51
|
Reversal of neurobehavioral teratogenicity in animal models and human: Three decades of progress. Brain Res Bull 2019; 150:328-342. [DOI: 10.1016/j.brainresbull.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
|
52
|
Alkam T, Nabeshima T. Molecular mechanisms for nicotine intoxication. Neurochem Int 2019; 125:117-126. [PMID: 30779928 DOI: 10.1016/j.neuint.2019.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 01/25/2023]
Abstract
Nicotine, one of the more than 4700 ingredients in tobacco smoke, is a neurotoxin and once used as pesticides in agriculture. Although its use in agriculture is prohibited in many countries, nicotine intoxication is still a problem among the workers in tobacco farms, and young children as well as adults due to the accidental or suicidal ingestions of nicotine products. Understanding the mechanism of nicotine intoxication is important not only for the prevention and treatment but also for the appropriate regulatory approaches. Here, we review pharmacokinetics of nicotine and the molecular mechanisms for acute and chronic intoxication from nicotine that might be relevant to the central and the peripheral nervous system. We include green tobacco sickness, acute intoxication from popular nicotine products, circadian rhythm changes, chronic intoxication from nicotine through prenatal nicotine exposure, newborn behaviors, and sudden infant death syndrome.
Collapse
Affiliation(s)
- Tursun Alkam
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan; Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan; Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan.
| |
Collapse
|
53
|
Buck JM, Sanders KN, Wageman CR, Knopik VS, Stitzel JA, O'Neill HC. Developmental nicotine exposure precipitates multigenerational maternal transmission of nicotine preference and ADHD-like behavioral, rhythmometric, neuropharmacological, and epigenetic anomalies in adolescent mice. Neuropharmacology 2019; 149:66-82. [PMID: 30742847 DOI: 10.1016/j.neuropharm.2019.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
Abstract
Maternal smoking during pregnancy, a form of developmental nicotine exposure (DNE), is associated with increased nicotine use and neurodevelopmental disorders such as ADHD in children. Here, we characterize the behavioral, rhythmometric, neuropharmacological, and epigenetic consequences of DNE in the F1 (first) and F2 (second) generation adolescent offspring of mice exposed to nicotine prior to and throughout breeding. We assessed the effects of passive oral methylphenidate (MPH) administration and voluntary nicotine consumption on home cage activity rhythms and activity and risk-taking behaviors in the open field. Results imply a multigenerational predisposition to nicotine consumption in DNE mice and demonstrate ADHD-like diurnal and nocturnal hyperactivity and anomalies in the rhythmicity of home cage activity that are reversibly rescued by MPH and modulated by voluntary nicotine consumption. DNE mice are hyperactive in the open field and display increased risk-taking behaviors that are normalized by MPH. Pharmacological characterization of nicotinic and dopaminergic systems in striatum and frontal cortex reveals altered expression and dysfunction of nicotinic acetylcholine receptors (nAChRs), hypersensitivity to nicotine-induced nAChR-mediated dopamine release, and impaired dopamine transporter (DAT) function in DNE mice. Global DNA methylation assays indicate DNA methylome deficits in striatum and frontal cortex of DNE mice. Collectively, our data demonstrate that DNE enhances nicotine preference, elicits hyperactivity and risk-taking behaviors, perturbs the rhythmicity of activity, alters nAChR expression and function, impairs DAT function, and causes DNA hypomethylation in striatum and frontal cortex of both first and second-generation adolescent offspring. These findings recapitulate multiple domains of ADHD symptomatology.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States.
| | - Kelsey N Sanders
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Charles R Wageman
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, United States
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| |
Collapse
|
54
|
McCarthy DM, Morgan TJ, Lowe SE, Williamson MJ, Spencer TJ, Biederman J, Bhide PG. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol 2018; 16:e2006497. [PMID: 30325916 PMCID: PMC6191076 DOI: 10.1371/journal.pbio.2006497] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022] Open
Abstract
Use of tobacco products is injurious to health in men and women. However, tobacco use by pregnant women receives greater scrutiny because it can also compromise the health of future generations. More men smoke cigarettes than women. Yet the impact of nicotine use by men upon their descendants has not been as widely scrutinized. We exposed male C57BL/6 mice to nicotine (200 μg/mL in drinking water) for 12 wk and bred the mice with drug-naïve females to produce the F1 generation. Male and female F1 mice were bred with drug-naïve partners to produce the F2 generation. We analyzed spontaneous locomotor activity, working memory, attention, and reversal learning in male and female F1 and F2 mice. Both male and female F1 mice derived from the nicotine-exposed males showed significant increases in spontaneous locomotor activity and significant deficits in reversal learning. The male F1 mice also showed significant deficits in attention, brain monoamine content, and dopamine receptor mRNA expression. Examination of the F2 generation showed that male F2 mice derived from paternally nicotine-exposed female F1 mice had significant deficits in reversal learning. Analysis of epigenetic changes in the spermatozoa of the nicotine-exposed male founders (F0) showed significant changes in global DNA methylation and DNA methylation at promoter regions of the dopamine D2 receptor gene. Our findings show that nicotine exposure of male mice produces behavioral changes in multiple generations of descendants. Nicotine-induced changes in spermatozoal DNA methylation are a plausible mechanism for the transgenerational transmission of the phenotypes. These findings underscore the need to enlarge the current focus of research and public policy targeting nicotine exposure of pregnant mothers by a more equitable focus on nicotine exposure of the mother and the father.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Thomas J. Morgan
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Sarah E. Lowe
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Matthew J. Williamson
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Thomas J. Spencer
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pradeep G. Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| |
Collapse
|
55
|
Micalizzi L, Knopik VS. Maternal smoking during pregnancy and offspring executive function: What do we know and what are the next steps? Dev Psychopathol 2018; 30:1333-1354. [PMID: 29144227 PMCID: PMC6028309 DOI: 10.1017/s0954579417001687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Children exposed to maternal smoking during pregnancy (MSDP) exhibit difficulties in executive function (EF) from infancy through adolescence. Due to the developmental significance of EF as a predictor of adaptive functioning throughout the life span, the MSDP-EF relation has clear public health implications. In this paper, we provide a comprehensive review of the literature on the relationship between MSDP and offspring EF across development; consider brain-based assessments, animal models, and genetically informed studies in an effort to elucidate plausible pathways of effects; discuss implications for prevention and intervention; and make calls to action for future research.
Collapse
Affiliation(s)
- Lauren Micalizzi
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital
- Department of Psychiatry and Human Behavior, The Warren Alpert School of Medicine, Brown University
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University
| | - Valerie S. Knopik
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital
- Department of Psychiatry and Human Behavior, The Warren Alpert School of Medicine, Brown University
- Department of Human Development and Family Studies, Purdue University
| |
Collapse
|
56
|
Brockett AT, Pribut HJ, Vázquez D, Roesch MR. The impact of drugs of abuse on executive function: characterizing long-term changes in neural correlates following chronic drug exposure and withdrawal in rats. Learn Mem 2018; 25:461-473. [PMID: 30115768 PMCID: PMC6097763 DOI: 10.1101/lm.047001.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Addiction has long been characterized by diminished executive function, control, and impulsivity management. In particular, these deficits often manifest themselves as impairments in reversal learning, delay discounting, and response inhibition. Understanding the neurobiological substrates of these behavioral deficits is of paramount importance to our understanding of addiction. Within the cycle of addiction, periods during and after withdrawal represent a particularly difficult point of intervention in that the negative physical symptoms associated with drug removal and drug craving increase the likelihood that the patient will relapse and return to drug use in order to abate these symptoms. Moreover, it is often during this time that drug induced deficits in executive function hinder the ability of the patient to refrain from drug use. Thus, it is necessary to understand the physiological and behavioral changes associated with withdrawal and drug craving-largely manifesting as deficits in executive control-to develop more effective treatment strategies. In this review, we address the long-term impact that drugs of abuse have on the behavioral and neural correlates that give rise to executive control as measured by reversal learning, delay discounting, and stop-signal tasks, focusing particularly on our work using rats as a model system.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Heather J Pribut
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Daniela Vázquez
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
57
|
Ipsen TH, Polli FS, Kohlmeier KA. Calcium rises induced by AMPA and nicotine receptors in the ventral tegmental area show differences in mouse brain slices prenatally exposed to nicotine. Dev Neurobiol 2018; 78:828-848. [PMID: 29923678 DOI: 10.1002/dneu.22607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Nicotine exposure during gestation is associated with a higher risk of adverse behavioral outcomes including a heightened liability for dependency to drugs of abuse, which can exhibit drug-specificity influenced by gender. This enhanced liability suggests that nicotine use during pregnancy alters neural development in circuits involved in motivation and reward-based learning. The ventral tegmental area (VTA) is critical in motivated behaviors and we hypothesized that gestational exposure to nicotine alters the development of excitatory circuits in this nucleus. Accordingly, in VTA brain slices from male and female mice exposed to nicotine during the prenatal period (PNE) and controls, we compared cellular rises in calcium induced by AMPA receptor and nicotinic acetylcholine receptor (nAChR) stimulation by use of the ratiometric calcium binding dye, Fura-2AM. We found that AMPA induced smaller amplitude calcium rises in the PNE VTA, which was an effect only detected in males. Further, while the amplitude did not vary between treatment and control in females, a greater number of cells responded with rises in calcium in the PNE. Conversely, the proportions of cells responding with calcium rises induced by nAChR stimulation did not change in either gender according to treatment. However, larger rises in calcium in PNE females were detected. When taken together our data show that excitatory signaling in the VTA is altered in a gender-specific manner by PNE and suggest that alterations in signaling could play a role in drug-specific differences in maladaptive, motivated behaviors exhibited by males and females born to mothers exposed to nicotine during pregnancy. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 2018.
