymphoblastoid cell lines from patients with Alzheimer's disease and age-matched control individuals were treated with a new, in-house-designed dual drug PGN33, which behaves as a CB2 agonist and butyrylcholinesterase inhibitor. We analyzed the effects of this compound on the rate of cell proliferation and levels of key regulatory proteins. In addition, we investigated the potential neuroprotective action of PGN33 in β-amyloid-treated neuronal cells. RESULTS We report here that PGN33 normalized the increased proliferative activity of Alzheimer's disease lymphoblasts. The compound blunted the calmodulin-dependent overactivation of the PI3K/Akt pathway, by restoring the cyclin-dependent kinase inhibitor p27 levels, which in turn reduced the activity of the cyclin-dependent kinase/pRb cascade. Moreover, this CB2 agonist prevented β-amyloid-induced cell death in neuronal cells. CONCLUSION Our results suggest that the activation of CB2 receptors could be considered a useful therapeutic approach for Alzheimer's disease.
Collapse
|
61
|
Sigl-Glöckner J, Brecht M. Polyploidy and the Cellular and Areal Diversity of Rat Cortical Layer 5 Pyramidal Neurons. Cell Rep 2018; 20:2575-2583. [PMID: 28903039 DOI: 10.1016/j.celrep.2017.08.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/11/2017] [Accepted: 08/20/2017] [Indexed: 01/29/2023] Open
Abstract
In many species, polyploidy, in which an increase in nuclear DNA content is accompanied by an increase in cell size, contributes to cellular diversity. In the rat visual cortex, most neurons are small and homogeneous in size, while layer 5 cells are heterogeneous, containing some very large neurons. To measure DNA content, we quantified nuclear chromocenters and integrated DNA/DAPI fluorescence. The results suggest that most cortical neurons, non-neuronal cells, parvalbumin-positive interneurons, and large entorhinal layer 2 stellate projection neurons are diploid. In contrast, chromocenter counts and integrated fluorescence are ∼2-fold higher for some excitatory neurons in layer 5, suggesting that large Ctip2-negative and Ctip2-positive layer 5 neurons might be tetraploid. The distribution of putatively tetraploid neurons differed between areas and showed sharp borders aligned with functional subdivisions of the somatosensory cortex. Telomere counting and flow cytometry supported layer 5 polyploidy. We conclude that polyploidy contributes to cellular and areal diversity of rat cortex.
Collapse
Affiliation(s)
- Johanna Sigl-Glöckner
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt University of Berlin, 10115 Berlin, Germany.
| |
Collapse
|
62
|
Du L, Sun W, Li XM, Li XY, Liu W, Chen D. DNA methylation and copy number variation analyses of human embryonic stem cell-derived neuroprogenitors after low-dose decabromodiphenyl ether and/or bisphenol A exposure. Hum Exp Toxicol 2018; 37:475-485. [PMID: 28597690 DOI: 10.1177/0960327117710535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polybrominated diphenyl ether flame retardants decabromodiphenyl ether (BDE-209) and bisphenol A (BPA) are environmental contaminants that can cross the placenta and exert toxicity in the developing fetal nervous system. Copy number variants (CNVs) play a role in a number of genetic disorders and may be implicated in BDE-209/BPA teratogenicity. In this study, we found that BDE-209 and/or BPA exposure decreased neural differentiation efficiency of human embryonic stem cells (hESCs), although there was a >90% induction of neuronal progenitor cells (NPCs) from exposed hESCs. However, the mean of CNV numbers in the NPCs with BDE-209 + BPA treatment was significantly higher compared to the other groups, whereas DNA methylation was lower and DNA methyltransferase(DNMT1 and DNMT3A) expression were significantly decreased in all of the BDE-209 and/or BPA treatment groups compared with the control groups. The number of CNVs in chromosomes 3, 4, 11, 22, and X in NPCs with BDE-209 and/or BPA exposure was higher compared to the control group. In addition, CNVs in chromosomes 7, 8, 14, and 16 were stable in hESCs and hESCs-derived NPCs irrespective of BDE-209/BPA exposure, and CNVs in chromosomes 20 q11.21 and 16 p13.11 might be induced by neural differentiation. Thus, BDE-209/BPA exposure emerges as a potential source of CNVs distinct from neural differentiation by itself. BDE-209 and/or BPA exposure may cause genomic instability in cultured stem cells via reduced activity of DNA methyltransferase, suggesting a new mechanism of human embryonic neurodevelopmental toxicity caused by this class of environmental toxins.
Collapse
Affiliation(s)
- L Du
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - W Sun
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X M Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - X Y Li
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - W Liu
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| | - D Chen
- 1 The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
- 2 Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, People's Republic of China
- 3 Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, People's Republic of China
| |
Collapse
|
63
|
Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis. Curr Genomics 2018; 19:158-162. [PMID: 29606902 PMCID: PMC5850503 DOI: 10.2174/1389202918666170719165339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual's brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.
Collapse
Affiliation(s)
- Svetlana G. Vorsanova
- Separated Structural Unit “Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev”, Ministry of Health of Russian Federation, Moscow125412, Russian Federation
- Mental Health Research Center, Moscow117152, Russian Federation
- Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Maria A. Zelenova
- Separated Structural Unit “Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev”, Ministry of Health of Russian Federation, Moscow125412, Russian Federation
- Mental Health Research Center, Moscow117152, Russian Federation
- Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Yuri B. Yurov
- Separated Structural Unit “Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev”, Ministry of Health of Russian Federation, Moscow125412, Russian Federation
- Mental Health Research Center, Moscow117152, Russian Federation
- Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Ivan Y. Iourov
- Separated Structural Unit “Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev”, Ministry of Health of Russian Federation, Moscow125412, Russian Federation
- Mental Health Research Center, Moscow117152, Russian Federation
- Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow123995, Russian Federation
| |
Collapse
|
64
|
Yurov YB, Vorsanova SG, Demidova IA, Kolotii AD, Soloviev IV, Iourov IY. Mosaic Brain Aneuploidy in Mental Illnesses: An Association of Low-level Post-zygotic Aneuploidy with Schizophrenia and Comorbid Psychiatric Disorders. Curr Genomics 2018; 19:163-172. [PMID: 29606903 PMCID: PMC5850504 DOI: 10.2174/1389202918666170717154340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/18/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.
