51
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
52
|
Murcia-Ramón R, Company V, Juárez-Leal I, Andreu-Cervera A, Almagro-García F, Martínez S, Echevarría D, Puelles E. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct Funct 2020; 225:2857-2869. [PMID: 33145610 PMCID: PMC7674375 DOI: 10.1007/s00429-020-02163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.
Collapse
Affiliation(s)
- Raquel Murcia-Ramón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Iris Juárez-Leal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
53
|
Ma S, Zang T, Liu ML, Zhang CL. Aging-relevant human basal forebrain cholinergic neurons as a cell model for Alzheimer's disease. Mol Neurodegener 2020; 15:61. [PMID: 33087140 PMCID: PMC7579825 DOI: 10.1186/s13024-020-00411-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer’s disease (AD) is an adult-onset mental disorder with aging as a major risk factor. Early and progressive degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive impairments of AD. An aging-relevant cell model of BFCNs will critically help understand AD and identify potential therapeutics. Recent studies demonstrate that induced neurons directly reprogrammed from adult human skin fibroblasts retain aging-associated features. However, human induced BFCNs (hiBFCNs) have yet to be achieved. Methods We examined a reprogramming procedure for the generation of aging-relevant hiBFCNs through virus-mediated expression of fate-determining transcription factors. Skin fibroblasts were obtained from healthy young persons, healthy adults and sporadic AD patients. Properties of the induced neurons were examined by immunocytochemistry, qRT-PCR, western blotting, and electrophysiology. Results We established a protocol for efficient generation of hiBFCNs from adult human skin fibroblasts. They show electrophysiological properties of mature neurons and express BFCN-specific markers, such as CHAT, p75NTR, ISL1, and VACHT. As a proof-of-concept, our preliminary results further reveal that hiBFCNs from sporadic AD patients exhibit time-dependent TAU hyperphosphorylation in the soma and dysfunctional nucleocytoplasmic transport activities. Conclusions Aging-relevant BFCNs can be directly reprogrammed from human skin fibroblasts of healthy adults and sporadic AD patients. They show promises as an aging-relevant cell model for understanding AD pathology and may be employed for therapeutics identification for AD.
Collapse
Affiliation(s)
- Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Tong Zang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
54
|
Liu Z, Zhang Z, Lindtner S, Li Z, Xu Z, Wei S, Liang Q, Wen Y, Tao G, You Y, Chen B, Wang Y, Rubenstein JL, Yang Z. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Cereb Cortex 2020; 29:2653-2667. [PMID: 29878134 DOI: 10.1093/cercor/bhy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Indexed: 11/12/2022] Open
Abstract
Immature neurons generated by the subpallial MGE tangentially migrate to the cortex where they become parvalbumin-expressing (PV+) and somatostatin (SST+) interneurons. Here, we show that the Sp9 transcription factor controls the development of MGE-derived cortical interneurons. SP9 is expressed in the MGE subventricular zone and in MGE-derived migrating interneurons. Sp9 null and conditional mutant mice have approximately 50% reduction of MGE-derived cortical interneurons, an ectopic aggregation of MGE-derived neurons in the embryonic ventral telencephalon, and an increased ratio of SST+/PV+ cortical interneurons. RNA-Seq and SP9 ChIP-Seq reveal that SP9 regulates MGE-derived cortical interneuron development through controlling the expression of key transcription factors Arx, Lhx6, Lhx8, Nkx2-1, and Zeb2 involved in interneuron development, as well as genes implicated in regulating interneuron migration Ackr3, Epha3, and St18. Thus, Sp9 has a central transcriptional role in MGE-derived cortical interneuron development.
Collapse
Affiliation(s)
- Zhidong Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qifei Liang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, IL, USA
| | - John L Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
55
|
Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020; 145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually starts during midlife with progressive alterations of motor and cognitive functions. The disease is caused by a CAG repeat expansion within the huntingtin gene leading to severe striatal neurodegeneration. Recent studies conducted on pre-HD children highlight early striatal developmental alterations starting as soon as 6 years old, the earliest age assessed. These findings, in line with data from mouse models of HD, raise the questions of when during development do the first disease-related striatal alterations emerge and whether they contribute to the later appearance of the neurodegenerative features of the disease. In this review we will describe the different stages of striatal network development and then discuss recent evidence for its alterations in rodent models of the disease. We argue that a better understanding of the striatum's development should help in assessing aberrant neurodevelopmental processes linked to the HD mutation.
Collapse
Affiliation(s)
- Margaux Lebouc
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Quentin Richard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Maurice Garret
- Université de Bordeaux, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
56
|
Fitzgerald M, Sotuyo N, Tischfield DJ, Anderson SA. Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells. Stem Cells 2020; 38:1375-1386. [PMID: 32638460 DOI: 10.1002/stem.3252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 11/11/2022]
Abstract
The cerebral cortex functions by the complex interactions of intrinsic and extrinsic neuronal activities, glial actions, and the effects of humoral factors. The intrinsic neuronal influences are mediated by two major subclasses: excitatory glutamatergic neurons that generally have axonal projections extending beyond the neuron's locality and inhibitory GABAergic neurons that generally project locally. These interneurons can be grouped based on morphological, neurochemical, electrophysiological, axonal targeting, and circuit influence characteristics. Cortical interneurons (CIns) can also be grouped based on their origins within the subcortical telencephalon. Interneuron subtypes, of which a dozen or more are thought to exist, are characterized by combinations of these subgrouping features. Due to their well-documented relevance to the causes of and treatments for neuropsychiatric disorders, and to their remarkable capacity to migrate extensively following transplantation, there has been tremendous interest in generating cortical GABAergic interneurons from human pluripotent stem cells. In this concise review, we discuss recent progress in understanding how interneuron subtypes are generated in vivo, and how that progress is being applied to the generation of rodent and human CIns in vitro. In addition, we will discuss approaches for the rigorous designation of interneuron subgroups or subtypes in transplantation studies, and challenges to this field, including the protracted maturation of human interneurons.
Collapse
Affiliation(s)
- Megan Fitzgerald
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nathaniel Sotuyo
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Tischfield
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stewart A Anderson
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
57
|
Enterría-Morales D, Del Rey NLG, Blesa J, López-López I, Gallet S, Prévot V, López-Barneo J, d'Anglemont de Tassigny X. Molecular targets for endogenous glial cell line-derived neurotrophic factor modulation in striatal parvalbumin interneurons. Brain Commun 2020; 2:fcaa105. [PMID: 32954345 PMCID: PMC7472905 DOI: 10.1093/braincomms/fcaa105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Administration of recombinant glial cell line-derived neurotrophic factor into the putamen has been tested in preclinical and clinical studies to evaluate its neuroprotective effects on the progressive dopaminergic neuronal degeneration that characterizes Parkinson’s disease. However, intracerebral glial cell line-derived neurotrophic factor infusion is a challenging therapeutic strategy, with numerous potential technical and medical limitations. Most of these limitations could be avoided if the production of endogenous glial cell line-derived neurotrophic factor could be increased. Glial cell line-derived neurotrophic factor is naturally produced in the striatum from where it exerts a trophic action on the nigrostriatal dopaminergic pathway. Most of striatal glial cell line-derived neurotrophic factor is synthesized by a subset of GABAergic interneurons characterized by the expression of parvalbumin. We sought to identify molecular targets specific to those neurons and which are putatively associated with glial cell line-derived neurotrophic factor synthesis. To this end, the transcriptomic differences between glial cell line-derived neurotrophic factor-positive parvalbumin neurons in the striatum and parvalbumin neurons located in the nearby cortex, which do not express glial cell line-derived neurotrophic factor, were analysed. Using mouse reporter models, we have defined the genomic signature of striatal parvalbumin interneurons obtained by fluorescence-activated cell sorting followed by microarray comparison. Short-listed genes were validated by additional histological and molecular analyses. These genes code for membrane receptors (Kit, Gpr83, Tacr1, Tacr3, Mc3r), cytosolic proteins (Pde3a, Crabp1, Rarres2, Moxd1) and a transcription factor (Lhx8). We also found the proto-oncogene cKit to be highly specific of parvalbumin interneurons in the non-human primate striatum, thus highlighting a conserved expression between species and suggesting that specific genes identified in mouse parvalbumin neurons could be putative targets in the human brain. Pharmacological stimulation of four G-protein-coupled receptors enriched in the striatal parvalbumin interneurons inhibited Gdnf expression presumably by decreasing cyclic adenosine monophosphate formation. Additional experiments with pharmacological modulators of adenylyl cyclase and protein kinase A indicated that this pathway is a relevant intracellular route to induce Gdnf gene activation. This preclinical study is an important step in the ongoing development of a specific pro-endo-glial cell line-derived neurotrophic factor pharmacological strategy to treat Parkinson’s disease.