Collapse
Affiliation(s)
- Theis H Ipsen
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Filip S Polli
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Kristi A Kohlmeier
- Faculty of Health Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
58
|
Morris M, Shaw A, Lambert M, Perry HH, Lowenstein E, Valenzuela D, Velazquez-Ulloa NA. Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:13. [PMID: 29898654 PMCID: PMC6001141 DOI: 10.1186/s12861-018-0172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/21/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. RESULTS We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. CONCLUSIONS We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Collapse
Affiliation(s)
- Melanie Morris
- School of Medicine, University of Washington, Seattle, USA
| | - Ariel Shaw
- Biochemistry, Cell and Molecular Biology Program, Lewis & Clark College, Portland, USA
| | | | | | - Eve Lowenstein
- Biology Department, Lewis & Clark College, Portland, USA
| | | | | |
Collapse
|
59
|
Zhang L, Spencer TJ, Biederman J, Bhide PG. Attention and working memory deficits in a perinatal nicotine exposure mouse model. PLoS One 2018; 13:e0198064. [PMID: 29795664 PMCID: PMC5967717 DOI: 10.1371/journal.pone.0198064] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cigarette smoking by pregnant women is associated with a significant increase in the risk for cognitive disorders in their children. Preclinical models confirm this risk by showing that exposure of the developing brain to nicotine produces adverse behavioral outcomes. Here we describe behavioral phenotypes resulting from perinatal nicotine exposure in a mouse model, and discuss our findings in the context of findings from previously published studies using preclinical models of developmental nicotine exposure. METHODOLOGY/PRINCIPAL FINDINGS Female C57Bl/6 mice received drinking water containing nicotine (100μg/ml) + saccharin (2%) starting 3 weeks prior to breeding and continuing throughout pregnancy, and until 3 weeks postpartum. Over the same period, female mice in two control groups received drinking water containing saccharin (2%) or plain drinking water. Offspring from each group were weaned at 3-weeks of age and subjected to behavioral analyses at 3 months of age. We examined spontaneous locomotor activity, anxiety-like behavior, spatial working memory, object based attention, recognition memory and impulsive-like behavior. We found significant deficits in attention and working memory only in male mice, and no significant changes in the other behavioral phenotypes in male or female mice. Exposure to saccharin alone did not produce significant changes in either sex. CONCLUSION/SIGNIFICANCE The perinatal nicotine exposure produced significant deficits in attention and working memory in a sex-dependent manner in that the male but not female offspring displayed these behaviors. These behavioral phenotypes are associated with attention deficit hyperactivity disorder (ADHD) and have been reported in other studies that used pre- or perinatal nicotine exposure. Therefore, we suggest that preclinical models of developmental nicotine exposure could be useful tools for modeling ADHD and related disorders.
Collapse
Affiliation(s)
- Lin Zhang
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States of America
| | - Thomas J. Spencer
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Pradeep G. Bhide
- Center for Brain Repair, Biomedical Sciences, Florida State University College of Medicine, Tallahassee, United States of America
- * E-mail:
| |
Collapse
|
60
|
Hyperactivity and memory/learning deficits evoked by developmental exposure to nicotine and/or ethanol are mitigated by cAMP and cGMP signaling cascades activation. Neurotoxicology 2018; 66:150-159. [PMID: 29653137 DOI: 10.1016/j.neuro.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/09/2018] [Accepted: 04/03/2018] [Indexed: 01/29/2023]
Abstract
Pregnant smoking women are frequently episodic drinkers. Here, we investigated whether ethanol exposure restricted to the brain growth spurt period when combined with chronic developmental exposure to nicotine aggravates memory/learning deficits and hyperactivity, and associated cAMP and cGMP signaling disruption. To further investigate the role of these signaling cascades, we verified whether vinpocetine (a phosphodiesterase inhibitor) ameliorates the neurochemical and behavioral outcomes. Swiss mice had free access to nicotine (NIC, 50 μg/ml) or water to drink during gestation and until the 8th postnatal day (PN8). Ethanol (ETOH, 5 g/kg, i.p.) or saline were injected in the pups every other day from PN2 to PN8. At PN30, animals either received vinpocetine (20 mg/kg, i.p.) or vehicle before being tested in the step-down passive avoidance or open field. Memory/learning was impaired in NIC, ETOH and NIC + ETOH mice, and vinpocetine mitigated ETOH- and NIC + ETOH-induced deficits. Locomotor hyperactivity identified in ETOH and NIC + ETOH mice was ameliorated by vinpocetine. While cyclic nucleotides levels in cerebral cortex and hippocampus were reduced by NIC, ETOH and NIC + ETOH, this outcome was more consistent in the latter group. As observed for behavior, vinpocetine normalized NIC + ETOH nucleotides levels. pCREB levels were also increased in response to vinpocetine, with stronger effects in the NIC + ETOH group. Exposure to both drugs of abuse worsens behavioral and neurochemical disruption. These findings and the amelioration of deleterious effects by vinpocetine support the idea that cAMP and cGMP signaling contribute to nicotine- and ethanol-induced hyperactivity and memory/learning deficits.
Collapse
|
61
|
Huang Z, Hoffman CA, Chelette BM, Thiebaud N, Fadool DA. Elevated Anxiety and Impaired Attention in Super-Smeller, Kv1.3 Knockout Mice. Front Behav Neurosci 2018; 12:49. [PMID: 29615878 PMCID: PMC5867313 DOI: 10.3389/fnbeh.2018.00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
It has long been recognized that olfaction and emotion are linked. While chemosensory research using both human and rodent models have indicated a change in emotion can contribute to olfactory dysfunction, there are few studies addressing the contribution of olfaction to a modulation in emotion. In mice, olfactory deficits have been linked with heightened anxiety levels, suggesting that there could be an inverse relationship between olfaction and anxiety. Furthermore, increased anxiety is often co-morbid with psychiatric conditions such as attention disorders. Our study aimed to investigate the roles of olfaction in modulating anxiety. Voltage-gated potassium ion channel Kv1.3 knockout mice (Kv1.3−/−), which have heightened olfaction, and wild-type (WT) mice were examined for anxiety-like behaviors using marble burying (MB), light-dark box (LDB) and elevated-plus maze (EPM) tests. Because Kv1.3−/− mice have increased locomotor activity, inattentive and hyperactive behaviors were quantified for both genotypes. Kv1.3−/− mice showed increased anxiety levels compared to their WT counterparts and administration of methylphenidate (MPH) via oral gavage alleviated their increased anxiety. Object-based attention testing indicated young and older Kv1.3−/− mice had attention deficits and treatment with MPH also ameliorated this condition. Locomotor testing through use of a metabolic chamber indicated that Kv1.3−/− mice were not significantly hyperactive and MPH treatment failed to modify this activity. Our data suggest that heightened olfaction does not necessarily lead to decreased anxiety levels, and that Kv1.3−/− mice may have behaviors associated with inattentiveness.