Collapse
Affiliation(s)
- Yuri B. Yurov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Svetlana G. Vorsanova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Irina A. Demidova
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Alexei D. Kolotii
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Ivan Y. Iourov
- Mental Health Research Center, Moscow, Russian Federation
- Separated Structural Unit “Clinical Research Institute of Pediatrics named after Y.E Veltishev”, Pirogov Russian National Research Medical University, Moscow, Russian Federation
- Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
65
|
Sferra A, Fattori F, Rizza T, Flex E, Bellacchio E, Bruselles A, Petrini S, Cecchetti S, Teson M, Restaldi F, Ciolfi A, Santorelli FM, Zanni G, Barresi S, Castiglioni C, Tartaglia M, Bertini E. Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. Hum Mol Genet 2018; 27:1892-1904. [DOI: 10.1093/hmg/ddy096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/12/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Antonella Sferra
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Fabiana Fattori
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Teresa Rizza
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Elsabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Emanuele Bellacchio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Serena Cecchetti
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Massimo Teson
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico Dell’Immacolata IDI-IRCCS, 00167 Rome, Italy
| | - Fabrizia Restaldi
- Unit of Medical Genetics, Department of Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Filippo M Santorelli
- IRCCS Stella Maris, Molecular Medicine and Neuromuscular Disorders, 56128 Pisa, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Claudia Castiglioni
- Neurology Unit, Department of Pediatrics, Clínica Las Condes, 7550000 Santiago, Chile
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| |
Collapse
|
66
|
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer's disease: as it was in the beginning. Rev Neurosci 2018; 28:825-843. [PMID: 28704198 DOI: 10.1515/revneuro-2017-0006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Since Alzheimer's disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer's disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer's disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer's disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer's disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer's disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Collapse
|
67
|
Kong Y, Li K, Fu T, Wan C, Zhang D, Song H, Zhang Y, Liu N, Gan Z, Yuan L. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression. Oncotarget 2018; 7:67716-67731. [PMID: 27626494 PMCID: PMC5356514 DOI: 10.18632/oncotarget.11963] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/01/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Tingting Fu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chao Wan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Dongdong Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Hang Song
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Yao Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Na Liu
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Liudi Yuan
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu, China.,State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Institute of Life Sciences, Southeast University, China
| |
Collapse
|
68
|
Shepherd CE, Yang Y, Halliday GM. Region- and Cell-specific Aneuploidy in Brain Aging and Neurodegeneration. Neuroscience 2018; 374:326-334. [PMID: 29432756 DOI: 10.1016/j.neuroscience.2018.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 01/02/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Variations in genomic DNA content, or aneuploidy, are a well-recognized feature of normal human brain development. Whether changes in the levels of aneuploidy are a factor in Alzheimer's disease (AD) is less clear, as the data reported to date vary substantially in the levels of aneuploidy detected (0.7-11.5%), possibly due to methodological limitations, but also influenced by individual, regional and cellular heterogeneity as well as variations in cell subtypes. These issues have not been adequately addressed to date. While it is known that the DNA damage response increases with age, the limited human studies investigating aneuploidy in normal aging also show variable results, potentially due to susceptibility to age-related neurodegenerative processes. Neuronal aneuploidy has recently been reported in multiple brain regions in Lewy body disease, but similar genomic changes are not a feature of all synucleinopathies and aneuploidy does not appear to be related to alpha-synuclein aggregation. Rather, aneuploidy was associated with Alzheimer's pathology in the hippocampus and anterior cingulate cortex and neuronal degeneration in the substantia nigra. The association between Alzheimer's pathology and aneuploidy in regions with limited neurodegeneration is supported by a growing body of in vitro and in vivo data on aneuploidy and beta-amyloid and tau abnormalities. Large-scale studies using high-resolution techniques alongside other sensitive and specific methodologies are now required to assess the true extent of cell- and region-specific aneuploidy in aging and neurodegeneration, and to determine any associations with pathologies.
Collapse
Affiliation(s)
- C E Shepherd
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia.
| | - Y Yang
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia; Brain and Mind Centre, Sydney Medical School, The University of Sydney, Australia.
| | - G M Halliday
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia; Brain and Mind Centre, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|
69
|
Caneus J, Granic A, Rademakers R, Dickson DW, Coughlan CM, Chial HJ, Potter H. Mitotic defects lead to neuronal aneuploidy and apoptosis in frontotemporal lobar degeneration caused by MAPT mutations. Mol Biol Cell 2017; 29:575-586. [PMID: 29282277 PMCID: PMC6004587 DOI: 10.1091/mbc.e17-01-0031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023] Open
Abstract
Mutant Tau (MAPT) can lead to frontotemporal lobar degeneration (FTLD). Previous studies associated MAPT mutations and altered function with aneuploidy and chromosome instability in human lymphocytes and in Drosophila development. Here we examine whether FTLD-causing mutations in human MAPT induce aneuploidy and apoptosis in the mammalian brain. First, aneuploidy was found in brain cells from MAPT mutant transgenic mice expressing FTLD mutant human MAPT. Then brain neurons from mice homozygous or heterozygous for the Tau (Mapt) null allele were found to exhibit increasing levels of aneuploidy with decreasing Tau gene dosage. To determine whether aneuploidy leads to neurodegeneration in FTLD, we measured aneuploidy and apoptosis in brain cells from patients with MAPT mutations and identified both increased aneuploidy and apoptosis in the same brain neurons and glia. To determine whether there is a direct relationship between MAPT-induced aneuploidy and apoptosis, we expressed FTLD-causing mutant forms of MAPT in karyotypically normal human cells and found that they cause aneuploidy and mitotic spindle defects that then result in apoptosis. Collectively, our findings reveal a neurodegenerative pathway in FTLD-MAPT in which neurons and glia exhibit mitotic spindle abnormalities, chromosome mis-segregation, and aneuploidy, which then lead to apoptosis.