Collapse
Affiliation(s)
- Daniel Enterría-Morales
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | | | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ivette López-López
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Sarah Gallet
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S 1172, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S 1172, Lille, France
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Xavier d'Anglemont de Tassigny
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
58
|
Salado-Manzano C, Perpiña U, Straccia M, Molina-Ruiz FJ, Cozzi E, Rosser AE, Canals JM. Is the Immunological Response a Bottleneck for Cell Therapy in Neurodegenerative Diseases? Front Cell Neurosci 2020; 14:250. [PMID: 32848630 PMCID: PMC7433375 DOI: 10.3389/fncel.2020.00250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's (PD) and Huntington's disease (HD) are characterized by a selective detrimental impact on neurons in a specific brain area. Currently, these diseases have no cures, although some promising trials of therapies that may be able to slow the loss of brain cells are underway. Cell therapy is distinguished by its potential to replace cells to compensate for those lost to the degenerative process and has shown a great potential to replace degenerated neurons in animal models and in clinical trials in PD and HD patients. Fetal-derived neural progenitor cells, embryonic stem cells or induced pluripotent stem cells are the main cell sources that have been tested in cell therapy approaches. Furthermore, new strategies are emerging, such as the use of adult stem cells, encapsulated cell lines releasing trophic factors or cell-free products, containing an enriched secretome, which have shown beneficial preclinical outcomes. One of the major challenges for these potential new treatments is to overcome the host immune response to the transplanted cells. Immune rejection can cause significant alterations in transplanted and endogenous tissue and requires immunosuppressive drugs that may produce adverse effects. T-, B-lymphocytes and microglia have been recognized as the main effectors in striatal graft rejection. This review aims to summarize the preclinical and clinical studies of cell therapies in PD and HD. In addition, the precautions and strategies to ensure the highest quality of cell grafts, the lowest risk during transplantation and the reduction of a possible immune rejection will be outlined. Altogether, the wide-ranging possibilities of advanced therapy medicinal products (ATMPs) could make therapeutic treatment of these incurable diseases possible in the near future.
Collapse
Affiliation(s)
- Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Unai Perpiña
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Francisco J. Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Emanuele Cozzi
- Department of Cardio-Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
- Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Anne E. Rosser
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, University of Barcelona, Barcelona, Spain
- Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
59
|
Comella-Bolla A, Orlandi JG, Miguez A, Straccia M, García-Bravo M, Bombau G, Galofré M, Sanders P, Carrere J, Segovia JC, Blasi J, Allen ND, Alberch J, Soriano J, Canals JM. Human Pluripotent Stem Cell-Derived Neurons Are Functionally Mature In Vitro and Integrate into the Mouse Striatum Following Transplantation. Mol Neurobiol 2020; 57:2766-2798. [PMID: 32356172 PMCID: PMC7253531 DOI: 10.1007/s12035-020-01907-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a powerful tool for modelling human development. In recent years, hPSCs have become central in cell-based therapies for neurodegenerative diseases given their potential to replace affected neurons. However, directing hPSCs into specific neuronal types is complex and requires an accurate protocol that mimics endogenous neuronal development. Here we describe step-by-step a fast feeder-free neuronal differentiation protocol to direct hPSCs to mature forebrain neurons in 37 days in vitro (DIV). The protocol is based upon a combination of specific morphogens, trophic and growth factors, ions, neurotransmitters and extracellular matrix elements. A human-induced PSC line (Ctr-Q33) and a human embryonic stem cell line (GEN-Q18) were used to reinforce the potential of the protocol. Neuronal activity was analysed by single-cell calcium imaging. At 8 DIV, we obtained a homogeneous population of hPSC-derived neuroectodermal progenitors which self-arranged in bi-dimensional neural tube-like structures. At 16 DIV, we generated hPSC-derived neural progenitor cells (NPCs) with mostly a subpallial identity along with a subpopulation of pallial NPCs. Terminal in vitro neuronal differentiation was confirmed by the expression of microtubule associated protein 2b (Map 2b) by almost 100% of hPSC-derived neurons and the expression of specific-striatal neuronal markers including GABA, CTIP2 and DARPP-32. HPSC-derived neurons showed mature and functional phenotypes as they expressed synaptic markers, voltage-gated ion channels and neurotransmitter receptors. Neurons displayed diverse spontaneous activity patterns that were classified into three major groups, namely "high", "intermediate" and "low" firing neurons. Finally, transplantation experiments showed that the NPCs survived and differentiated within mouse striatum for at least 3 months. NPCs integrated host environmental cues and differentiated into striatal medium-sized spiny neurons (MSNs), which successfully integrated into the endogenous circuitry without teratoma formation. Altogether, these findings demonstrate the potential of this robust human neuronal differentiation protocol, which will bring new opportunities for the study of human neurodevelopment and neurodegeneration, and will open new avenues in cell-based therapies, pharmacological studies and alternative in vitro toxicology.
Collapse
Affiliation(s)
- Andrea Comella-Bolla
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Javier G. Orlandi
- Pathophysiology of Neurodegenerative Disease. Laboratory, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Departament de Física de la Matèria Condensada, University of Barcelona, Barcelona, Spain
- Department of Physics and Astronomy, University of Calgary, Calgary, Canada
| | - Andrés Miguez
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Marco Straccia
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - María García-Bravo
- Differentiation and Cytometry Unit, Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mireia Galofré
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Phil Sanders
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Jordi Carrere
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - José Carlos Segovia
- Differentiation and Cytometry Unit, Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Joan Blasi
- Laboratory of Cellular and Molecular Neurobiology, Department Pathology and Experimental Therapeutics, Faculty of Medicine and Health Science, Biomedical Research Institute of Bellvitge (IDIBELL), University of Barcelona, Barcelona, Spain
| | - Nicholas D. Allen
- Cardiff Repair Group, School of Biosciences and medicine, Cardiff University, Cardiff, Wales UK
| | - Jordi Alberch
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Pathophysiology of Neurodegenerative Disease. Laboratory, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, University of Barcelona, Barcelona, Spain
- Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedicine, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Production and validation center of advanced therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| |
Collapse
|
60
|
Rahman T, Weickert CS, Harms L, Meehan C, Schall U, Todd J, Hodgson DM, Michie PT, Purves-Tyson T. Effect of Immune Activation during Early Gestation or Late Gestation on Inhibitory Markers in Adult Male Rats. Sci Rep 2020; 10:1982. [PMID: 32029751 PMCID: PMC7004984 DOI: 10.1038/s41598-020-58449-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
People with schizophrenia exhibit deficits in inhibitory neurons and cognition. The timing of maternal immune activation (MIA) may present distinct schizophrenia-like phenotypes in progeny. We investigated whether early gestation [gestational day (GD) 10] or late gestation (GD19) MIA, via viral mimetic polyI:C, produces deficits in inhibitory neuron indices (GAD1, PVALB, SST, SSTR2 mRNAs) within cortical, striatal, and hippocampal subregions of male adult rat offspring. In situ hybridisation revealed that polyI:C offspring had: (1) SST mRNA reductions in the cingulate cortex and nucleus accumbens shell, regardless of MIA timing; (2) SSTR2 mRNA reductions in the cortex and striatum of GD19, but not GD10, MIA; (3) no alterations in cortical or striatal GAD1 mRNA of polyI:C offspring, but an expected reduction of PVALB mRNA in the infralimbic cortex, and; (4) no alterations in inhibitory markers in hippocampus. Maternal IL-6 response negatively correlated with adult offspring SST mRNA in cortex and striatum, but not hippocampus. These results show lasting inhibitory-related deficits in cortex and striatum in adult offspring from MIA. SST downregulation in specific cortical and striatal subregions, with additional deficits in somatostatin-related signalling through SSTR2, may contribute to some of the adult behavioural changes resulting from MIA and its timing.