Collapse
Affiliation(s)
- Zhenbo Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Carlie A Hoffman
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Brandon M Chelette
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Nicolas Thiebaud
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra A Fadool
- Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
62
|
Wang Y, Wang L, Zhu Y, Qin J. Human brain organoid-on-a-chip to model prenatal nicotine exposure. LAB ON A CHIP 2018; 18:851-860. [PMID: 29437173 DOI: 10.1039/c7lc01084b] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nicotine has been recognized to trigger various neuronal disabilities in the fetal brain and long-lasting behavioral deficits in offspring. However, further understanding of fetal brain development under nicotine exposure is challenging due to the limitations of existing animal models. Here, we create a new brain organoid-on-a-chip system derived from human induced pluripotent stem cells (hiPSCs) that allows us to model neurodevelopmental disorders under prenatal nicotine exposure (PNE) at early stages. The brain organoid-on-a-chip system facilitates 3D culture, in situ neural differentiation, and self-organization of brain organoids under continuous perfused cultures in a controlled manner. The generated brain organoids displayed well-defined neural differentiation, regionalization, and cortical organization, which recapitulates the key features of the early stages of human brain development. The brain organoids exposed to nicotine exhibited premature neuronal differentiation with enhanced expression of the neuron marker TUJ1. Brain regionalization and cortical development were disrupted in the nicotine-treated organoids identified by the expressions of forebrain (PAX6 and FOXG1), hindbrain (PAX2 and KROX20) and cortical neural layer (preplate TBR1 and deep-layer CTIP2) markers. Moreover, the neurite outgrowth showed abnormal neuronal differentiation and migration in nicotine-treated brain organoids. These results suggest that nicotine exposure elicits impaired neurogenesis in early fetal brain development during gestation. The established brain organoid-on-a-chip system provides a promising platform to model neurodevelopmental disorders under environmental exposure, which can be extended for applications in brain disease studies and drug testing.
Collapse
Affiliation(s)
- Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | | | | | | |
Collapse
|
63
|
Dong T, Hu W, Zhou X, Lin H, Lan L, Hang B, Lv W, Geng Q, Xia Y. Prenatal exposure to maternal smoking during pregnancy and attention-deficit/hyperactivity disorder in offspring: A meta-analysis. Reprod Toxicol 2018; 76:63-70. [PMID: 29294364 DOI: 10.1016/j.reprotox.2017.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 01/11/2023]
Abstract
Some large population-based cohort studies highlighted the risk of maternal smoking during pregnancy (MSDP) for children attention-deficit/hyperactivity disorder (ADHD). However, the causality of this association is still controversial. Here we performed a meta-analysis trying to clarify the association between prenatal exposure to MSDP and ADHD in offspring. After publication screening, 27 eligible original articles with a total of 3076173 subjects were included. The results showed that either prenatal exposure to MSDP or smoking cessation during first trimester was significantly associated with childhood ADHD after adjusting for parental psychiatric history and social socioeconomic status. Smoking cessation before pregnancy, which was not significantly associated with childhood ADHD, was strongly recommended for female smokers planning to conceive. Inconsistent results were obtained in the meta-analysis on the risk of maternal passive smoking during pregnancy caused by paternal smoking. We also found that risk of MSDP for childhood ADHD varied across geographic regions.
Collapse
Affiliation(s)
- Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiajie Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongqing Lin
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Liwen Lan
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wei Lv
- School of Business, Nanjing University, Nanjing 210093, China.
| | - Qiang Geng
- School of Business, Nanjing University, Nanjing 210093, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
64
|
Yoneda N, Takada T, Hirano T, Yanai S, Yamamoto A, Mantani Y, Yokoyama T, Kitagawa H, Tabuchi Y, Hoshi N. Peripubertal exposure to the neonicotinoid pesticide dinotefuran affects dopaminergic neurons and causes hyperactivity in male mice. J Vet Med Sci 2018; 80:634-637. [PMID: 29434093 PMCID: PMC5938192 DOI: 10.1292/jvms.18-0014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although neonicotinoid pesticides are expected to have harmful influence on mammals, there is little animal experimental data to support the effect and mechanisms. Since acetylcholine causes the release of dopamine, neonicotinoids may confer a risk of developmental disorders via a disturbance in the monoamine systems. Male mice were peripubertally administered dinotefuran (DIN) referring to no observed effect level (NOEL) and performed behavioral and immunohistological analyses. In an open field test, the total locomotor activity was increased in a dose-dependent manner. The immunoreactivity of tyrosine hydroxylase in the substantia nigra was increased in DIN-exposed mice. These results suggest that exposure to DIN in peripubertal male mice causes hyperactivity and a disturbance of dopaminergic signaling.
Collapse
Affiliation(s)
- Naoki Yoneda
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tadashi Takada
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Tetsushi Hirano
- Division of Drug and Structural Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shogo Yanai
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Anzu Yamamoto
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
65
|
Spencer TJ, Bhide P, Zhu J, Faraone SV, Fitzgerald M, Yule AM, Uchida M, Spencer AE, Anna Hall M, Koster AJ, Biederman J. Opiate Antagonists Do Not Interfere With the Clinical Benefits of Stimulants in ADHD: A Double-Blind, Placebo-Controlled Trial of the Mixed Opioid Receptor Antagonist Naltrexone. J Clin Psychiatry 2018; 79:16m11012. [PMID: 28640990 PMCID: PMC6438372 DOI: 10.4088/jcp.16m11012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Methylphenidate activates μ-opioid receptors, which are linked to euphoria. μ-Opioid antagonists, such as naltrexone, may attenuate the euphoric effects of stimulants, thereby minimizing their abuse potential. This study assessed whether the combination of naltrexone with methylphenidate is well-tolerated while preserving the clinical benefits of stimulants in subjects with attention-deficit/hyperactivity disorder (ADHD). METHODS We conducted a 6-week, double-blind, placebo-controlled, randomized clinical trial of naltrexone in adults with DSM-IV ADHD receiving open treatment with a long-acting formulation of methylphenidate from January 2013 to July 2015. Spheroidal Oral Drug Absorption System (SODAS) methylphenidate was administered twice daily, was titrated to approximately 1 mg/kg/d over 3 weeks, and was continued for 3 additional weeks depending on response and adverse effects. Subjects were adults with ADHD preselected for having experienced euphoria with a test dose of immediate-release methylphenidate. The primary outcome measure was the Adult ADHD Investigator Symptom Report Scale (AISRS). RESULTS Thirty-seven subjects who experienced stimulant-induced (mild) euphoria at a baseline visit were started in the open trial of SODAS methylphenidate and randomly assigned to naltrexone 50 mg or placebo. Thirty-one subjects completed the study through week 3, and 25 completed through week 6. Throughout 6 weeks of blinded naltrexone and open methylphenidate treatment, the coadministration of naltrexone with methylphenidate did not interfere with the clinical effectiveness of methylphenidate for ADHD symptoms. Additionally, the combination of naltrexone and methylphenidate did not produce an increase in adverse events compared with methylphenidate alone. CONCLUSIONS Our findings provide support for the concept of combining opioid receptor antagonists with stimulants to provide an effective stimulant formulation with less abuse potential. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01673594.
Collapse
Affiliation(s)
- Thomas J. Spencer
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Pradeep Bhide
- Department of Neuroscience, Florida State University, Tallahassee, FL
| | - Jinmin Zhu
- Department of Neuroscience, Florida State University, Tallahassee, FL
| | - Stephen V. Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY;,K.G.Jebsen Centre for Psychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Maura Fitzgerald
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA
| | - Amy M. Yule
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mai Uchida
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Andrea E. Spencer
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - M Anna Hall
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA
| | - Ariana J. Koster
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA
| | - Joseph Biederman
- Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA;,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
66
|
Huang L, Wang Y, Zhang L, Zheng Z, Zhu T, Qu Y, Mu D. Maternal Smoking and Attention-Deficit/Hyperactivity Disorder in Offspring: A Meta-analysis. Pediatrics 2018; 141:peds.2017-2465. [PMID: 29288161 DOI: 10.1542/peds.2017-2465] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
CONTEXT Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in childhood. Exploring the risk factors for ADHD is helpful in preventing ADHD. OBJECTIVE To explore the association between maternal smoking during pregnancy and the occurrence of ADHD in offspring. DATA SOURCES PubMed, Embase, and Cochrane Library were searched from inception to May 2017 for studies. STUDY SELECTION Cohort or case-control studies in which the association between maternal smoking and ADHD in offspring were investigated were eligible if they included odds ratios (ORs), hazard ratios, or risk ratios and 95% confidence intervals (CIs). DATA EXTRACTION Two investigators independently extracted data on definition of exposure and outcome, number of cases and total sample population, and potential confounders adjusted. Any dose-relationship data for smoking and ADHD risk were also extracted. RESULTS Fifteen cohort studies and 5 case-control studies with 50 044 cases and 2 998 059 participants were included. Smoking during pregnancy increased the risk of offspring ADHD (OR: 1.60; 95% CI: 1.45-1.76). The risk of ADHD was greater for children whose mothers were heavy smokers (OR: 1.75; 95% CI: 1.51-2.02) than for those mothers were light smokers (OR: 1.54; 95% CI: 1.40-1.70). LIMITATIONS The limitations of our study included different assessment tools of ADHD and a lack of objective biological measures for maternal smoking. CONCLUSIONS With our meta-analysis, we provide evidence for an association between maternal smoking and offspring ADHD but do not solve the causality issues concerning potential confounding by other risk factors. More high-quality studies are needed to establish whether the association with smoking is causal.