Collapse
Affiliation(s)
- Julbert Caneus
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045.,Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Antoneta Granic
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom.,Campus for Ageing and Vitality, Biomedical Research Building, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224
| | | | - Christina M Coughlan
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045.,Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045
| | - Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado School of Medicine, Aurora, CO 80045 .,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045.,Neuroscience Program, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
70
|
Characterizing Gene and Protein Crosstalks in Subjects at Risk of Developing Alzheimer’s Disease: A New Computational Approach. Processes (Basel) 2017. [DOI: 10.3390/pr5030047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
71
|
López-Sánchez N, Fontán-Lozano Á, Pallé A, González-Álvarez V, Rábano A, Trejo JL, Frade JM. Neuronal tetraploidization in the cerebral cortex correlates with reduced cognition in mice and precedes and recapitulates Alzheimer's-associated neuropathology. Neurobiol Aging 2017; 56:50-66. [DOI: 10.1016/j.neurobiolaging.2017.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 03/28/2017] [Accepted: 04/09/2017] [Indexed: 01/14/2023]
|
72
|
Rosenkrantz JL, Carbone L. Investigating somatic aneuploidy in the brain: why we need a new model. Chromosoma 2017; 126:337-350. [PMID: 27638401 PMCID: PMC5908214 DOI: 10.1007/s00412-016-0615-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
Abstract
The steady occurrence of DNA mutations is a key source for evolution, generating the genomic variation in the population upon which natural selection acts. Mutations driving evolution have to occur in the oocytes and sperm in order to be transmitted to the next generation. Through similar mechanisms, mutations also accumulate in somatic cells (e.g., skin cells, neurons, lymphocytes) during development and adult life. The concept that somatic cells can collect new mutations with time suggests that we are a mosaic of cells with different genomic compositions. Particular attention has been recently paid to somatic mutations in the brain, with a focus on the relationship between this phenomenon and the origin of human diseases. Given this progressive accumulation of mutations, it is likely that an increased load of somatic mutations is present later in life and that this could be associated with late-life diseases and aging. In this review, we focus on a particular type of mutation: the loss and/or gain of whole chromosomes (i.e., aneuploidy) caused by errors in chromosomes segregation in neurons and glia. Currently, it is hard to grasp the functional impact of somatic mutation in the brain because we lack reliable estimates of the proportion of aneuploid cells in the normal brain across different ages. Here, we revisit the key studies that attempted to quantify the proportion of aneuploid cells in both normal and diseased brains and highlight the deep inconsistencies among the different studies done in the last 15 years. Finally, our review highlights several limitations of studies performed in human and rodent models and explores a possible translational role for non-human primates.
Collapse
Affiliation(s)
- Jimi L Rosenkrantz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Lucia Carbone
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
- Division of Neuroscience, Primate Genetics Section, Oregon National Primate Research Center, Beaverton, OR, USA.
| |
Collapse
|
73
|
Arendt T, Stieler J, Ueberham U. Is sporadic Alzheimer's disease a developmental disorder? J Neurochem 2017; 143:396-408. [PMID: 28397252 DOI: 10.1111/jnc.14036] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of higher age that specifically occurs in human. Its clinical phase, characterized by a decline in physiological, psychological, and social functioning, is preceded by a long clinically silent phase of at least several decades that might perhaps even start very early in life. Overall, key functional abilities in AD patients decline in reverse order of the development of these abilities during normal childhood and adolescence. Early symptoms of AD, thus, typically affect mental functions that have been acquired only during very recent hominid evolution and as such are specific to human. Neurofibrillar degeneration, a typical neuropathological lesion of the disease and one of the most robust pathological correlates of cognitive impairment, is rarely seen in non-primate mammals and even non-human primates hardly develop a pathology comparable to those seen in AD patients. Neurofibrillar degeneration is not randomly distributed throughout the AD brain. It preferentially affects brain areas that become increasingly predominant during the evolutionary process of encephalization. During progression of the disease, it affects cortical areas in a stereotypic sequence that inversely recapitulates ontogenetic brain development. The specific distribution of cortical pathology in AD, moreover, appears to be determined by the modular organization of the cerebral cortex which basically is a structural reflection of its ontogeny. Here, we summarize recent evidence that phylogenetic and ontogenetic dimensions of brain structure and function provide the key to our understanding of AD. More recent molecular biological studies of the potential pathogenetic role of a genomic mosaic in the brains of patients with AD might even provide arguments for a developmental origin of AD. This article is part of a series "Beyond Amyloid".
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Jens Stieler
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| | - Uwe Ueberham
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
74
|
Silva-Santiago E, Rivera-Mulia JC, Aranda-Anzaldo A. The Set of Structural DNA-Nuclear Matrix Interactions in Neurons Is Cell-Type Specific and Rather Independent of Functional Constraints. J Cell Biochem 2017; 118:2151-2160. [DOI: 10.1002/jcb.25852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/19/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Evangelina Silva-Santiago
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| | - Juan Carlos Rivera-Mulia
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| | - Armando Aranda-Anzaldo
- Facultad de Medicina, Laboratorio de Biología Molecular y Neurociencias; Universidad Autónoma del Estado de México; Toluca 50180 Edo. Méx. Mexico
| |
Collapse
|
75
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
76
|
Hou Y, Song H, Croteau DL, Akbari M, Bohr VA. Genome instability in Alzheimer disease. Mech Ageing Dev 2017; 161:83-94. [PMID: 27105872 PMCID: PMC5195918 DOI: 10.1016/j.mad.2016.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/05/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. Autosomal dominant, familial AD (fAD) is very rare and caused by mutations in amyloid precursor protein (APP), presenilin-1 (PSEN-1), and presenilin-2 (PSEN-2) genes. The pathogenesis of sporadic AD (sAD) is more complex and variants of several genes are associated with an increased lifetime risk of AD. Nuclear and mitochondrial DNA integrity is pivotal during neuronal development, maintenance and function. DNA damage and alterations in cellular DNA repair capacity have been implicated in the aging process and in age-associated neurodegenerative diseases, including AD. These findings are supported by research using animal models of AD and in DNA repair deficient animal models. In recent years, novel mechanisms linking DNA damage to neuronal dysfunction have been identified and have led to the development of noninvasive treatment strategies. Further investigations into the molecular mechanisms connecting DNA damage to AD pathology may help to develop novel treatment strategies for this debilitating disease. Here we provide an overview of the role of genome instability and DNA repair deficiency in AD pathology and discuss research strategies that include genome instability as a component.