Collapse
Affiliation(s)
- Tasnim Rahman
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Lauren Harms
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Crystal Meehan
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Division of Psychology, School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Ulrich Schall
- Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
| | - Juanita Todd
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Deborah M Hodgson
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Patricia T Michie
- School of Psychology, The University of Newcastle, Sydney, NSW, Australia.,Priority Centre for Brain and Mental Health Research, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Tertia Purves-Tyson
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia. .,Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
61
|
Hsing HW, Zhuang ZH, Niou ZX, Chou SJ. Temporal Differences in Interneuron Invasion of Neocortex and Piriform Cortex during Mouse Cortical Development. Cereb Cortex 2019; 30:3015-3029. [PMID: 31838488 DOI: 10.1093/cercor/bhz291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Establishing a balance between excitation and inhibition is critical for brain functions. However, how inhibitory interneurons (INs) generated in the ventral telencephalon integrate with the excitatory neurons generated in the dorsal telencephalon remains elusive. Previous studies showed that INs migrating tangentially to enter the neocortex (NCx), remain in the migratory stream for days before invading the cortical plate during late corticogenesis. Here we show that in developing mouse cortices, INs in the piriform cortex (PCx; the major olfactory cortex) distribute differently from those in the NCx. We provide evidence that during development INs invade and mature earlier in PCx than in NCx, likely owing to the lack of CXCR4 expression in INs from PCx compared to those in NCx. We analyzed IN distribution patterns in Lhx2 cKO mice, where projection neurons in the lateral NCx are re-fated to generate an ectopic PCx (ePCx). The PCx-specific IN distribution patterns found in ePCx suggest that properties of PCx projection neurons regulate IN distribution. Collectively, our results show that the timing of IN invasion in the developing PCx fundamentally differs from what is known in the NCx. Further, our results suggest that projection neurons instruct the PCx-specific pattern of IN distribution.
Collapse
Affiliation(s)
- Hsiang-Wei Hsing
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zi-Hui Zhuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Zhen-Xian Niou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
62
|
Wullimann MF, Umeasalugo KE. Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells. J Comp Neurol 2019; 528:1321-1348. [PMID: 31760659 DOI: 10.1002/cne.24825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022]
Abstract
Ventralization, a major patterning process in the developing vertebrate neural tube (central nervous system, CNS), depends on Sonic hedgehog (SHH) as a main signaling morphogen. We studied the CNS of late larval and young adult zebrafish in a transgenic shh-GFP line revealing increased neuroanatomical detail due to the progressed differentiation state compared to earlier stages. Some major findings emerge from the present study. (a) shh -GFP is still expressed along the adult zebrafish CNS neuraxis in most locations seen in larvae. (b) We newly identify a ventroposterior shh pallidal domain representing the basal telencephalic signaling center important for basal ganglia development known in other vertebrates (i.e., the anterior entopeduncular area-basal medial ganglionic eminence of mammals). (c) We further show late-emerging shh-GFP positive radial glia cells in the medial zone of the dorsal telencephalon (i.e., the teleostan pallial amygdala). (d) Immunostains for tyrosine hydroxylase demonstrate that there is selective colocalization in adult dopamine cells with shh-GFP in the posterior tuberculum, including in projection cells to striatum, which represents a striking parallel to amniote mesodiencephalic dopamine cell origin from shh expressing floor plate cells. (e) There is no colocalization of shh and islet1 as shown by respective shh-GFP and islet1-GFP lines. (f) The only radially far migrated shh-GFP cells are located in the preglomerular area. (g) There are no adult cerebellar and tectal shh-GFP cells confirming their exclusive role during early development as previously reported by our laboratory.
Collapse
Affiliation(s)
- Mario F Wullimann
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Kosisochukwu E Umeasalugo
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| |
Collapse
|
63
|
Abstract
Brain tissue lost after a stroke is not regenerated, although a repair response associated with neurogenesis does occur. A failure to regenerate functional brain tissue is not caused by the lack of available neural cells, but rather the absence of structural support to permit a repopulation of the lesion cavity. Inductive bioscaffolds can provide this support and promote the invasion of host cells into the tissue void. The putative mechanisms of bioscaffold degradation and its pivotal role to permit invasion of neural cells are reviewed and discussed in comparison to peripheral wound healing. Key differences between regenerating and non-regenerating tissues are contrasted in an evolutionary context, with a special focus on the neurogenic response as a conditio sine qua non for brain regeneration. The pivotal role of the immune system in biodegradation and the formation of a neovasculature are contextualized with regeneration of peripheral soft tissues. The application of rehabilitation to integrate newly forming brain tissue is suggested as necessary to develop functional tissue that can alleviate behavioral impairments. Pertinent aspects of brain tissue development are considered to provide guidance to produce a metabolically and functionally integrated de novo tissue. Although little is currently known about mechanisms involved in brain tissue regeneration, this review outlines the various components and their interplay to provide a framework for ongoing and future studies. It is envisaged that a better understanding of the mechanisms involved in brain tissue regeneration will improve the design of biomaterials and the methods used for implantation, as well as rehabilitation strategies that support the restoration of behavioral functions.
Collapse
Affiliation(s)
- Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Michel Modo,
| |
Collapse
|
64
|
Zielinski MR, Atochin DN, McNally JM, McKenna JT, Huang PL, Strecker RE, Gerashchenko D. Somatostatin+/nNOS+ neurons are involved in delta electroencephalogram activity and cortical-dependent recognition memory. Sleep 2019; 42:zsz143. [PMID: 31328777 PMCID: PMC6783898 DOI: 10.1093/sleep/zsz143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Slow-wave activity (SWA) is an oscillatory neocortical activity occurring in the electroencephalogram delta (δ) frequency range (~0.5-4 Hz) during nonrapid eye movement sleep. SWA is a reliable indicator of sleep homeostasis after acute sleep loss and is involved in memory processes. Evidence suggests that cortical neuronal nitric oxide synthase (nNOS) expressing neurons that coexpress somatostatin (SST) play a key role in regulating SWA. However, previous studies lacked selectivity in targeting specific types of neurons that coexpress nNOS-cells which are activated in the cortex after sleep loss. We produced a mouse model that knocks out nNOS expression in neurons that coexpress SST throughout the cortex. Mice lacking nNOS expression in SST positive neurons exhibited significant impairments in both homeostatic low-δ frequency range SWA production and a recognition memory task that relies on cortical input. These results highlight that SST+/nNOS+ neurons are involved in the SWA homeostatic response and cortex-dependent recognition memory.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
| | - James M McNally
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - James T McKenna
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - Paul L Huang
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA
| | - Robert E Strecker
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - Dmitry Gerashchenko
- Veterans Affairs Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| |
Collapse
|
65
|
Meier S, Alfonsi F, Kurniawan ND, Milne MR, Kasherman MA, Delogu A, Piper M, Coulson EJ. The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development 2019; 146:dev.181933. [PMID: 31488566 DOI: 10.1242/dev.181933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 11/20/2022]
Abstract
During development, the p75 neurotrophin receptor (p75NTR) is widely expressed in the nervous system where it regulates neuronal differentiation, migration and axonal outgrowth. p75NTR also mediates the survival and death of newly born neurons, with functional outcomes being dependent on both timing and cellular context. Here, we show that knockout of p75NTR from embryonic day 10 (E10) in neural progenitors using a conditional Nestin-Cre p75NTR floxed mouse causes increased apoptosis of progenitor cells. By E14.5, the number of Tbr2-positive progenitor cells was significantly reduced and the rate of neurogenesis was halved. Furthermore, in adult knockout mice, there were fewer cortical pyramidal neurons, interneurons, cholinergic basal forebrain neurons and striatal neurons, corresponding to a relative reduction in volume of these structures. Thalamic midline fusion during early postnatal development was also impaired in Nestin-Cre p75NTR floxed mice, indicating a novel role for p75NTR in the formation of this structure. The phenotype of this strain demonstrates that p75NTR regulates multiple aspects of brain development, including cortical progenitor cell survival, and that expression during early neurogenesis is required for appropriate formation of telencephalic structures.