Collapse
Affiliation(s)
- Lan Huang
- Department of Pediatrics, West China Second University Hospital and.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Pediatrics, West China Second University Hospital and.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital and.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhen Zheng
- Department of Pediatrics, West China Second University Hospital and.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Tingting Zhu
- Department of Pediatrics, West China Second University Hospital and.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital and.,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital and .,Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
67
|
Alkam T, Mamiya T, Kimura N, Yoshida A, Kihara D, Tsunoda Y, Aoyama Y, Hiramatsu M, Kim HC, Nabeshima T. Prenatal nicotine exposure decreases the release of dopamine in the medial frontal cortex and induces atomoxetine-responsive neurobehavioral deficits in mice. Psychopharmacology (Berl) 2017; 234:1853-1869. [PMID: 28332006 DOI: 10.1007/s00213-017-4591-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
Increased risk of attention-deficit/hyperactivity disorder (AD/HD) is partly associated with the early developmental exposure to nicotine in tobacco smoke. Emerging reports link tobacco smoke exposure or prenatal nicotine exposure (PNE) with AD/HD-like behaviors in rodent models. We have previously reported that PNE induces cognitive behavioral deficits in offspring and decreases the contents of dopamine (DA) and its turnover in the prefrontal cortex (PFC) of offspring It is well known that the dysfunction of DAergic system in the brain is one of the core factors in the pathophysiology of AD/HD. Therefore, we examined whether the effects of PNE on the DAergic system underlie the AD/HD-related behavioral changes in mouse offspring. PNE reduced the release of DA in the medial PFC (mPFC) in mouse offspring. PNE reduced the number of tyrosine hydroxylase (TH)-positive varicosities in the mPFC and in the core as well as the shell of nucleus accumbens, but not in the striatum. PNE also induced behavioral deficits in cliff avoidance, object-based attention, and sensorimotor gating in offspring. These behavioral deficits were attenuated by acute treatment with atomoxetine (3 mg/kg, s.c.) or partially attenuated by acute treatment with MPH (1 mg/kg, s.c.). Taken together, our findings support the notion that PNE induces neurobehavioral abnormalities in mouse offspring by disrupting the DAergic system and improve our understanding about the incidence of AD/HD in children whose mothers were exposed to nicotine during their pregnancy.
Collapse
Affiliation(s)
- Tursun Alkam
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Nami Kimura
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Aya Yoshida
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Daisuke Kihara
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Tsunoda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Aoyama
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan.
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan.
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Aino University, Ibaraki, Japan.
| |
Collapse
|
68
|
Baumann VJ, Koch U. Perinatal nicotine exposure impairs the maturation of glutamatergic inputs in the auditory brainstem. J Physiol 2017; 595:3573-3590. [PMID: 28190266 DOI: 10.1113/jp274059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Chronic perinatal nicotine exposure causes abnormal auditory brainstem responses and auditory processing deficits in children and animal models. The effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem was investigated in granule cells in the ventral nucleus of the lateral lemniscus, which receive a single calyx-like input from the cochlear nucleus. Perinatal nicotine exposure caused a massive reduction in the amplitude of the excitatory input current. This caused a profound decrease in the number and temporal precision of spikes in these neurons. Perinatal nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons. ABSTRACT Maternal smoking causes chronic nicotine exposure during early development and results in auditory processing deficits including delayed speech development and learning difficulties. Using a mouse model of chronic, perinatal nicotine exposure we explored to what extent synaptic inputs to granule cells in the ventral nucleus of the lateral lemniscus are affected by developmental nicotine treatment. These neurons receive one large calyx-like input from octopus cells in the cochlear nucleus and play a role in sound pattern analysis, including speech sounds. In addition, they exhibit high levels of α7 nicotinic acetylcholine receptors, especially during early development. Our whole-cell patch-clamp experiments show that perinatal nicotine exposure causes a profound reduction in synaptic input amplitude. In contrast, the number of inputs innervating each neuron and synaptic release properties of this calyx-like synapse remained unaltered. Spike number and spiking precision in response to synaptic stimulation were greatly diminished, especially for later stimuli during a stimulus train. Moreover, chronic nicotine exposure delayed the developmental downregulation of functional nicotinic acetylcholine receptors on these neurons, indicating a direct action of nicotine in this brain area. This presumably direct effect of perinatal nicotine exposure on synaptic maturation in the auditory brainstem might be one of the underlying causes for auditory processing difficulties in children of heavy smoking mothers.
Collapse
Affiliation(s)
- Veronika J Baumann
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, 14195, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
69
|
Zhu J, Fan F, McCarthy DM, Zhang L, Cannon EN, Spencer TJ, Biederman J, Bhide PG. A prenatal nicotine exposure mouse model of methylphenidate responsive ADHD‐associated cognitive phenotypes. Int J Dev Neurosci 2017; 58:26-34. [DOI: 10.1016/j.ijdevneu.2017.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/21/2017] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jinmin Zhu
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Fangfang Fan
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Deirdre M. McCarthy
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Lin Zhang
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Elisa N. Cannon
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| | - Thomas J. Spencer
- Pediatric Psychopharmacology, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114United States
| | - Joseph Biederman
- Pediatric Psychopharmacology, Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMA02114United States
| | - Pradeep G. Bhide
- Center for Brain Repair and The Department of Biomedical SciencesFlorida State University College of MedicineTallahasseeFL32306United States
| |
Collapse
|
70
|
Muñoz-Villegas P, Rodríguez VM, Giordano M, Juárez J. Risk-taking, locomotor activity and dopamine levels in the nucleus accumbens and medial prefrontal cortex in male rats treated prenatally with alcohol. Pharmacol Biochem Behav 2017; 153:88-96. [DOI: 10.1016/j.pbb.2016.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
71
|
Shen EY, Jiang Y, Javidfar B, Kassim B, Loh YHE, Ma Q, Mitchell AC, Pothula V, Stewart AF, Ernst P, Yao WD, Martin G, Shen L, Jakovcevski M, Akbarian S. Neuronal Deletion of Kmt2a/Mll1 Histone Methyltransferase in Ventral Striatum is Associated with Defective Spike-Timing-Dependent Striatal Synaptic Plasticity, Altered Response to Dopaminergic Drugs, and Increased Anxiety. Neuropsychopharmacology 2016; 41:3103-3113. [PMID: 27485686 PMCID: PMC5101561 DOI: 10.1038/npp.2016.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022]
Abstract
Lysine (K) methyltransferase 2a (Kmt2a) and other regulators of H3 lysine 4 methylation, a histone modification enriched at promoters and enhancers, are widely expressed throughout the brain, but molecular and cellular phenotypes in subcortical areas remain poorly explored. We report that Kmt2a conditional deletion in postnatal forebrain is associated with excessive nocturnal activity and with absent or blunted responses to stimulant and dopaminergic agonist drugs, in conjunction with near-complete loss of spike-timing-dependent long-term potentiation in medium spiny neurons (MSNs). Selective ablation of Kmt2a, but not the ortholog Kmt2b, in adult ventral striatum/nucleus accumbens neurons markedly increased anxiety scores in multiple behavioral paradigms. Striatal transcriptome sequencing in adult mutants identified 262 Kmt2a-sensitive genes, mostly downregulated in Kmt2a-deficient mice. Transcriptional repression includes the 5-Htr2a serotonin receptor, strongly associated with anxiety- and depression-related disorders in human and animal models. Consistent with the role of Kmt2a in promoting gene expression, the transcriptional regulators Bahcc1, Isl1, and Sp9 were downregulated and affected by H3K4 promoter hypomethylation. Therefore, Kmt2a regulates synaptic plasticity in striatal neurons and provides an epigenetic drug target for anxiety and dopamine-mediated behaviors.