Collapse
Affiliation(s)
- Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Hyundong Song
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Mansour Akbari
- Center for Healthy Aging, SUND, University of Copenhagen, Denmark
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
77
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
78
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 PMCID: PMC5063692 DOI: 10.1002/cne.24040] [Citation(s) in RCA: 641] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
79
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 DOI: 10.1002/cne.2404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 05/25/2023]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
80
|
Counts SE, Mufson EJ. Regulator of Cell Cycle (RGCC) Expression During the Progression of Alzheimer's Disease. Cell Transplant 2016; 26:693-702. [PMID: 27938491 DOI: 10.3727/096368916x694184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unscheduled cell cycle reentry of postmitotic neurons has been described in cases of mild cognitive impairment (MCI) and Alzheimer's disease (AD) and may form a basis for selective neuronal vulnerability during disease progression. In this regard, the multifunctional protein regulator of cell cycle (RGCC) has been implicated in driving G1/S and G2/M phase transitions through its interactions with cdc/cyclin-dependent kinase 1 (cdk1) and is induced by p53, which mediates apoptosis in neurons. We tested whether RGCC levels were dysregulated in frontal cortex samples obtained postmortem from subjects who died with a clinical diagnosis of no cognitive impairment (NCI), MCI, or AD. RGCC mRNA and protein levels were upregulated by ∼50%-60% in MCI and AD compared to NCI, and RGCC protein levels were associated with poorer antemortem global cognitive performance in the subjects examined. To test whether RGCC might regulate neuronal cell cycle reentry and apoptosis, we differentiated neuronotypic PC12 cultures with nerve growth factor (NGF) followed by NGF withdrawal to induce abortive cell cycle activation and cell death. Experimental reduction of RGCC levels increased cell survival and reduced levels of the cdk1 target cyclin B1. RGCC may be a candidate cell cycle target for neuroprotection during the onset of AD.
Collapse
|
81
|
Poncelet L, Garigliany M, Ando K, Franssen M, Desmecht D, Brion JP. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus. Cell Cycle 2016; 15:3482-3489. [PMID: 27830988 DOI: 10.1080/15384101.2016.1249546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The cell cycle-associated neuronal death hypothesis, which has been proposed as a common mechanism for most neurodegenerative diseases, is notably supported by evidencing cell cycle effectors in neurons. However, in naturally occurring nervous system diseases, these markers are not expressed in neuron nuclei but in cytoplasmic compartments. In other respects, the Feline Panleukopenia Virus (FPV) is able to complete its cycle in mature brain neurons in the feline species. As a parvovirus, the FPV is strictly dependent on its host cell reaching the cell cycle S phase to start its multiplication. In this retrospective study on the whole brain of 12 cats with naturally-occurring, FPV-associated cerebellar atrophy, VP2 capsid protein expression was detected by immunostaining not only in some brain neuronal nuclei but also in neuronal cytoplasm in 2 cats, suggesting that viral mRNA translation was still occurring. In these cats, double immunostainings demonstrated the expression of cell cycle S phase markers cyclin A, cdk2 and PCNA in neuronal nuclei. Parvoviruses are able to maintain their host cells in S phase by triggering the DNA damage response. S139 phospho H2A1, a key player in the cell cycle arrest, was detected in some neuronal nuclei, supporting that infected neurons were also blocked into the S phase. PCR studies did not support a co-infection with an adeno or herpes virus. ERK1/2 nuclear accumulation was observed in some neurons suggesting that the ERK signaling pathway might be involved as a mechanism driving these neurons far into the cell cycle.
Collapse
Affiliation(s)
- Luc Poncelet
- a Laboratory of Anatomy, Biomechanics and Organogenesis, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium.,b ULB Neuroscience Insitute (UNI) , Brussels , Belgium
| | - Mutien Garigliany
- c Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège , Liège , Belgium
| | - Kunie Ando
- b ULB Neuroscience Insitute (UNI) , Brussels , Belgium.,d Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| | - Mathieu Franssen
- c Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège , Liège , Belgium
| | - Daniel Desmecht
- c Morphology and Pathology, Faculty of Veterinary Medicine, University of Liège , Liège , Belgium
| | - Jean-Pierre Brion
- b ULB Neuroscience Insitute (UNI) , Brussels , Belgium.,d Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles , Brussels , Belgium
| |
Collapse
|
82
|
Barger SW. Gene regulation and genetics in neurochemistry, past to future. J Neurochem 2016; 139 Suppl 2:24-57. [PMID: 27747882 DOI: 10.1111/jnc.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/01/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how gene regulatory events impact neurochemistry in a much broader sense, extending beyond the neurochemicals that translate electrical signals into chemical ones in the synapse, to also include every aspect of neural development, structure, function, and pathology. From the beginning, the mutability - yet relative stability - of genes and their expression patterns were recognized as potential substrates for some of the most intriguing phenomena in neurobiology - those instances of plasticity required for learning and memory. Near-heretical speculation was offered in the idea that perhaps the very sequence of the genome was altered to encode memories. A fascinating component of the intervening progress includes evidence that the central dogma is not nearly as rigid and consistent as we once thought. And this mutability extends to the potential to manipulate that code for both experimental and clinical purposes. Astonishing progress has been made in the molecular biology of neurochemistry during the 60 years since this journal debuted. Many of the gains in conceptual understanding have been driven by methodological progress, from automated high-throughput sequencing instruments to recombinant-DNA vectors that can convey color-coded genetic modifications in the chromosomes of live adult animals. This review covers the highlights of these advances, both theoretical and technological, along with a brief window into the promising science ahead. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.