Collapse
Affiliation(s)
- Sonja Meier
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabienne Alfonsi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, 4072 Brisbane, Australia
| | - Michael R Milne
- School of Biomedical Sciences, The University of Queensland, 4072 Brisbane, Australia
| | - Maria A Kasherman
- Griffith Institute for Drug Discovery, Griffith University, 4122 Brisbane, Australia
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College, London SE5 9RX, UK
| | - Michael Piper
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia .,School of Biomedical Sciences, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
66
|
Ahmed NY, Knowles R, Dehorter N. New Insights Into Cholinergic Neuron Diversity. Front Mol Neurosci 2019; 12:204. [PMID: 31551706 PMCID: PMC6736589 DOI: 10.3389/fnmol.2019.00204] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cholinergic neurons comprise a small population of cells in the striatum but have fundamental roles in fine tuning brain function, and in the etiology of neurological and psychiatric disorders such as Parkinson’s disease (PD) or schizophrenia. The process of developmental cell specification underlying neuronal identity and function is an area of great current interest. There has been significant progress in identifying the developmental origins, commonalities in molecular markers, and physiological properties of the cholinergic neurons. Currently, we are aware of a number of key factors that promote cholinergic fate during development. However, the extent of cholinergic cell diversity is still largely underestimated. New insights into the biological basis of their specification indicate that cholinergic neurons may be far more diverse than previously thought. This review article, highlights the physiological features and the synaptic properties that segregate cholinergic cell subtypes. It provides an accurate picture of cholinergic cell diversity underlying their organization and function in neuronal networks. This review article, also discusses current challenges in deciphering the logic of the cholinergic cell heterogeneity that plays a fundamental role in the control of neural processes in health and disease.
Collapse
Affiliation(s)
- Noorya Yasmin Ahmed
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Rhys Knowles
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nathalie Dehorter
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
67
|
Martin-Lopez E, Xu C, Liberia T, Meller SJ, Greer CA. Embryonic and postnatal development of mouse olfactory tubercle. Mol Cell Neurosci 2019; 98:82-96. [PMID: 31200100 PMCID: PMC11993912 DOI: 10.1016/j.mcn.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The olfactory tubercle (OT) is located in the ventral-medial region of the brain where it receives primary input from olfactory bulb (OB) projection neurons and processes olfactory behaviors related to motivation, hedonics of smell and sexual encounters. The OT is part of the dopamine reward system that shares characteristics with the striatum. Together with the nucleus accumbens, the OT has been referred to as the "ventral striatum". However, despite its functional importance little is known about the embryonic development of the OT and the phenotypic properties of the OT cells. Here, using thymidine analogs, we establish that mouse OT neurogenesis occurs predominantly between E11-E15 in a lateral-to-medial gradient. Then, using a piggyBac multicolor technique we characterized the migratory route of OT neuroblasts from their embryonic point of origin. Following neurogenesis in the ventral lateral ganglionic eminence (vLGE), neuroblasts destined for the OT followed a dorsal-ventral pathway we named "ventral migratory course" (VMC). Upon reaching the nascent OT, neurons established a prototypical laminar distribution that was determined, in part, by the progenitor cell of origin. A phenotypic analysis of OT neuroblasts using a single-color piggyBac technique, showed that OT shared the molecular specification of striatal neurons. In addition to primary afferent input from the OB, the OT also receives a robust dopaminergic input from ventral tegmentum (Ikemoto, 2007). We used tyrosine hydroxylase (TH) expression as a proxy for dopaminergic innervation and showed that TH onset occurs at E13 and progressively increased until postnatal stages following an 'inside-out' pattern. Postnatally, we established the myelination in the OT occurring between P7 and P14, as shown with CNPase staining, and we characterized the cellular phenotypes populating the OT by immunohistochemistry. Collectively, this work provides the first detailed analysis of the developmental and maturation processes occurring in mouse OT, and demonstrates the striatal nature of the OT as part of the ventral striatum (vST).
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christine Xu
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
68
|
Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H, Zhang S, Li N, Song J, Fang Y, Xu X, Shi L, Zhang B, Cheng J, Zhou S, Liu L, Zhang X. WNT/NOTCH Pathway Is Essential for the Maintenance and Expansion of Human MGE Progenitors. Stem Cell Reports 2019; 12:934-949. [PMID: 31056478 PMCID: PMC6524734 DOI: 10.1016/j.stemcr.2019.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Medial ganglionic eminence (MGE)-like cells yielded from human pluripotent stem cells (hPSCs) hold great potentials for cell therapies of related neurological disorders. However, cues that orchestrate the maintenance versus differentiation of human MGE progenitors, and ways for large-scale expansion of these cells have not been investigated. Here, we report that WNT/CTNNB1 signaling plays an essential role in maintaining MGE-like cells derived from hPSCs. Ablation of CTNNB1 in MGE cells led to precocious cell-cycle exit and advanced neuronal differentiation. Activation of WNT signaling through genetic or chemical approach was sufficient to maintain MGE cells in an expandable manner with authentic neuronal differentiation potencies through activation of endogenous NOTCH signaling. Our findings reveal that WNT/NOTCH signaling cascade is a key player in governing the maintenance versus terminal differentiation of MGE progenitors in humans. Large-scale expansion of functional MGE progenitors for cell therapies can therefore be achieved by modifying WNT/NOTCH pathway. WNT/CTNNB1 signaling is robustly activated in specified human MGE progenitors Ablation of CTNNB1 in human MGE cells leads to advanced neuronal differentiation Activation of WNT signaling maintains MGE progenitors in a proliferative state WNT/CTNNB1 signaling maintains MGE progenitors via activation of NOTCH signaling
Collapse
Affiliation(s)
- Lin Ma
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Yiran Wang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Yi Hui
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Yanhua Du
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Zhenyu Chen
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Hexi Feng
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Shuwei Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Nan Li
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Jianren Song
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China
| | - Yujiang Fang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Xiangjie Xu
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Lei Shi
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Bowen Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Jiayi Cheng
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Shanshan Zhou
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Ling Liu
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China
| | - Xiaoqing Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai 200065, China; Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University School of Medicine, 1239 Siping Road, Room 508, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China; Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
69
|
Parallel Emergence of a Compartmentalized Striatum with the Phylogenetic Development of the Cerebral Cortex. Brain Sci 2019; 9:brainsci9040090. [PMID: 31010240 PMCID: PMC6523536 DOI: 10.3390/brainsci9040090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
The intricate neuronal architecture of the striatum plays a pivotal role in the functioning of the basal ganglia circuits involved in the control of various aspects of motor, cognitive, and emotional functions. Unlike the cerebral cortex, which has a laminar structure, the striatum is primarily composed of two functional subdivisions (i.e., the striosome and matrix compartments) arranged in a mosaic fashion. This review addresses whether striatal compartmentalization is present in non-mammalian vertebrates, in which simple cognitive and behavioral functions are executed by primitive sensori-motor systems. Studies show that neuronal subpopulations that share neurochemical and connective properties with striosomal and matrix neurons are present in the striata of not only anamniotes (fishes and amphibians), but also amniotes (reptiles and birds). However, these neurons do not form clearly segregated compartments in these vertebrates, suggesting that such compartmentalization is unique to mammals. In the ontogeny of the mammalian forebrain, the later-born matrix neurons disperse the early-born striosome neurons into clusters to form the compartments in tandem with the development of striatal afferents from the cortex. We propose that striatal compartmentalization in mammals emerged in parallel with the evolution of the cortex and possibly enhanced complex processing of sensory information and behavioral flexibility phylogenetically.