Collapse
Affiliation(s)
| | - Yan Jiang
- Department of Psychiatry, New York, NY, USA
| | | | | | - Yong-Hwee E Loh
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY, USA
| | - Qi Ma
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | - Patricia Ernst
- University of Colorado School of Medicine, Department of Pediatrics, Aurora, CO, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gilles Martin
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Li Shen
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, New York, NY, USA
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany, Tel: +49 89 30622 643, E-mail:
| | - Schahram Akbarian
- Department of Psychiatry, New York, NY, USA,Icahn School of Medicine at Mount Sinai, Hess Center for Science and Medicine, Floor 9 Room 105, 1470 Madison Avenue, New York, NY 10029, USA, Tel: +1 212 824 8984, E-mail:
| |
Collapse
|
72
|
Saad A, Hegde S, Kechichian T, Gamble P, Rahman M, Stutz SJ, Anastasio NC, Alshehri W, Lei J, Mori S, Kajs B, Cunningham KA, Saade G, Burd I, Costantine M. Is There a Causal Relation between Maternal Acetaminophen Administration and ADHD? PLoS One 2016; 11:e0157380. [PMID: 27295086 PMCID: PMC4905664 DOI: 10.1371/journal.pone.0157380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/28/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Recent epidemiological studies reported an association between maternal intake of acetaminophen (APAP) and attention deficit hyperactivity disorder (ADHD) in their children. However, none of these studies demonstrated causality. Our objective was to determine whether exposure to APAP during pregnancy result in hyperkinetic dysfunctions in offspring, using a murine model. Material and Methods Pregnant CD1 mice (N = 8/group) were allocated to receive by gavage either APAP (150 mg/kg/day, equivalent to the FDA-approved maximum human clinical dose), or 0.5% carboxymethylcellulose (control group), starting on embryonic day 7 until delivery. Maternal serum APAP and alanine transaminase (ALT) concentrations were determined by ELISA and kinetic colorimetric assays, respectively. Open field locomotor activity (LMA) in the 30-day old mouse offspring was quantified using Photobeam Activity System. Mouse offspring were then sacrificed, whole brains processed for magnetic resonance imaging (MRI; 11.7 Tesla magnet) and for neuronal quantification using Nissl stain. The association between APAP exposure and LMA in mouse offspring was analyzed using a mixed effects Poisson regression model that accounted for mouse offspring weight, gender, random selection, and testing time and day. We corrected for multiple comparisons and considered P<0.008 as statistically significant. Results Maternal serum APAP concentration peaked 30 minutes after gavage, reaching the expected mean of 117 μg/ml. Serum ALT concentrations were not different between groups. There were no significant differences in vertical (rearing), horizontal, or total locomotor activity between the two rodent offspring groups at the P level fixed to adjust for multiple testing. In addition, no differences were found in volumes of 29 brain areas of interest on MRI or in neuronal quantifications between the two groups. Conclusion This study refutes that hypothesis that prenatal exposure to APAP causes hyperkinetic dysfunction in mouse offspring. Due to lack of accurate assessment of ADHD in murine models, our results should be taken with caution when compared to the reported clinical data.
Collapse
Affiliation(s)
- Antonio Saad
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | - Shruti Hegde
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Talar Kechichian
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Phyllis Gamble
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mahbubur Rahman
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sonja J. Stutz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Noelle C. Anastasio
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wael Alshehri
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bridget Kajs
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kathryn A. Cunningham
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - George Saade
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maged Costantine
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
73
|
Lacy RT, Brown RW, Morgan AJ, Mactutus CF, Harrod SB. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring. Dev Neurosci 2016; 38:171-185. [PMID: 27287203 DOI: 10.1159/000446563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers compared to PS controls. PN rats treated with METH showed significant enhancement of locomotor behavior compared to PS rats following acute and repeated injections; however, PN did not produce differential initiation or expression of behavioral sensitization. METH produced conditioned hyperactivity, and PN rats exhibited a greater conditioned response of hyperactivity relative to controls. PN and METH exposure produced changes in BDNF protein levels in all three regions, and complex interactions were observed between these two factors. Logistic regression revealed that BDNF protein levels, throughout the mesocorticolimbic system, significantly predicted the difference in the conditioned hyperactive response of the animals: both correlations were significant, but the predicted relationship between BDNF and context-elicited activity was stronger in the PN (r = 0.67) compared to the PS rats (r = 0.42). These findings indicate that low-dose PN exposure produces long-term changes in activity and enhanced sensitivity to the locomotor effects of METH. The enhanced METH-induced contextual conditioning shown by the PN animals suggests that offspring of in utero tobacco smoke exposure have greater susceptibility to learn about drug-related conditional stimuli, such as the context. The PN-induced alterations in mesocorticolimbic BDNF protein lend further support for the hypothesis that maternal smoking during pregnancy produces alterations in neuronal plasticity that contribute to drug abuse vulnerability. The current findings demonstrate that these changes are persistent into adulthood.
Collapse
Affiliation(s)
- Ryan T Lacy
- Behavioral Neuroscience Program, Department of Psychology, University of South Carolina, Columbia, S.C., USA
| | | | | | | | | |
Collapse
|
74
|
Nespoli E, Rizzo F, Boeckers TM, Hengerer B, Ludolph AG. Addressing the Complexity of Tourette's Syndrome through the Use of Animal Models. Front Neurosci 2016; 10:133. [PMID: 27092043 PMCID: PMC4824761 DOI: 10.3389/fnins.2016.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/16/2016] [Indexed: 01/06/2023] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority—up to 90%—of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms.
Collapse
Affiliation(s)
- Ester Nespoli
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riss, Germany; Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany
| | - Francesca Rizzo
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of UlmUlm, Germany; Institute of Anatomy and Cell Biology, University of UlmUlm, Germany
| | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, University of Ulm Ulm, Germany
| | - Bastian Hengerer
- Competence in Neuro Spine Department, Boehringer Ingelheim Pharma GmbH & Co. KG Biberach an der Riss, Germany
| | - Andrea G Ludolph
- Department of Child and Adolescence Psychiatry/Psychotherapy, University of Ulm Ulm, Germany
| |
Collapse
|
75
|
Carrellas N, Wilens TE, Anselmo R. Treatment of Comorbid Substance Use Disorders and ADHD in Youth. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40501-016-0072-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
76
|
Bryden DW, Burton AC, Barnett BR, Cohen VJ, Hearn TN, Jones EA, Kariyil RJ, Kunin A, In Kwak S, Lee J, Lubinski BL, Rao GK, Zhan A, Roesch MR. Prenatal Nicotine Exposure Impairs Executive Control Signals in Medial Prefrontal Cortex. Neuropsychopharmacology 2016; 41:716-25. [PMID: 26189451 PMCID: PMC4707818 DOI: 10.1038/npp.2015.197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023]
Abstract
Prenatal nicotine exposure (PNE) is linked to numerous psychiatric disorders including attention deficit hyperactivity disorder (ADHD). Current literature suggests that core deficits observed in ADHD reflect abnormal inhibitory control governed by the prefrontal cortex. Yet, it is unclear how neural activity in the medial prefrontal cortex (mPFC) is modulated during tasks that assess response inhibition or if these neural correlates, along with behavior, are affected by PNE. To address this issue, we recorded from single mPFC neurons in control and PNE rats as they performed a stop-signal task. We found that PNE rats were faster for all trial-types, made more premature responses, and were less likely to inhibit behavior on 'STOP' trials during which rats had to inhibit an already initiated response. Activity in mPFC was modulated by response direction and was positively correlated with accuracy and movement time in control but not PNE rats. Although the number of single neurons correlated with response direction was significantly reduced by PNE, neural activity observed on general STOP trials was largely unaffected. However, dramatic behavioral deficits on STOP trials immediately following non-conflicting (GO) trials in the PNE group appear to be mediated by the loss of conflict monitoring signals in mPFC. We conclude that prenatal nicotine exposure makes rats impulsive and disrupts firing of mPFC neurons that carry signals related to response direction and conflict monitoring.