| |
Collapse
|
83
|
Wojsiat J, Laskowska-Kaszub K, Alquézar C, Białopiotrowicz E, Esteras N, Zdioruk M, Martin-Requero A, Wojda U. Familial Alzheimer's Disease Lymphocytes Respond Differently Than Sporadic Cells to Oxidative Stress: Upregulated p53-p21 Signaling Linked with Presenilin 1 Mutants. Mol Neurobiol 2016; 54:5683-5698. [PMID: 27644130 PMCID: PMC5533859 DOI: 10.1007/s12035-016-0105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
Familial (FAD) and sporadic (SAD) Alzheimer's disease do not share all pathomechanisms, but knowledge on their molecular differences is limited. We previously reported that cell cycle control distinguishes lymphocytes from SAD and FAD patients. Significant differences were found in p21 levels of SAD compared to FAD lymphocytes. Since p21 can also regulate apoptosis, the aim of this study was to compare the response of FAD and SAD lymphocytes to oxidative stress like 2-deoxy-D-ribose (2dRib) treatment and to investigate the role of p21 levels in this response. We report that FAD cells bearing seven different PS1 mutations are more resistant to 2dRib-induced cell death than control or SAD cells: FAD cells showed a lower apoptosis rate and a lower depolarization of the mitochondrial membrane. Despite that basal p21 cellular content was lower in FAD than in SAD cells, in response to 2dRib, p21 mRNA and protein levels significantly increased in FAD cells. Moreover, we found a higher cytosolic accumulation of p21 in FAD cells. The transcriptional activation of p21 was shown to be dependent on p53, as it can be blocked by PFT-α, and correlated with the increased phosphorylation of p53 at Serine 15. Our results suggest that in FAD lymphocytes, the p53-mediated increase in p21 transcription, together with a shift in the nucleocytoplasmic localization of p21, confers a survival advantage against 2dRib-induced apoptosis. This compensatory mechanism is absent in SAD cells. Thus, therapeutic and diagnostic designs should take into account possible differential apoptotic responses in SAD versus FAD cells.
Collapse
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Emilia Białopiotrowicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Noemi Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Mykola Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
84
|
Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull 2016; 126:238-292. [PMID: 27615390 DOI: 10.1016/j.brainresbull.2016.08.018] [Citation(s) in RCA: 429] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022]
|
85
|
Aranda-Anzaldo A, Dent MAR. Why Cortical Neurons Cannot Divide, and Why Do They Usually Die in the Attempt? J Neurosci Res 2016; 95:921-929. [PMID: 27402311 DOI: 10.1002/jnr.23765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/25/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022]
Abstract
Cortical neurons are prime examples of terminally differentiated, postmitotic cells. However, under experimental or pathological conditions, they can re-enter the cell cycle and replicate DNA but are unable to divide, dying by apoptosis or becoming either polyploid or aneuploid. Any cellular state that depends on the action of genes and their products can be reverted or bypassed by spontaneous or induced mutations, yet there are currently no reports of dividing cortical neurons. Thus, it seems unlikely that the remarkably stable postmitotic condition of cortical neurons depends on specific gene functions. This Review summarizes evidence that the postmitotic state of cortical neurons depends on the high stability of its underlying nuclear structure that results from an entropy-driven process aimed at dissipating the intrinsic structural stress present in chromosomal DNA in such a way that the structural stability of the neuronal nucleus becomes an insurmountable energy barrier for karyokinesis and mitosis. From this perspective, the integral properties of the nuclear higher order structure in neurons provide an explanation not only for why cortical neurons cannot divide but also for why they usually die if they happen to replicate their DNA. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado México, México
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado México, México
| |
Collapse
|
86
|
Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer's disease neurons. Genome Biol 2016; 17:116. [PMID: 27246599 PMCID: PMC4888403 DOI: 10.1186/s13059-016-0976-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/04/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease of the brain and the most common form of dementia in the elderly. Aneuploidy, a state in which cells have an abnormal number of chromosomes, has been proposed to play a role in neurodegeneration in AD patients. Several studies using fluorescence in situ hybridization have shown that the brains of AD patients contain an increased number of aneuploid cells. However, because the reported rate of aneuploidy in neurons ranges widely, a more sensitive method is needed to establish a possible role of aneuploidy in AD pathology. RESULTS In the current study, we used a novel single-cell whole genome sequencing (scWGS) approach to assess aneuploidy in isolated neurons from the frontal cortex of normal control individuals (n = 6) and patients with AD (n = 10). The sensitivity and specificity of our method was shown by the presence of three copies of chromosome 21 in all analyzed neuronal nuclei of a Down's syndrome sample (n = 36). Very low levels of aneuploidy were found in the brains from control individuals (n = 589) and AD patients (n = 893). In contrast to other studies, we observe no selective gain of chromosomes 17 or 21 in neurons of AD patients. CONCLUSION scWGS showed no evidence for common aneuploidy in normal and AD neurons. Therefore, our results do not support an important role for aneuploidy in neuronal cells in the pathogenesis of AD. This will need to be confirmed by future studies in larger cohorts.
Collapse
|
87
|
Alquezar C, Salado IG, de la Encarnación A, Pérez DI, Moreno F, Gil C, de Munain AL, Martínez A, Martín-Requero Á. Targeting TDP-43 phosphorylation by Casein Kinase-1δ inhibitors: a novel strategy for the treatment of frontotemporal dementia. Mol Neurodegener 2016; 11:36. [PMID: 27138926 PMCID: PMC4852436 DOI: 10.1186/s13024-016-0102-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in the progranulin gene (GRN) are the most common cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). TDP-43 pathology is characterized by the hyperphosphorylation of the protein at Serine 409/410 residues. Casein kinase-1δ (CK-1δ) was reported to phosphorylate TDP-43 directly. Previous works from our laboratory described the presence of CDK6/pRb-dependent cell cycle alterations, and cytosolic accumulation of TDP-43 protein in lymphoblast from FTLD-TDP patients carriers of a loss-of function mutation in GRN gene (c.709-1G > A). In this work, we have investigated the effects of two brain penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27) designed and synthetized in our laboratory on cell proliferation, TDP-43 phosphorylation and subcellular localization, as well as their effects on the known nuclear TDP-43 function repressing the expression of CDK6. Results We report here that both CK-1δ inhibitors (IGS-2.7 and IGS-3.27) normalized the proliferative activity of PGRN-deficient lymphoblasts by preventing the phosphorylation of TDP-43 fragments, its nucleo-cytosol translocation and the overactivation of the CDK6/pRb cascade. Moreover, ours results show neuroprotective effects of CK-1δ inhibitors in a neuronal cell model of induced TDP-43 phosphorylation. Conclusions Our results suggest that modulating CK-1δ activity could be considered a novel therapeutic approach for the treatment of FTLD-TDP and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Irene G Salado