Collapse
|
70
|
Ohira K. Dopamine stimulates differentiation and migration of cortical interneurons. Biochem Biophys Res Commun 2019; 512:577-583. [PMID: 30910356 DOI: 10.1016/j.bbrc.2019.03.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
Abstract
Cortical GABAergic interneurons originate and migrate tangentially from the medial ganglionic eminence (MGE), but its mechanism remains unknown. In this study, we show that dopamine (DA) stimulates the differentiation and migration of cortical interneurons derived from MGE cells. Using immunohistochemistry for the DA marker, tyrosine hydroxylase (TH), TH positive axons enter the MGE by E12.5. In E11.5 MGE primary cultures, DA enhances the expression of cortical interneuron marker proteins, such as GAD67 and neuropilin1, via D1 receptor, and also up-regulates D2 receptor. In E14.5 organotypic slice cultures, the migration of MGE cells is occurred in a D2 receptor-dependent manner, whose stimulation increased the synthesis of neurotrophins, in E11.5 MGE primary cultures. Furthermore, TH neurons-depletion by 6-hydroxydopamine treatments led to a significant reduction of cortical calbindin positive cells in the cerebral cortex, compared with the controls. Therefore, these results suggest that DA can stimulate the differentiation and migration of cortical interneurons.
Collapse
Affiliation(s)
- Koji Ohira
- Laboratory of Nutritional Brain Science, Department of Food Science and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, 663-8558, Japan.
| |
Collapse
|
71
|
Dubos A, Meziane H, Iacono G, Curie A, Riet F, Martin C, Loaëc N, Birling MC, Selloum M, Normand E, Pavlovic G, Sorg T, Stunnenberg HG, Chelly J, Humeau Y, Friocourt G, Hérault Y. A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations. Hum Mol Genet 2019; 27:2138-2153. [PMID: 29659809 PMCID: PMC5985730 DOI: 10.1093/hmg/ddy122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/26/2018] [Indexed: 01/27/2023] Open
Abstract
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
Collapse
Affiliation(s)
- Aline Dubos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Hamid Meziane
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Giovanni Iacono
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Aurore Curie
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Femmes Mères Enfants, Hospices Civils de Lyon, Institut des Sciences Cognitives, CNRS UMR5304, Université Claude Bernard Lyon1, 69675 Bron, France
| | - Fabrice Riet
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Christelle Martin
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Nadège Loaëc
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | | | - Mohammed Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Elisabeth Normand
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France.,Pole In Vivo, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| | - Henk G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands
| | - Jamel Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Yann Humeau
- Team Synapse in Cognition, Institut Interdisciplinaire de NeuroScience, Centre National de la Recherche Scientifique CNRS UMR5297, Université de Bordeaux, 33077 Bordeaux, France
| | - Gaëlle Friocourt
- Inserm UMR 1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Etablissement Français du Sang (EFS) Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 29200 Brest, France
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France.,CELPHEDIA, PHENOMIN, Institut Clinique de la Souris, 67404 Illkirch, France
| |
Collapse
|
72
|
Noakes Z, Keefe F, Tamburini C, Kelly CM, Cruz Santos M, Dunnett SB, Errington AC, Li M. Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation In Vitro and in the Rat Brain. Stem Cell Reports 2019; 12:191-200. [PMID: 30661995 PMCID: PMC6373547 DOI: 10.1016/j.stemcr.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/28/2023] Open
Abstract
Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine. hPSCs differentiate into cortical and striatal interneuron-like cells in vitro They present mature electrophysiological and morphological properties in vitro They express striatal interneuron subtype markers upon transplantation in rat brain hPSC-interneuron-like cells adopt region-specific morphologies in vivo
Collapse
Affiliation(s)
- Zoe Noakes
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Claire M Kelly
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Maria Cruz Santos
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - Adam C Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
73
|
Rushing GV, Bollig MK, Ihrie RA. Heterogeneity of Neural Stem Cells in the Ventricular-Subventricular Zone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:1-30. [PMID: 31487016 DOI: 10.1007/978-3-030-24108-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this chapter, heterogeneity is explored in the context of the ventricular-subventricular zone, the largest stem cell niche in the mammalian brain. This niche generates up to 10,000 new neurons daily in adult mice and extends over a large spatial area with dorso-ventral and medio-lateral subdivisions. The stem cells of the ventricular-subventricular zone can be subdivided by their anatomical position and transcriptional profile, and the stem cell lineage can also be further subdivided into stages of pre- and post-natal quiescence and activation. Beyond the stem cells proper, additional differences exist in their interactions with other cellular constituents of the niche, including neurons, vasculature, and cerebrospinal fluid. These variations in stem cell potential and local interactions are discussed, as well as unanswered questions within this system.
Collapse
Affiliation(s)
- Gabrielle V Rushing
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Madelyn K Bollig
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Neuroscience Program, Vanderbilt University, Nashville, TN, USA. .,Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
74
|
Chytoudis-Peroudis CC, Siskos N, Kalyviotis K, Fysekis I, Ypsilantis P, Simopoulos C, Skavdis G, Grigoriou ME. Spatial distribution of the full-length members of the Grg family during embryonic neurogenesis reveals a "Grg-mediated repression map" in the mouse telencephalon. PLoS One 2018; 13:e0209369. [PMID: 30571765 PMCID: PMC6301688 DOI: 10.1371/journal.pone.0209369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022] Open
Abstract
The full-length members of the Groucho/Transducin-like Enhancer of split gene family, namely Grg1-4, encode nuclear corepressors that act either directly, via interaction with transcription factors, or indirectly by modifying histone acetylation or chromatin structure. In this work we describe a detailed expression analysis of Grg1-4 family members during embryonic neurogenesis in the developing murine telencephalon. Grg1-4 presented a unique, complex yet overlapping expression pattern; Grg1 and Grg3 were mainly detected in the proliferative zones of the telencephalon, Grg2 mainly in the subpallium and finally, Grg4 mainly in the subpallial post mitotic neurons. In addition, comparative analysis of the expression of Grg1-4 revealed that, at these stages, distinct telencephalic progenitor domains or structures are characterized by the presence of different combinations of Grg repressors, thus forming a “Grg-mediated repression map”.
Collapse
Affiliation(s)
| | - Nikistratos Siskos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Kalyviotis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Fysekis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Ypsilantis
- School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- * E-mail:
| |
Collapse
|
75
|
Diverse facets of cortical interneuron migration regulation – Implications of neuronal activity and epigenetics. Brain Res 2018; 1700:160-169. [DOI: 10.1016/j.brainres.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023]
|
76
|
Nowakowski TJ, Rani N, Golkaram M, Zhou HR, Alvarado B, Huch K, West JA, Leyrat A, Pollen AA, Kriegstein AR, Petzold LR, Kosik KS. Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nat Neurosci 2018; 21:1784-1792. [PMID: 30455455 PMCID: PMC6312854 DOI: 10.1038/s41593-018-0265-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 10/02/2018] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) regulate many cellular events during brain development by interacting with hundreds of mRNA transcripts. However, miRNAs operate nonuniformly upon the transcriptional profile with an as yet unknown logic. Shortcomings in defining miRNA-mRNA networks include limited knowledge of in vivo miRNA targets and their abundance in single cells. By combining multiple complementary approaches, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation with an antibody to AGO2 (AGO2-HITS-CLIP), single-cell profiling and computational analyses using bipartite and coexpression networks, we show that miRNA-mRNA interactions operate as functional modules that often correspond to cell-type identities and undergo dynamic transitions during brain development. These networks are highly dynamic during development and over the course of evolution. One such interaction is between radial-glia-enriched ORC4 and miR-2115, a great-ape-specific miRNA, which appears to control radial glia proliferation rates during human brain development.
Collapse
Affiliation(s)
- Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
| | - Neha Rani
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Hongjun R Zhou
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Beatriz Alvarado
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kylie Huch
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jay A West
- New Technologies, Fluidigm Corporation, South San Francisco, CA, USA
| | - Anne Leyrat
- New Technologies, Fluidigm Corporation, South San Francisco, CA, USA
| | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
77
|
Active intermixing of indirect and direct neurons builds the striatal mosaic. Nat Commun 2018; 9:4725. [PMID: 30413696 PMCID: PMC6226429 DOI: 10.1038/s41467-018-07171-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The striatum controls behaviors via the activity of direct and indirect pathway projection neurons (dSPN and iSPN) that are intermingled in all compartments. While such cellular mosaic ensures the balanced activity of the two pathways, its developmental origin and pattern remains largely unknown. Here, we show that both SPN populations are specified embryonically and intermix progressively through multidirectional iSPN migration. Using conditional mutant mice, we found that inactivation of the dSPN-specific transcription factor Ebf1 impairs selective dSPN properties, including axon pathfinding, while molecular and functional features of iSPN were preserved. Ebf1 mutation disrupted iSPN/dSPN intermixing, resulting in an uneven distribution. Such architectural defect was selective of the matrix compartment, highlighting that intermixing is a parallel process to compartment formation. Our study reveals while iSPN/dSPN specification is largely independent, their intermingling emerges from an active migration of iSPN, thereby providing a novel framework for the building of striatal architecture.