Collapse
Affiliation(s)
- Daniel W Bryden
- Department of Psychology, University of Maryland, College Park, MD, USA,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA,Department of Psychology and Program in Neuroscience and Cognitive Science, University of Maryland, Bio-psyc Building, College Park, MD 20742, USA, Tel: 301 405 2274, Fax: 301 314 9566, E-mail: or
| | - Amanda C Burton
- Department of Psychology, University of Maryland, College Park, MD, USA,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Brian R Barnett
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Valerie J Cohen
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Taylor N Hearn
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Emily A Jones
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Reshma J Kariyil
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Alice Kunin
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Sae In Kwak
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Jessica Lee
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Brooke L Lubinski
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Gautam K Rao
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Ashley Zhan
- Gemstone Honors Program, University of Maryland, College Park, MD, USA
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, MD, USA,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA,Department of Psychology and Program in Neuroscience and Cognitive Science, University of Maryland, Bio-psyc Building, College Park, MD 20742, USA, Tel: 301 405 2274, Fax: 301 314 9566, E-mail: or
| |
Collapse
|
77
|
Aoyama Y, Toriumi K, Mouri A, Hattori T, Ueda E, Shimato A, Sakakibara N, Soh Y, Mamiya T, Nagai T, Kim HC, Hiramatsu M, Nabeshima T, Yamada K. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex. Neuropsychopharmacology 2016; 41:578-89. [PMID: 26105135 PMCID: PMC5130133 DOI: 10.1038/npp.2015.186] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/22/2015] [Accepted: 06/13/2015] [Indexed: 12/20/2022]
Abstract
Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2'-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring.
Collapse
Affiliation(s)
- Yuki Aoyama
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Kazuya Toriumi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Tomoya Hattori
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Eriko Ueda
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Akane Shimato
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Nami Sakakibara
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuka Soh
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Takayoshi Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hyoung-Chun Kim
- Department of Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, South Korea
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan,Nabeshima Laboratory, Faculty of Pharmacy, Meijo University, Nagoya, Japan,Nabeshima Laboratory, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan, Tel: +81 52 839 2756, Fax: +81 52 839 2756, E-mail:
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan,Japanese Drug Organization of Appropriate Use and Research, Nagoya, Japan,Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan, Tel: +81 52 744 2674, Fax: +81 52 744 2979, E-mail:
| |
Collapse
|
78
|
Brown AN, Vied C, Dennis JH, Bhide PG. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes. PLoS One 2015; 10:e0139103. [PMID: 26414157 PMCID: PMC4586372 DOI: 10.1371/journal.pone.0139103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.
Collapse
Affiliation(s)
- Amber N. Brown
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
| | - Cynthia Vied
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
| | - Jonathan H. Dennis
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Pradeep G. Bhide
- Center for Brain Repair, Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States of America
- * E-mail:
| |
Collapse
|
79
|
Kutlu MG, Parikh V, Gould TJ. Nicotine Addiction and Psychiatric Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:171-208. [PMID: 26472530 DOI: 10.1016/bs.irn.2015.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though smoking rates have long been on the decline, nicotine addiction still affects 20% of the US population today. Moreover, nicotine dependence shows high comorbidity with many mental illnesses including, but are not limited to, attention deficit hyperactivity disorder, anxiety disorders, and depression. The reason for the high rates of smoking in patients with mental illnesses may relate to attempts to self-medicate with nicotine. While nicotine may alleviate the symptoms of mental disorders, nicotine abstinence has been shown to worsen the symptoms of these disorders. In this chapter, we review the studies from animal and human research examining the bidirectional relationship between nicotine and attention deficit hyperactivity disorder, anxiety disorders, and depression as well as studies examining the roles of specific subunits of nicotinic acetylcholine receptors (nAChRs) in the interaction between nicotine and these mental illnesses. The results of these studies suggest that activation, desensitization, and upregulation of nAChRs modulate the effects of nicotine on mental illnesses.
Collapse
Affiliation(s)
| | - Vinay Parikh
- Temple University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
80
|
Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, Ramos-Quiroga JA, Rohde LA, Sonuga-Barke EJS, Tannock R, Franke B. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 2015; 1:15020. [PMID: 27189265 DOI: 10.1038/nrdp.2015.20] [Citation(s) in RCA: 897] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a persistent neurodevelopmental disorder that affects 5% of children and adolescents and 2.5% of adults worldwide. Throughout an individual's lifetime, ADHD can increase the risk of other psychiatric disorders, educational and occupational failure, accidents, criminality, social disability and addictions. No single risk factor is necessary or sufficient to cause ADHD. In most cases ADHD arises from several genetic and environmental risk factors that each have a small individual effect and act together to increase susceptibility. The multifactorial causation of ADHD is consistent with the heterogeneity of the disorder, which is shown by its extensive psychiatric co-morbidity, its multiple domains of neurocognitive impairment and the wide range of structural and functional brain anomalies associated with it. The diagnosis of ADHD is reliable and valid when evaluated with standard criteria for psychiatric disorders. Rating scales and clinical interviews facilitate diagnosis and aid screening. The expression of symptoms varies as a function of patient developmental stage and social and academic contexts. Although there are no curative treatments for ADHD, evidenced-based treatments can markedly reduce its symptoms and associated impairments. For example, medications are efficacious and normally well tolerated, and various non-pharmacological approaches are also valuable. Ongoing clinical and neurobiological research holds the promise of advancing diagnostic and therapeutic approaches to ADHD. For an illustrated summary of this Primer, visit: http://go.nature.com/J6jiwl.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York 13210, USA
- K.G. Jebsen Centre for Psychiatric Disorders, Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Philip Asherson
- Social Genetic and Developmental Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Joseph Biederman
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Pediatric Psychopharmacology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jan K Buitelaar
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience and Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Josep Antoni Ramos-Quiroga
- ADHD Program, Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents, Sao Paulo, Brazil
| | - Edmund J S Sonuga-Barke
- Department of Psychology, University of Southampton, Southampton, UK
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Rosemary Tannock
- Neuroscience and Mental Health Research Program, Research Institute of The Hospital for Sick Children, Toronto, Canada
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, Ontario, Canada
| | - Barbara Franke
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Departments of Human Genetics and Psychiatry, Nijmegen, The Netherlands
| |
Collapse
|
81
|
Karama S, Ducharme S, Corley J, Chouinard-Decorte F, Starr JM, Wardlaw JM, Bastin ME, Deary IJ. Cigarette smoking and thinning of the brain's cortex. Mol Psychiatry 2015; 20:778-85. [PMID: 25666755 PMCID: PMC4430302 DOI: 10.1038/mp.2014.187] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/04/2014] [Accepted: 11/28/2014] [Indexed: 12/30/2022]
Abstract
Cigarette smoking is associated with cognitive decline and dementia, but the extent of the association between smoking and structural brain changes remains unclear. Importantly, it is unknown whether smoking-related brain changes are reversible after smoking cessation. We analyzed data on 504 subjects with recall of lifetime smoking data and a structural brain magnetic resonance imaging at age 73 years from which measures of cortical thickness were extracted. Multiple regression analyses were performed controlling for gender and exact age at scanning. To determine dose-response relationships, the association between smoking pack-years and cortical thickness was tested and then repeated, while controlling for a comprehensive list of covariates including, among others, cognitive ability before starting smoking. Further, we tested associations between cortical thickness and number of years since last cigarette, while controlling for lifetime smoking. There was a diffuse dose-dependent negative association between smoking and cortical thickness. Some negative dose-dependent cortical associations persisted after controlling for all covariates. Accounting for total amount of lifetime smoking, the cortex of subjects who stopped smoking seems to have partially recovered for each year without smoking. However, it took ~25 years for complete cortical recovery in affected areas for those at the mean pack-years value in this sample. As the cortex thins with normal aging, our data suggest that smoking is associated with diffuse accelerated cortical thinning, a biomarker of cognitive decline in adults. Although partial recovery appears possible, it can be a long process.
Collapse
Affiliation(s)
- S Karama
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada,Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada H3A 2B4. E-mail: or
| | - S Ducharme
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada,Department of Psychiatry, McGill University Health Centre, Montreal, QC, Canada,Department of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Neurology, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - J Corley
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - F Chouinard-Decorte
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Department of Psychology, Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
| | - J M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Department of Radiology, Division of Neuroimaging Sciences, Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - M E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK,Department of Radiology, Division of Neuroimaging Sciences, Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - I J Deary
- Department of Psychology, University of Edinburgh, Edinburgh, UK,Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
82
|
Zhang L, McCarthy DM, Sharma N, Bhide PG. Dopamine receptor and Gα(olf) expression in DYT1 dystonia mouse models during postnatal development. PLoS One 2015; 10:e0123104. [PMID: 25860259 PMCID: PMC4393110 DOI: 10.1371/journal.pone.0123104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 02/27/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG) in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated. METHODOLOGY/PRINCIPAL FINDINGS We used Dyt1 knock out (Dyt1 KO), Dyt1 ΔGAG knock-in (Dyt1 KI), and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT) or human ΔGAG mutant allele (DYT1 hMT). D1R, D2R, and Gα(olf) protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60) male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14) male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf) protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice. CONCLUSION/SIGNIFICANCE We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice) produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, United States of America
- * E-mail: (LZ); (PGB)
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, United States of America
| | - Nutan Sharma
- Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, United States of America
- * E-mail: (LZ); (PGB)
| |
Collapse
|
83
|
Multigenerational and transgenerational inheritance of drug exposure: The effects of alcohol, opiates, cocaine, marijuana, and nicotine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:21-33. [PMID: 25839742 DOI: 10.1016/j.pbiomolbio.2015.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 12/15/2022]
Abstract
Familial inheritance of drug abuse is composed of both genetic and environmental factors. Additionally, epigenetic transgenerational inheritance may provide a means by which parental drug use can influence several generations of offspring. Recent evidence suggests that parental drug exposure produces behavioral, biochemical, and neuroanatomical changes in future generations. The focus of this review is to discuss these multigenerational and transgenerational phenotypes in the offspring of animals exposed to drugs of abuse. Specifically, changes found following the administration of alcohol, opioids, cocaine, marijuana, and nicotine will be discussed. In addition, epigenetic modifications to the genome following administration of these drugs will be detailed as well as their potential for transmission to the next generation.