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana de la Encarnación
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Daniel I Pérez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Fermín Moreno
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
| | - Carmen Gil
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Adolfo López de Munain
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain.,Department of Neurology, Hospital Donostia, San Sebastian, Spain.,Department of Neurosciences, University of Basque Country, San Sebastián, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Martínez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain. .,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
88
|
Potter H. Beyond Trisomy 21: Phenotypic Variability in People with Down Syndrome Explained by Further Chromosome Mis-segregation and Mosaic Aneuploidy. ACTA ACUST UNITED AC 2016. [PMID: 29516054 PMCID: PMC5837063 DOI: 10.4172/2472-1115.1000109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phenotypic variability is a fundamental feature of the human population and is particularly evident among people with Down syndrome and/or Alzheimer’s disease. Herein, we review current theories of the potential origins of this phenotypic variability and propose a novel mechanism based on our finding that the Alzheimer’s disease-associated Aβ peptide, encoded on chromosome 21, disrupts the mitotic spindle, induces abnormal chromosome segregation, and produces mosaic populations of aneuploid cells in all tissues of people with Alzheimer’s disease and in mouse and cell models thereof. Thus, individuals exposed to increased levels of the Aβ peptide should accumulate mosaic populations of aneuploid cells, with different chromosomes affected in different tissues and in different individuals. Specifically, people with Down syndrome, who express elevated levels of Aβ peptide throughout their lifetimes, would be predicted to accumulate additional types of aneuploidy, beyond trisomy 21 and including changes in their trisomy 21 status, in mosaic cell populations. Such mosaic aneuploidy would introduce a novel form of genetic variability that could potentially underlie much of the observed phenotypic variability among people with Down syndrome, and possibly also among people with Alzheimer’s disease. This mosaic aneuploidy theory of phenotypic variability in Down syndrome is supported by several observations, makes several testable predictions, and identifies a potential approach to reducing the frequency of some of the most debilitating features of Down syndrome, including Alzheimer’s disease.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, and Linda Crnic Institute for Down Syndrome, Rocky Mountain Alzheimer's Disease Center, University of Colorado Anschutz Medical Center, USA
| |
Collapse
|
89
|
Bougé AL, Parmentier ML. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death. Dis Model Mech 2016; 9:307-19. [PMID: 26822478 PMCID: PMC4833329 DOI: 10.1242/dmm.022558] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. Drosophila Collection: We show that Tau, a microtubule-binding protein involved in many neurodegenerative diseases, impairs mitosis when in excess. We show that this occurs via the inhibition of the kinesin-5 mitotic motor.
Collapse
Affiliation(s)
- Anne-Laure Bougé
- Department of Neurosciences, Institut de Génomique Fonctionnelle, CNRS-UMR5203, INSERM-U1191, Université Montpellier, 141 Rue de la Cardonille, Montpellier F-34094, Cedex 5, France
| | - Marie-Laure Parmentier
- Department of Neurosciences, Institut de Génomique Fonctionnelle, CNRS-UMR5203, INSERM-U1191, Université Montpellier, 141 Rue de la Cardonille, Montpellier F-34094, Cedex 5, France
| |
Collapse
|
90
|
Harbom LJ, Chronister WD, McConnell MJ. Single neuron transcriptome analysis can reveal more than cell type classification: Does it matter if every neuron is unique? Bioessays 2016; 38:157-61. [PMID: 26749010 PMCID: PMC4852373 DOI: 10.1002/bies.201500097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A recent single cell mRNA sequencing study by Dueck et al. compares neuronal transcriptomes to the transcriptomes of adipocytes and cardiomyocytes. Single cell omic approaches such as those used by the authors are at the leading edge of molecular and biophysical measurement. Many groups are currently employing single cell sequencing approaches to understand cellular heterogeneity in cancer and during normal development. These single cell approaches also are beginning to address long-standing questions regarding nervous system diversity. Beyond an innate interest in cataloging cell type diversity in the brain, single cell neuronal diversity has important implications for neurotypic neural circuit function and for neurological disease. Herein, we review the authors' methods and findings, which most notably include evidence of unique expression profiles in some single neurons.
Collapse
Affiliation(s)
- Lise J Harbom
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Neurosciences Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia
| | - William D Chronister
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Biomedical Sciences Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,Neurosciences Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia.,Biomedical Sciences Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia.,Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
91
|
Potter H, Granic A, Caneus J. Role of Trisomy 21 Mosaicism in Sporadic and Familial Alzheimer's Disease. Curr Alzheimer Res 2016; 13:7-17. [PMID: 26651340 PMCID: PMC5570437 DOI: 10.2174/156720501301151207100616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 02/07/2023]
Abstract
Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aβ) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aβ induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aβ. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, 12700 E. 19th Ave room 4010, mail stop 8608, Aurora CO 80045, USA.
| | | | | |
Collapse
|
92
|
Abstract
Neurons are usually regarded as postmitotic cells that undergo apoptosis in response to cell cycle reactivation. Nevertheless, recent evidence indicates the existence of a defined developmental program that induces DNA replication in specific populations of neurons, which remain in a tetraploid state for the rest of their adult life. Similarly, de novo neuronal tetraploidization has also been described in the adult brain as an early hallmark of neurodegeneration. The aim of this review is to integrate these recent developments in the context of cell cycle regulation and apoptotic cell death in neurons. We conclude that a variety of mechanisms exists in neuronal cells for G1/S and G2/M checkpoint regulation. These mechanisms, which are connected with the apoptotic machinery, can be modulated by environmental signals and the neuronal phenotype itself, thus resulting in a variety of outcomes ranging from cell death at the G1/S checkpoint to full proliferation of differentiated neurons.
Collapse
Key Words
- AD, Alzheimer disease
- BDNF, brain-derived neurotrophic factor
- BrdU, 5-bromo-2′-deoxyuridine
- CKI, Cdk-inhibitor
- CNS, central nervous system
- Cdk, cyclin-dependent kinase
- Cip/Kip, cyclin inhibitor protein/kinase inhibitor protein
- G0, quiescent state
- G1, growth phase 1
- G2, growth phase 2
- Ink, inhibitor of kinase
- Mcm2, minichromosome maintenance 2
- PCNA, proliferating cell nuclear antigen
- PD, Parkinson disease
- RGCs, retinal ganglion cells
- Rb, Retinoblastoma
- S-phase
- S-phase, synthesis phase.