Collapse
|
78
|
Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex. Nat Commun 2018; 9:4595. [PMID: 30389944 PMCID: PMC6214958 DOI: 10.1038/s41467-018-07055-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023] Open
Abstract
Diverse γ-aminobutyric acid (GABA)-ergic interneurons provide different modes of inhibition to support circuit operation in the neocortex. However, the cellular and molecular mechanisms underlying the systematic generation of assorted neocortical interneurons remain largely unclear. Here we show that NKX2.1-expressing radial glial progenitors (RGPs) in the mouse embryonic ventral telencephalon divide progressively to generate distinct groups of interneurons, which occupy the neocortex in a time-dependent, early inside-out and late outside-in, manner. Notably, the late-born chandelier cells, one of the morphologically and physiologically highly distinguishable GABAergic interneurons, arise reliably from continuously dividing RGPs that produce non-chandelier cells initially. Selective removal of Partition defective 3, an evolutionarily conserved cell polarity protein, impairs RGP asymmetric cell division, resulting in premature depletion of RGPs towards the late embryonic stages and a consequent loss of chandelier cells. These results suggest that consecutive asymmetric divisions of multipotent RGPs generate diverse neocortical interneurons in a progressive manner. Diverse GABAergic neurons arise from progenitors in the medial ganglionic eminence. Here, the authors show these progenitors are progressively fate-restricted, with early-born interneurons occupying cortex in an “inside-out” pattern and later-born types like chandelier cells generated “outside-in”.
Collapse
|
79
|
Medrano-Fernández A, Delgado-Garcia JM, Del Blanco B, Llinares M, Sánchez-Campusano R, Olivares R, Gruart A, Barco A. The Epigenetic Factor CBP Is Required for the Differentiation and Function of Medial Ganglionic Eminence-Derived Interneurons. Mol Neurobiol 2018; 56:4440-4454. [PMID: 30334186 PMCID: PMC6505511 DOI: 10.1007/s12035-018-1382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/05/2018] [Indexed: 02/04/2023]
Abstract
The development of inhibitory circuits depends on the action of a network of transcription factors and epigenetic regulators that are critical for interneuron specification and differentiation. Although the identity of many of these transcription factors is well established, much less is known about the specific contribution of the chromatin-modifying enzymes that sculpt the interneuron epigenome. Here, we generated a mouse model in which the lysine acetyltransferase CBP is specifically removed from neural progenitors at the median ganglionic eminence (MGE), the structure where the most abundant types of cortical interneurons are born. Ablation of CBP interfered with the development of MGE-derived interneurons in both sexes, causing a reduction in the number of functionally mature interneurons in the adult forebrain. Genetic fate mapping experiments not only demonstrated that CBP ablation impacts on different interneuron classes, but also unveiled a compensatory increment of interneurons that escaped recombination and cushion the excitatory-inhibitory imbalance. Consistent with having a reduced number of interneurons, CBP-deficient mice exhibited a high incidence of spontaneous epileptic seizures, and alterations in brain rhythms and enhanced low gamma activity during status epilepticus. These perturbations led to abnormal behavior including hyperlocomotion, increased anxiety and cognitive impairments. Overall, our study demonstrates that CBP is essential for interneuron development and the proper functioning of inhibitory circuitry in vivo.
Collapse
Affiliation(s)
- Alejandro Medrano-Fernández
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | | | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | - Marián Llinares
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | | | - Román Olivares
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas), Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant. 03550, Alicante, Spain.
| |
Collapse
|
80
|
Ribeiro EA, Salery M, Scarpa JR, Calipari ES, Hamilton PJ, Ku SM, Kronman H, Purushothaman I, Juarez B, Heshmati M, Doyle M, Lardner C, Burek D, Strat A, Pirpinias S, Mouzon E, Han MH, Neve RL, Bagot RC, Kasarskis A, Koo JW, Nestler EJ. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nat Commun 2018; 9:3149. [PMID: 30089879 PMCID: PMC6082848 DOI: 10.1038/s41467-018-05657-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 07/12/2018] [Indexed: 11/20/2022] Open
Abstract
The role of somatostatin interneurons in nucleus accumbens (NAc), a key brain reward region, remains poorly understood due to the fact that these cells account for < 1% of NAc neurons. Here, we use optogenetics, electrophysiology, and RNA-sequencing to characterize the transcriptome and functioning of NAc somatostatin interneurons after repeated exposure to cocaine. We find that the activity of somatostatin interneurons regulates behavioral responses to cocaine, with repeated cocaine reducing the excitability of these neurons. Repeated cocaine also induces transcriptome-wide changes in gene expression within NAc somatostatin interneurons. We identify the JUND transcription factor as a key regulator of cocaine action and confirmed, by use of viral-mediated gene transfer, that JUND activity in somatostatin interneurons influences behavioral responses to cocaine. Our results identify alterations in NAc induced by cocaine in a sparse population of somatostatin interneurons, and illustrate the value of studying brain diseases using cell type-specific whole transcriptome RNA-sequencing.
Collapse
Affiliation(s)
- Efrain A Ribeiro
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Marine Salery
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Joseph R Scarpa
- Department of Genetics and Genomic Science, Icahn Institute of Genomics and Multiscale Biology, New York, 10029, NY, USA
| | - Erin S Calipari
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Peter J Hamilton
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Stacy M Ku
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Hope Kronman
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | | | - Barbara Juarez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Mitra Heshmati
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Marie Doyle
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Casey Lardner
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Dominicka Burek
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Ana Strat
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Stephen Pirpinias
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Ezekiell Mouzon
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
| | - Ming-Hu Han
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rosemary C Bagot
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
- Department of Psychology, McGill University, Québec, H3A 1B1, Montreal, Canada
| | - Andrew Kasarskis
- Department of Genetics and Genomic Science, Icahn Institute of Genomics and Multiscale Biology, New York, 10029, NY, USA
| | - Ja Wook Koo
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Eric J Nestler
- Department of Neuroscience, Friedman Brain Institute, New York, 10029, NY, USA.
| |
Collapse
|
81
|
Kelly SM, Raudales R, He M, Lee JH, Kim Y, Gibb LG, Wu P, Matho K, Osten P, Graybiel AM, Huang ZJ. Radial Glial Lineage Progression and Differential Intermediate Progenitor Amplification Underlie Striatal Compartments and Circuit Organization. Neuron 2018; 99:345-361.e4. [PMID: 30017396 PMCID: PMC6094944 DOI: 10.1016/j.neuron.2018.06.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/20/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Abstract
The circuitry of the striatum is characterized by two organizational plans: the division into striosome and matrix compartments, thought to mediate evaluation and action, and the direct and indirect pathways, thought to promote or suppress behavior. The developmental origins of these organizations and their developmental relationships are unknown, leaving a conceptual gap in understanding the cortico-basal ganglia system. Through genetic fate mapping, we demonstrate that striosome-matrix compartmentalization arises from a lineage program embedded in lateral ganglionic eminence radial glial progenitors mediating neurogenesis through two distinct types of intermediate progenitors (IPs). The early phase of this program produces striosomal spiny projection neurons (SPNs) through fate-restricted apical IPs (aIPSs) with limited capacity; the late phase produces matrix SPNs through fate-restricted basal IPs (bIPMs) with expanded capacity. Notably, direct and indirect pathway SPNs arise within both aIPS and bIPM pools, suggesting that striosome-matrix architecture is the fundamental organizational plan of basal ganglia circuitry.