Collapse
|
84
|
Ross EJ, Graham DL, Money KM, Stanwood GD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 2015; 40:61-87. [PMID: 24938210 PMCID: PMC4262892 DOI: 10.1038/npp.2014.147] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023]
Abstract
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose-response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures.
Collapse
Affiliation(s)
- Emily J Ross
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Devon L Graham
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Gregg D Stanwood
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
85
|
Nicotine during pregnancy: changes induced in neurotransmission, which could heighten proclivity to addict and induce maladaptive control of attention. J Dev Orig Health Dis 2014; 6:169-81. [PMID: 25385318 DOI: 10.1017/s2040174414000531] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.
Collapse
|
86
|
Suter MA, Mastrobattista J, Sachs M, Aagaard K. Is there evidence for potential harm of electronic cigarette use in pregnancy? ACTA ACUST UNITED AC 2014; 103:186-95. [PMID: 25366492 DOI: 10.1002/bdra.23333] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Use of electronic cigarettes (e-cigarettes) and other nicotine containing products is increasing among women of reproductive age. The short- and long-term effects of these products on both mother and fetus are unknown. METHODS Because e-cigarettes are nicotine delivery systems, we sought to conduct a comprehensive review of the effects of nicotine on the fetus. RESULTS In utero nicotine exposure in animal models is associated with adverse effects for the offspring lung, cardiovascular system and brain. In the lung, this included reduced surface area, weight, and volume, as well as emphysema-like lesions. In adulthood, exposed offspring demonstrate elevated blood pressure and increased perivascular adipose tissue. In the brain, exposure alters offspring serotonergic, dopaminergic, and norepinephrine networks, which in turn are associated with behavioral and cognitive impairments. We also review current data on the lack of efficacy of nicotine replacement therapy in pregnant women, and highlight different nicotine containing products such as snuff, snus, and hookah. CONCLUSION We conclude that no amount of nicotine is known to be safe during pregnancy, and studies specifically addressing this risk are crucial and an imminent public health issue.
Collapse
Affiliation(s)
- Melissa A Suter
- Baylor College of Medicine, Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Houston, Texas
| | | | | | | |
Collapse
|
87
|
Electrophysiological changes in laterodorsal tegmental neurons associated with prenatal nicotine exposure: implications for heightened susceptibility to addict to drugs of abuse. J Dev Orig Health Dis 2014; 6:182-200. [PMID: 25339425 DOI: 10.1017/s204017441400049x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prenatal nicotine exposure (PNE) is a risk factor for developing an addiction to nicotine at a later stage in life. Understanding the neurobiological changes in reward related circuitry induced by exposure to nicotine prenatally is vital if we are to combat the heightened addiction liability in these vulnerable individuals. The laterodorsal tegmental nucleus (LDT), which is comprised of cholinergic, GABAergic and glutamatergic neurons, is importantly involved in reward mediation via demonstrated excitatory projections to dopamine-containing ventral tegmental neurons. PNE could lead to alterations in LDT neurons that would be expected to alter responses to later-life nicotine exposure. To examine this issue, we monitored nicotine-induced responses of LDT neurons in brain slices of PNE and drug naive mice using calcium imaging and whole-cell patch clamping. Nicotine was found to induce rises in calcium in a smaller proportion of LDT cells in PNE mice aged 7-15 days and smaller rises in calcium in PNE animals from postnatal ages 11-21 days when compared with age-matched control animals. While inward currents induced by nicotine were not found to be different, nicotine did induce larger amplitude excitatory postsynaptic currents in PNE animals in the oldest age group when compared with amplitudes induced in similar-aged control animals. Immunohistochemically identified cholinergic LDT cells from PNE animals exhibited slower spike rise and decay slopes, which likely contributed to the wider action potential observed. Further, PNE was associated with a more negative action potential afterhyperpolarization in cholinergic cells. Interestingly, the changes found in these parameters in animals exposed prenatally to nicotine were age related, in that they were not apparent in animals from the oldest age group examined. Taken together, our data suggest that PNE induces changes in cholinergic LDT cells that would be expected to alter cellular excitability. As the changes are age related, these PNE-associated alterations could contribute differentially across ontogeny to nicotine-mediated reward and may contribute to the particular susceptibility of in utero nicotine exposed individuals to addict to nicotine upon nicotine exposure in the juvenile period.
Collapse
|
88
|
De Long NE, Barra NG, Hardy DB, Holloway AC. Is it safe to use smoking cessation therapeutics during pregnancy? Expert Opin Drug Saf 2014; 13:1721-31. [PMID: 25330815 DOI: 10.1517/14740338.2014.973846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Worldwide, 10 to 35% of pregnant women smoke. It is clear that smoking cessation has positive impacts for both the mother and child, yet many women are still unable to quit due to the addictive properties of nicotine. There are limited data surrounding their safety and efficacy in pregnancy. AREAS COVERED This review highlights evidence from clinical studies and animal experiments regarding the effects of smoking cessation therapeutics on pregnancy, neonatal and long-term postnatal outcomes. EXPERT OPINION There are insufficient data at this time to recommend the use of varenicline and/or bupropion for smoking cessation during pregnancy. In addition, the efficacy and safety of nicotine replacement therapy use for smoking cessation in pregnant women has not been clearly demonstrated. Until further studies are completed, there will continue to be considerable uncertainty regarding the use of these drugs in pregnancy despite the well-documented benefits of smoking cessation.
Collapse
Affiliation(s)
- Nicole E De Long
- McMaster University, Department of Obstetrics and Gynecology , RM HSC-3N52, 1280 Main Street West, Hamilton, Ontario, L8S 4K1 , Canada +1 905 525 9140 ext. 22130 ; +1 905 524 2911 ;
| | | | | | | |
Collapse
|
89
|
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder affecting children and adults. Genetic and environmental factors are associated with the etiology of ADHD. Among the environmental factors, exposure of the developing brain to nicotine is considered a major risk factor. Recent evidence suggests that environmental influences on the brain and behavior may be transmitted from one generation to the next. We used a prenatal nicotine exposure (PNE) mouse model of ADHD to test the hypothesis that PNE-induced hyperactivity, a proxy for human ADHD phenotype, is transmitted from one generation to the next. Our data reveal transgenerational transmission of PNE-induced hyperactivity in mice via the maternal but not the paternal line of descent. We suggest that transgenerational transmission is a plausible mechanism for propagation of environmentally induced ADHD phenotypes in the population.
Collapse
|
90
|
Yochum C, Doherty-Lyon S, Hoffman C, Hossain MM, Zelikoff JT, Richardson JR. Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: role of altered catecholamines and BDNF. Exp Neurol 2014; 254:145-52. [PMID: 24486851 DOI: 10.1016/j.expneurol.2014.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 01/04/2023]
Abstract
Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4h/d and 5d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior was assessed at 4weeks of age and again at 4-6months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident-intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders. Further, these data also suggest a role for monaminergic and BDNF alterations in these effects.