- apoptosis
- cell cycle re-entry
- mitosis
- neuron
- p38MAPK, p38 mitogen-activated protein kinase
- p75NTR, neurotrophin receptor p75
- tetraploid
Collapse
Affiliation(s)
- José M Frade
- a Department of Molecular, Cellular and Developmental Neurobiology; Instituto Cajal; Consejo Superior de Investigaciones Científicas (IC-CSIC) ; Madrid , Spain
| | | |
Collapse
|
93
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
94
|
Arendt T, Brückner MK, Lösche A. Regional mosaic genomic heterogeneity in the elderly and in Alzheimer's disease as a correlate of neuronal vulnerability. Acta Neuropathol 2015; 130:501-10. [PMID: 26298468 DOI: 10.1007/s00401-015-1465-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by fibrillary aggregates of Aβ peptide and tau protein. The distribution of these pathological hallmarks throughout the brain is not random; it follows a predictive pattern that is used for pathological staging. However, most etiopathogenetic concepts, irrespective of whether they focus on Aβ or tau pathology, leave a key question unanswered: what is the explanation for the different vulnerabilities of brain regions in AD? The pattern of regional progression of neurofibrillary degeneration in AD to some extent inversely recapitulates ontogenetic and phylogenetic brain development. Accordingly, degeneration preferentially affects brain areas that have recently been acquired or restructured during anthropoid evolution, which means that the involvement of a neurodevelopmental mechanism is highly likely. Since evolutionary expansion of the neocortex is based on a substantial extension of the mitotic activity of progenitor cells, we propose a conceptual link between neurogenesis in anthropoid primates and a higher risk of accumulating mitotic errors that give rise to genomic aberrations commonly referred to as DNA content variation (DCV). If increased rates of DCV make neurons more vulnerable to AD-related pathology, one might expect there to be a higher rate of DCV in areas that are affected very early during the course of AD, as compared to areas which are hardly affected or are affected only during the most advanced stages. Therefore, in the present study, we comparatively analyzed the DCV in five different cortical areas that are affected during the early stage (entorhinal cortex), the intermediate stage (temporal, frontal, and parietal association cortex), and the late stage (primary sensory occipital cortex) of AD in both normal elderly subjects and AD patients. On average, we observed about 10 % neuronal mosaic DCV in the normal elderly and a two- to threefold increase in DCV in AD patients. We were able to demonstrate, moreover, that the neuronal DCV in the cerebral cortex of the normal elderly as well as the increased neuronal DCV in AD patients are not randomly distributed but instead show systematic regional differences which correspond to differences in vulnerability. These findings provide additional evidence that mosaic genomic heterogeneity may play a key role in AD pathology.
Collapse
Affiliation(s)
- Thomas Arendt
- Department of Molecular and Cellular Mechanism of Neurodegeneration, Paul Flechsig Institute for Brain Research, Universität Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany.
| | - Martina K Brückner
- Department of Molecular and Cellular Mechanism of Neurodegeneration, Paul Flechsig Institute for Brain Research, Universität Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany
| | - Andreas Lösche
- Core Unit Fluorescence Technologies of the Medical Faculty, Universität Leipzig, Liebigstrasse 19, 04103, Leipzig, Germany
| |
Collapse
|
95
|
Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T. Cohesion and the aneuploid phenotype in Alzheimer's disease: A tale of genome instability. Neurosci Biobehav Rev 2015; 55:365-74. [PMID: 26003528 DOI: 10.1016/j.neubiorev.2015.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 03/26/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022]
Abstract
Neurons are postmitotic cells that are in permanent cell cycle arrest. However, components of the cell cycle machinery that are expressed in Alzheimer's disease (AD) neurons are showing features of a cycling cell and those attributed to a postmitotic cell as well. Furthermore, the unique physiological operations taking place in neurons, ascribed to "core cell cycle regulators" are also key regulators in cell division. Functions of these cell cycle regulators include neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. In this review, we focus on cohesion and cohesion related proteins in reference to their neuronal functions and how impaired centromere/cohesion dynamics may connect cell cycle dysfunction to aneuploidy in AD.
Collapse
Affiliation(s)
- Vladan Bajic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Biljana Spremo-Potparevic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Lada Zivkovic
- Faculty of Pharmacy, Institute of Physiology, Department of Biology and Human Genetics, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia.
| | - Esma R Isenovic
- Institute for Nuclear Research "Vinca", Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, P.O. 522, 11001 Belgrade, Serbia.
| | - Thomas Arendt
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, School of Medicine, Leipzig, Germany.
| |
Collapse
|
96
|
Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, Oshima K, Kunii Y, Yabe H, Matsumoto J, Wada A, Hino M, Hashimoto T, Hishimoto A, Kitamura N, Iritani S, Shirakawa O, Maeda K, Miyashita A, Niwa SI, Takahashi H, Kakita A, Kuwano R, Nawa H. Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet 2015; 8:46. [PMID: 26136833 PMCID: PMC4487564 DOI: 10.1186/s13039-015-0144-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022] Open
Abstract
Background Cytogenomic mutations and chromosomal abnormality are implicated in the neuropathology of several brain diseases. Cell heterogeneity of brain tissues makes their detection and validation difficult, however. In the present study, we analyzed gene dosage alterations in brain DNA of schizophrenia patients and compared those with the copy number variations (CNVs) identified in schizophrenia patients as well as with those in Asian lymphocyte DNA and attempted to obtain hints at the pathological contribution of cytogenomic instability to schizophrenia. Results Brain DNA was extracted from postmortem striatum of schizophrenia patients and control subjects (n = 48 each) and subjected to the direct two color microarray analysis that limits technical data variations. Disease-associated biases of relative DNA doses were statistically analyzed with Bonferroni’s compensation on the premise of brain cell mosaicism. We found that the relative gene dosage of 85 regions significantly varied among a million of probe sites. In the candidate CNV regions, 26 regions had no overlaps with the common CNVs found in Asian populations and included the genes (i.e., ANTXRL, CHST9, DNM3, NDST3, SDK1, STRC, SKY) that are associated with schizophrenia and/or other psychiatric diseases. The majority of these candidate CNVs exhibited high statistical probabilities but their signal differences in gene dosage were less than 1.5-fold. For test evaluation, we rather selected the 10 candidate CNV regions that exhibited higher aberration scores or larger global effects and were thus confirmable by PCR. Quantitative PCR verified the loss of gene dosage at two loci (1p36.21 and 1p13.3) and confirmed the global variation of the copy number distributions at two loci (11p15.4 and 13q21.1), both indicating the utility of the present strategy. These test loci, however, exhibited the same somatic CNV patterns in the other brain region. Conclusions The present study lists the candidate regions potentially representing cytogenomic CNVs in the brain of schizophrenia patients, although the significant but modest alterations in their brain genome doses largely remain to be characterized further. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miwako Sakai