Collapse
Affiliation(s)
- Sean M Kelly
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11790, USA
| | - Ricardo Raudales
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11790, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jannifer H Lee
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leif G Gibb
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Katherine Matho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
82
|
Fong WL, Kuo HY, Wu HL, Chen SY, Liu FC. Differential and Overlapping Pattern of Foxp1 and Foxp2 Expression in the Striatum of Adult Mouse Brain. Neuroscience 2018; 388:214-223. [PMID: 30031127 DOI: 10.1016/j.neuroscience.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
Abstract
Genetic mutations of FOXP1 and FOXP2 are associated with neurodevelopmental diseases. It is important to characterize the cell types that express Foxp1 and Foxp2 in the brain. Foxp1 and Foxp2 are expressed at high levels in the striatum of mouse brains. There are two populations of striatal projection neurons (SPNs), dopamine D1 receptor (D1R)-expressing striatonigral neurons and D2 receptor (D2R)-expressing striatopallidal neurons. In addition to SPNs, there are different types of striatal interneurons. Here, we quantitatively analyze the expression pattern of Foxp1 and Foxp2 with respect to specific cell types of projection neurons and interneurons in the striatum of adult mouse brains. Double immunostaining and in situ hybridization showed that Foxp1 and Foxp2 were specifically expressed in SPNs, but not in interneurons. For Foxp1, 50-57% of Foxp1-positive neurons co-expressed D1R mRNA, and 45-52% of Foxp1-positive neurons co-expressed D2R mRNA in the striatum at rostrocaudal levels. For Foxp2, 65-77% of Foxp2-positive neurons co-expressed D1R mRNA, and 21-26% of Foxp2-positive neurons co-expressed D2R mRNA in the striatum at rostrocaudal levels. Neither Foxp1 nor Foxp2 was found to co-localize with parvalbumin, somatostatin, nNOS, calretinin and ChAT in interneurons of the striatum. Moreover, none of parvalbumin-, somatostatin-, nNOS-, and calretinin-positive interneurons co-expressed Foxp1 or Foxp2 in the cerebral cortex. As Foxp1 and Foxp2 can form heterodimers for transcriptional regulation, the differential and overlapping expression pattern of Foxp1 and Foxp2 in SPNs implicates coordinate and distinct roles of Foxp1 and Foxp2 in developmental construction and physiologic functions of striatal circuits in the brain.
Collapse
Affiliation(s)
- Weng Lam Fong
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hsiao-Ying Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Hsiao-Lin Wu
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shih-Yun Chen
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Fu-Chin Liu
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan; Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
83
|
Che A, Babij R, Iannone AF, Fetcho RN, Ferrer M, Liston C, Fishell G, De Marco García NV. Layer I Interneurons Sharpen Sensory Maps during Neonatal Development. Neuron 2018; 99:98-116.e7. [PMID: 29937280 PMCID: PMC6152945 DOI: 10.1016/j.neuron.2018.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022]
Abstract
The neonatal mammal faces an array of sensory stimuli when diverse neuronal types have yet to form sensory maps. How these inputs interact with intrinsic neuronal activity to facilitate circuit assembly is not well understood. By using longitudinal calcium imaging in unanesthetized mouse pups, we show that layer I (LI) interneurons, delineated by co-expression of the 5HT3a serotonin receptor (5HT3aR) and reelin (Re), display spontaneous calcium transients with the highest degree of synchrony among cell types present in the superficial barrel cortex at postnatal day 6 (P6). 5HT3aR Re interneurons are activated by whisker stimulation during this period, and sensory deprivation induces decorrelation of their activity. Moreover, attenuation of thalamic inputs through knockdown of NMDA receptors (NMDARs) in these interneurons results in expansion of whisker responses, aberrant barrel map formation, and deficits in whisker-dependent behavior. These results indicate that recruitment of specific interneuron types during development is critical for adult somatosensory function. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Andrew F Iannone
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Monica Ferrer
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Gord Fishell
- Harvard Medical School and the Stanley Center at the Broad, Cambridge, MA 02142, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
84
|
Pensold D, Symmank J, Hahn A, Lingner T, Salinas-Riester G, Downie BR, Ludewig F, Rotzsch A, Haag N, Andreas N, Schubert K, Hübner CA, Pieler T, Zimmer G. The DNA Methyltransferase 1 (DNMT1) Controls the Shape and Dynamics of Migrating POA-Derived Interneurons Fated for the Murine Cerebral Cortex. Cereb Cortex 2018; 27:5696-5714. [PMID: 29117290 DOI: 10.1093/cercor/bhw341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Indexed: 01/24/2023] Open
Abstract
The proliferative niches in the subpallium generate a rich cellular variety fated for diverse telencephalic regions. The embryonic preoptic area (POA) represents one of these domains giving rise to the pool of cortical GABAergic interneurons and glial cells, in addition to striatal and residual POA cells. The migration from sites of origin within the subpallium to the distant targets like the cerebral cortex, accomplished by the adoption and maintenance of a particular migratory morphology, is a critical step during interneuron development. To identify factors orchestrating this process, we performed single-cell transcriptome analysis and detected Dnmt1 expression in murine migratory GABAergic POA-derived cells. Deletion of Dnmt1 in postmitotic immature cells of the POA caused defective migration and severely diminished adult cortical interneuron numbers. We found that DNA methyltransferase 1 (DNMT1) preserves the migratory shape in part through negative regulation of Pak6, which stimulates neuritogenesis at postmigratory stages. Our data underline the importance of DNMT1 for the migration of POA-derived cells including cortical interneurons.
Collapse
Affiliation(s)
- Daniel Pensold
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Judit Symmank
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Anne Hahn
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Gabriela Salinas-Riester
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Bryan R Downie
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Fabian Ludewig
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Anne Rotzsch
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Natja Haag
- Institute of Biochemistry I, University Hospital Jena, 07743 Jena, Germany.,Institute of Human Genetics, University Hospital RWTH Aachen, Aachen, Germany
| | - Nico Andreas
- FACS Core Facility, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Katrin Schubert
- FACS Core Facility, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| | - Tomas Pieler
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, 07743 Jena, Germany
| |
Collapse
|
85
|
Ruiz-Reig N, Andres B, Lamonerie T, Theil T, Fairén A, Studer M. The caudo-ventral pallium is a novel pallial domain expressing Gdf10 and generating Ebf3-positive neurons of the medial amygdala. Brain Struct Funct 2018; 223:3279-3295. [PMID: 29869132 DOI: 10.1007/s00429-018-1687-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
In rodents, the medial nucleus of the amygdala receives direct inputs from the accessory olfactory bulbs and is mainly implicated in pheromone-mediated reproductive and defensive behaviors. The principal neurons of the medial amygdala are GABAergic neurons generated principally in the caudo-ventral medial ganglionic eminence and preoptic area. Beside GABAergic neurons, the medial amygdala also contains glutamatergic Otp-expressing neurons cells generated in the lateral hypothalamic neuroepithelium and a non-well characterized Pax6-positive population. In the present work, we describe a novel glutamatergic Ebf3-expressing neuronal subpopulation distributed within the periphery of the postero-ventral medial amygdala. These neurons are generated in a pallial domain characterized by high expression of Gdf10. This territory is topologically the most caudal tier of the ventral pallium and accordingly, we named it Caudo-Ventral Pallium (CVP). In the absence of Pax6, the CVP is disrupted and Ebf3-expressing neurons fail to be generated. Overall, this work proposes a novel model of the neuronal composition of the medial amygdala and unravels for the first time a new novel pallial subpopulation originating from the CVP and expressing the transcription factor Ebf3.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Université Côte d'Azur (UCA), CNRS, Inserm, Institut de Biologie Valrose (iBV), 06108, Nice, France.