Collapse
Affiliation(s)
- Carrie Yochum
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Shannon Doherty-Lyon
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Carol Hoffman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Muhammad M Hossain
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
91
|
Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013; 132:562-70. [PMID: 23664126 PMCID: PMC3770778 DOI: 10.1016/j.drugalcdep.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Approximately 18% of pregnant women continue to smoke tobacco cigarettes throughout pregnancy. Offspring exposed to tobacco smoke in utero exhibit a higher incidence of drug use in later stages of development relative to non-exposed children. Animal models indicate that prenatal nicotine (PN) exposure alone alters the development of the mesocorticolimbic dopamine (DA) system, which, in part, organizes motivated behavior and reward. The orexin/hypocretin neuropeptide system, which originates in the lateral hypothalamus (LH), projects to key areas of the mesocorticolimbic DA pathway. Previous research suggests that orexin exerts a major influence on motivation and reward. METHODS The present experiments determined if intravenous (IV) PN exposure alters (1) the expression of orexin neurons and melanin-concentrating hormone (MCH; positive control) in the LH; and (2) orexin projections from the LH onto DA neurons in the ventral tegmental area (VTA). Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline 3×/day during gestational days 8-21. Tissues from adult male offspring (∼130 days) were examined using immunohistochemistry. RESULTS Relative to controls, offspring of IV PN exposure showed (1) increased numbers of orexin neurons in the LH, and no changes in the expression of MCH; and (2) increased orexin appositions on DA cells in the VTA. CONCLUSION The findings indicate that the influence of PN exposure is enduring, and suggests that the PN-induced modification of orexin expression on mesolimbic circuitry may contribute to the reported changes in motivated behaviors related to food and drug reward observed in offspring prenatally exposed to nicotine.
Collapse
|
92
|
Jew CP, Wu CS, Sun H, Zhu J, Huang JY, Yu D, Justice NJ, Lu HC. mGluR5 ablation in cortical glutamatergic neurons increases novelty-induced locomotion. PLoS One 2013; 8:e70415. [PMID: 23940572 PMCID: PMC3734292 DOI: 10.1371/journal.pone.0070415] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/23/2013] [Indexed: 01/05/2023] Open
Abstract
The group I metabotropic glutamate receptor 5 (mGluR5) has been implicated in the pathology of various neurological disorders including schizophrenia, ADHD, and autism. mGluR5-dependent synaptic plasticity has been described at a variety of neural connections and its signaling has been implicated in several behaviors. These behaviors include locomotor reactivity to novel environment, sensorimotor gating, anxiety, and cognition. mGluR5 is expressed in glutamatergic neurons, inhibitory neurons, and glia in various brain regions. In this study, we show that deleting mGluR5 expression only in principal cortical neurons leads to defective cannabinoid receptor 1 (CB1R) dependent synaptic plasticity in the prefrontal cortex. These cortical glutamatergic mGluR5 knockout mice exhibit increased novelty-induced locomotion, and their locomotion can be further enhanced by treatment with the psychostimulant methylphenidate. Despite a modest reduction in repetitive behaviors, cortical glutamatergic mGluR5 knockout mice are normal in sensorimotor gating, anxiety, motor balance/learning and fear conditioning behaviors. These results show that mGluR5 signaling in cortical glutamatergic neurons is required for precisely modulating locomotor reactivity to a novel environment but not for sensorimotor gating, anxiety, motor coordination, several forms of learning or social interactions.
Collapse
Affiliation(s)
- Chris P. Jew
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chia-Shan Wu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hao Sun
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Zhu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jui-Yen Huang
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dinghui Yu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicholas J. Justice
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui-Chen Lu
- The Cain Foundation Laboratories, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
93
|
Rose JK, Miller MK, Crane SA, Hope KA, Pittman PG. Parental and larval exposure to nicotine modulate spontaneous activity as well as cholinergic and GABA receptor expression in adult C. elegans. Neurotoxicol Teratol 2013; 39:122-7. [PMID: 23906944 DOI: 10.1016/j.ntt.2013.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/09/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Early nicotine exposure has been associated with many long-term consequences that include neuroanatomical alterations, as well as behavioral and cognitive deficits. To describe the effects of early nicotine exposure in Caenorhabditis elegans, the current study observed spontaneous locomotor activity (i.e., reversals) either in the presence or absence of nicotine. Expression of acr-16 (a nicotinic receptor subunit) and a β-like GABA(A) receptor subunit, gab-1, were also examined with RT-PCR. Worms were exposed to nicotine (30 μM) throughout "zygote formation" (period that includes oocyte maturation, ovulation and fertilization), from hatching to adulthood ("larval development") or across both zygote and larval development. Adult larval-exposed worms only showed an increase in spontaneous behavior when tested on nicotine (p<0.001) but levels of activity similar to controls when tested on plain plates (p>0.30). Larval-exposed worms also showed control levels of acr-16 nicotinic receptor expression (p>0.10) but increased gab-1 expression relative to controls (p<0.01). In contrast, zygote-exposed and zygote- plus larval-exposed worms showed a similar increase in spontaneous behavior on plain plates (p<0.001 and p=0.001, respectively) but control levels of responding when tested on nicotine (p>0.90 for each). However, expression of acr-16 and gab-1 was downregulated in zygote-exposed (p<0.01 and p<0.05, respectively) and significantly upregulated in the zygote- plus larval-exposed worms (p<0.000 for each); most surprising was the over five-fold increase in gab-1 expression. These results suggest that spontaneous motor behavior and receptor expression are differentially modulated by nicotine exposure during larval development and/or zygote formation. As well, these findings demonstrate that C. elegans, as a model system, is also sensitive to nicotine exposure during early development and provides the basis for future research to uncover specific mechanisms by which early nicotine exposure modifies neuronal signaling and alters behavior.
Collapse
Affiliation(s)
- Jacqueline K Rose
- Program in Behavioral Neuroscience and Department of Psychology, Western Washington University, 516 High St., Bellingham, WA, USA.
| | | | | | | | | |
Collapse
|
94
|
Zugno AI, Fraga DB, De Luca RD, Ghedim FV, Deroza PF, Cipriano AL, Oliveira MB, Heylmann ASA, Budni J, Souza RP, Quevedo J. Chronic exposure to cigarette smoke during gestation results in altered cholinesterase enzyme activity and behavioral deficits in adult rat offspring: potential relevance to schizophrenia. J Psychiatr Res 2013; 47:740-6. [PMID: 23472836 DOI: 10.1016/j.jpsychires.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 01/18/2023]
Abstract
Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.
Collapse
Affiliation(s)
- Alexandra I Zugno
- Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), and Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Eicher JD, Powers NR, Cho K, Miller LL, Mueller KL, Ring SM, Tomblin JB, Gruen JR. Associations of prenatal nicotine exposure and the dopamine related genes ANKK1 and DRD2 to verbal language. PLoS One 2013; 8:e63762. [PMID: 23691092 PMCID: PMC3655151 DOI: 10.1371/journal.pone.0063762] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/05/2013] [Indexed: 01/09/2023] Open
Abstract
Language impairment (LI) and reading disability (RD) are common pediatric neurobehavioral disorders that frequently co-occur, suggesting they share etiological determinants. Recently, our group identified prenatal nicotine exposure as a factor for RD and poor reading performance. Using smoking questionnaire and language data from the Avon Longitudinal Study of Parents and Children, we first determined if this risk could be expanded to other communication disorders by evaluating whether prenatal nicotine exposure increases risk for LI and poor performance on language tasks. Prenatal nicotine exposure increased LI risk (OR = 1.60; p = 0.0305) in a dose-response fashion with low (OR = 1.25; p = 0.1202) and high (OR = 3.84; p = 0.0002) exposures. Next, hypothesizing that the effects of prenatal nicotine may also implicate genes that function in nicotine related pathways, we determined whether known nicotine dependence (ND) genes associate with performance on language tasks. We assessed the association of 33 variants previously implicated in ND with LI and language abilities, finding association between ANKK1/DRD2 and performance on language tasks (p≤0.0003). The associations of markers within ANKK1 were replicated in a separate LI case-control cohort (p<0.05). Our results show that smoking during pregnancy increases the risk for LI and poor performance on language tasks and that ANKK1/DRD2 contributes to language performance. More precisely, these findings suggest that prenatal environmental factors influence in utero development of neural circuits vital to language. Our association of ANKK1/DRD2 further implicates the role of nicotine-related pathways and dopamine signaling in language processing, particularly in comprehension and phonological memory.
Collapse
Affiliation(s)
- John D. Eicher
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Natalie R. Powers
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kelly Cho
- Departments of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Massachusetts Veterans Epidemiology Research and Information Center, Boston, Massachusetts, United States of America
| | - Laura L. Miller
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Kathryn L. Mueller
- Departments of Speech, Pathology, and Audiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Susan M. Ring
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - J. Bruce Tomblin
- Departments of Speech, Pathology, and Audiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey R. Gruen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Departments of Pediatrics and Investigative Medicine, Yale Child Health Research Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|