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan ; Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | - Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| | - Masako Shibuya
- Department of Psychiatry, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, 951-8510 Niigata, Japan
| | | | | | - Yasuto Kunii
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hirooki Yabe
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Junya Matsumoto
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Akira Wada
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Mizuki Hino
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Takeshi Hashimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Akitoyo Hishimoto
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Noboru Kitamura
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan
| | - Shuji Iritani
- Matsuzawa Hospital, Setagaya-ku, 156-0057 Tokyo, Japan ; Department of Mental Health, Nagoya University Graduate School of Medicine, 466-8550 Nagoya, Aichi Japan
| | - Osamu Shirakawa
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Neuropsychiatry, Kinki University Faculty of Medicine, 589-8511 Osaka-Sayama, Osaka Japan
| | - Kiyoshi Maeda
- Division of Psychiatry and Neurology, Kobe University Graduate School of Medicine, 650-0017 Kobe, Hyogo Japan ; Department of Social Rehabilitation, Kobe University School of Medicine, 654-0142 Hyogo, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Shin-Ichi Niwa
- Departments of Neuropsychiatry, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hitoshi Takahashi
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Akiyoshi Kakita
- Pathology and Brain Disease Research Center, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Ryozo Kuwano
- Department of Molecular Genetics, Brain Research Institute, Niigata University, 951-8585 Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, 951-8585 Niigata, Japan
| |
Collapse
|
97
|
Wojsiat J, Prandelli C, Laskowska-Kaszub K, Martín-Requero A, Wojda U. Oxidative Stress and Aberrant Cell Cycle in Alzheimer’s Disease Lymphocytes: Diagnostic Prospects. J Alzheimers Dis 2015; 46:329-50. [DOI: 10.3233/jad-141977] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Chiara Prandelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Angeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Studies of Higher Standard, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
98
|
Ovejero-Benito MC, Frade JM. p27(Kip1) participates in the regulation of endoreplication in differentiating chick retinal ganglion cells. Cell Cycle 2015; 14:2311-22. [PMID: 25946375 PMCID: PMC4614947 DOI: 10.1080/15384101.2015.1044175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nuclear DNA duplication in the absence of cell division (i.e. endoreplication) leads to somatic polyploidy in eukaryotic cells. In contrast to some invertebrate neurons, whose nuclei may contain up to 200,000-fold the normal haploid DNA amount (C), polyploid neurons in higher vertebrates show only 4C DNA content. To explore the mechanism that prevents extra rounds of DNA synthesis in these latter cells we focused on the chick retina, where a population of tetraploid retinal ganglion cells (RGCs) has been described. We show that differentiating chick RGCs that express the neurotrophic receptors p75 and TrkB while lacking retinoblastoma protein, a feature of tetraploid RGCs, also express p27Kip1. Two different short hairpin RNAs (shRNA) that significantly downregulate p27Kip1 expression facilitated DNA synthesis and increased ploidy in isolated chick RGCs. Moreover, this forced DNA synthesis could not be prevented by Cdk4/6 inhibition, thus suggesting that it is triggered by a mechanism similar to endoreplication. In contrast, p27Kip1 deficiency in mouse RGCs does not lead to increased ploidy despite previous observations have shown ectopic DNA synthesis in RGCs from p27Kip1−/− mice. This suggests that a differential mechanism is used for the regulation of neuronal endoreplication in mammalian versus avian RGCs.
Collapse
Affiliation(s)
- María C Ovejero-Benito
- a Department of Molecular , Cellular, and Developmental Neurobiology; Cajal Institute; IC-CSIC ; Madrid , Spain
| | | |
Collapse
|
99
|
Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 2015; 129:511-25. [PMID: 25618528 PMCID: PMC4366542 DOI: 10.1007/s00401-015-1382-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective treatment is available. Increased insight into the disease mechanism in early stages of pathology is required for the development of a successful therapy. Over the years, numerous studies have shown that cell cycle proteins are expressed in neurons of AD patients. Traditionally, neurons are considered to be post-mitotic, which means that they permanently retract from the cell cycle. The expression of cell cycle proteins in adult neurons of AD patients has therefore been suggested to promote or even instigate pathomechanisms underlying AD. Interestingly, expression of cell cycle proteins is detected in post-mitotic neurons of healthy controls as well, albeit to a lesser extent than in AD patients. This indicates that cell cycle proteins may serve important physiological functions in differentiated neurons. Here, we provide an overview of studies that support a role of cell cycle proteins in DNA repair and neuroplasticity in post-mitotic neurons. Aberrant control of these processes could, in turn, contribute to cell cycle-mediated neurodegeneration. The balance between regenerative and degenerative effects of cell cycle proteins in post-mitotic neurons might change throughout the different stages of AD. In the early stages of AD pathology, cell cycle protein expression may primarily occur to aid in the repair of sublethal double-strand breaks in DNA. With the accumulation of pathology, cell cycle-mediated neuroplasticity and neurodegeneration may become more predominant. Understanding the physiological and pathophysiological role of cell cycle proteins in AD could give us more insight into the neurodegenerative process in AD.
Collapse
|
100
|
Bakker B, van den Bos H, Lansdorp PM, Foijer F. How to count chromosomes in a cell: An overview of current and novel technologies. Bioessays 2015; 37:570-7. [PMID: 25739518 DOI: 10.1002/bies.201400218] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
Aneuploidy, an aberrant number of chromosomes in a cell, is a feature of several syndromes associated with cognitive and developmental defects. In addition, aneuploidy is considered a hallmark of cancer cells and has been suggested to play a role in neurodegenerative disease. To better understand the relationship between aneuploidy and disease, various methods to measure the chromosome numbers in cells have been developed, each with their own advantages and limitations. While some methods rely on dividing cells and thus bias aneuploidy rates to that population, other, more unbiased methods can only detect the average aneuploidy rates in a cell population, cloaking cell-to-cell heterogeneity. Furthermore, some techniques are more prone to technical artefacts, which can result in over- or underestimation of aneuploidy rates. In this review, we provide an overview of several "traditional" karyotyping methods as well as the latest high throughput next generation sequencing karyotyping protocols with their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|