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), 03550, San Juan de Alicante, Spain.
| | - Belen Andres
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), 03550, San Juan de Alicante, Spain
| | - Thomas Lamonerie
- Université Côte d'Azur (UCA), CNRS, Inserm, Institut de Biologie Valrose (iBV), 06108, Nice, France
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH), 03550, San Juan de Alicante, Spain
- , Palau 11, 03550, San Juan de Alicante, Spain
| | - Michèle Studer
- Université Côte d'Azur (UCA), CNRS, Inserm, Institut de Biologie Valrose (iBV), 06108, Nice, France.
| |
Collapse
|
86
|
Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol 2018; 438:69-83. [DOI: 10.1016/j.ydbio.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
87
|
Moreno N, López JM, Morona R, Lozano D, Jiménez S, González A. Comparative Analysis of Nkx2.1 and Islet-1 Expression in Urodele Amphibians and Lungfishes Highlights the Pattern of Forebrain Organization in Early Tetrapods. Front Neuroanat 2018; 12:42. [PMID: 29867380 PMCID: PMC5968111 DOI: 10.3389/fnana.2018.00042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
Expression patterns of Nkx2.1 and Islet-1 (Isl1), which encode transcription factors that are key in the regionalization of the forebrain, were analyzed by combined immunohistochemical methods in young adult specimens of two lungfishes (Neoceratodus forsteri and Protopterus dolloi) and a urodele amphibian (Pleurodeles waltl). We aimed to get insights into the possible organization of the forebrain in the common ancestor of all tetrapods because of the pivotal phylogenetic significance of these two groups, being lungfishes the closest living relatives of tetrapods, and representing urodeles a model of simple brain organization with most shared features with amniotes. These transcription factors display regionally restricted expression domains in adult (juvenile) brains that are best interpreted according to the current prosomeric model. The regional patterns observed serve to identify regions and compare between the three species studied, and with previous data reported mainly for amniotes. We corroborate that Nkx2.1 and Isl1 expressions have very similar topologies in the forebrain. Common features in all sarcopterygians (lungfishes and tetrapods) have been observed, such as the Isl1 expression in most striatal neurons, whereas Nkx2.1 is restricted to migrated interneurons that reach the ventral pallium (VP). In the pallidal derivatives, the combination of both markers allows the identification of the boundaries between the ventral septum, the bed nucleus of the stria terminalis (BST) and the preoptic commissural region. In addition, the high Isl1 expression in the central amygdala (CeA), its boundary with the lateral amygdala (LA), and the scattered Nkx2.1 expression in the medial amygdala (MeA) are also shared features. The alar and basal hypothalamic territories, and the prethalamus and posterior tubercle (TP) in the diencephalon, have maintained a common pattern of expression. This regional distribution of Isl1 and Nkx2.1 observed in the forebrain of urodeles and lungfishes contributes further to our understanding of the first terrestrial vertebrates and their ancestors.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Sara Jiménez
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
88
|
Basal ganglia involvement in ARX patients: The reason for ARX patients very specific grasping? NEUROIMAGE-CLINICAL 2018; 19:454-465. [PMID: 29984154 PMCID: PMC6029499 DOI: 10.1016/j.nicl.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/05/2018] [Accepted: 04/01/2018] [Indexed: 01/15/2023]
Abstract
The ARX (Aristaless Related homeoboX) gene was identified in 2002 as responsible for XLAG syndrome, a lissencephaly characterized by an almost complete absence of cortical GABAergic interneurons, and for milder forms of X-linked Intellectual Disability (ID) without apparent brain abnormalities. The most frequent mutation found in the ARX gene, a duplication of 24 base pairs (c.429_452dup24) in exon 2, results in a recognizable syndrome in which patients present ID without primary motor impairment, but with a very specific upper limb distal motor apraxia associated with a pathognomonic hand-grip, described as developmental Limb Kinetic Apraxia (LKA). In this study, we first present ARX expression during human fetal brain development showing that it is strongly expressed in GABAergic neuronal progenitors during the second and third trimester of pregnancy. We show that although ARX expression strongly decreases towards the end of gestation, it is still present after birth in some neurons of the basal ganglia, thalamus and cerebral cortex, suggesting that ARX also plays a role in more mature neuron functioning. Then, using morphometric brain MRI in 13 ARX patients carrying c.429_452dup24 mutation and in 13 sex- and age-matched healthy controls, we show that ARX patients have a significantly decreased volume of several brain structures including the striatum (and more specifically the caudate nucleus), hippocampus and thalamus as well as decreased precentral gyrus cortical thickness. We observe a significant correlation between caudate nucleus volume reduction and motor impairment severity quantified by kinematic parameter of precision grip. As basal ganglia are known to regulate sensorimotor processing and are involved in the control of precision gripping, the combined decrease in cortical thickness of primary motor cortex and basal ganglia volume in ARX dup24 patients is very likely the anatomical substrate of this developmental form of LKA. c.429_452dup24 in ARX is responsible for ID with Limb Kinetic Apraxia. During human brain development, ARX is expressed in GABAergic neuronal progenitors. ARX patients have a significantly decreased caudate nucleus volume by MRI. This caudate nucleus volume reduction is correlated with motor impairment severity. These anatomic findings may explain this developmental form of Limb Kinetic Apraxia.
Collapse
Key Words
- ARX
- ARX, Aristaless-Related homeoboX gene (according to the genetic convention, ARX was written in italics when it refers to the gene, in plain-text characters when it refers to the protein, in capital letters when it refers to the human gene, and in lowercase when it refers to the mouse gene)
- CGE, caudal ganglionic eminence
- CP, cortical plate
- DS, down syndrome
- GE, ganglionic eminences
- Human brain development
- ICV, intracranial volume
- ID, Intellectual Disability
- IQ, intelligence quotient
- IZ, intermediate zone
- Intellectual disability
- Kinematic
- LGE, lateral ganglionic eminence
- LKA, Limb Kinetic Apraxia
- Limb Kinetic Apraxia
- MGE, medial ganglionic eminence
- MRI, magnetic resonance imaging
- MZ, marginal zone
- Morphometric MRI
- ROI, region of interest
- SGL, subpial granular layer
- SVZ, subventricular zone
- VZ, ventricular zone
- WG, weeks of gestation
- XLAG, X-linked lissencephaly with abnormal genitalia
Collapse
|
89
|
Lineage Is a Poor Predictor of Interneuron Positioning within the Forebrain. Neuron 2017; 92:45-51. [PMID: 27710788 DOI: 10.1016/j.neuron.2016.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 11/20/2022]
Abstract
This Matters Arising Response paper addresses the Sultan et al. (2016) Matters Arising paper, published concurrently in Neuron. Clonally related excitatory neurons maintain a coherent relationship following their specification and migration. Whether cortical interneurons behave similarly is a fundamental question in developmental neuroscience. In Mayer et al. (2015), we reported that sibling interneurons disperse over several millimeters, across functional and anatomical boundaries. This finding demonstrated that clonality is not predictive of an interneuron's ultimate circuit specificity. Comparing the distribution of interneurons published in Mayer et al. to a random computer simulation, Sultan et al. suggest that clonally related interneurons are "not randomly dispersed." We argue that this comparison provides no insight into the influence of clonality on interneuron development because the entire population of cortical interneurons is "not randomly dispersed" in vivo. We find that the majority of cortical interneurons are similarly distributed whether or not they share a lineal relationship. Thus, at present there is no compelling evidence that clonality influences the position or function of interneurons.
Collapse
|
90
|
Tinterri A, Deck M, Keita M, Mailhes C, Rubin AN, Kessaris N, Lokmane L, Bielle F, Garel S. Tangential migration of corridor guidepost neurons contributes to anxiety circuits. J Comp Neurol 2017; 526:397-411. [DOI: 10.1002/cne.24330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Andrea Tinterri
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- Boehringer Ingelheim Fonds, Foundation for Basic Research in Medicine; Mainz Germany
- Ecole de Neurosciences de Paris-Ile de France; Paris France
| | - Marie Deck
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Maryama Keita
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Caroline Mailhes
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Acute Transgenesis Facility
| | - Anna Noren Rubin
- University College of London, Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology; London United Kingdom
| | - Nicoletta Kessaris
- University College of London, Wolfson Institute for Biomedical Research, Department of Cell and Developmental Biology; London United Kingdom
| | - Ludmilla Lokmane
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
| | - Franck Bielle
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière Charles Foix, Service de Neuropathologie; Paris France
| | - Sonia Garel
- IBENS, Département de Biologie; École normale supérieure, CNRS, Inserm, PSL Research University; Paris France
- Brain Development and Plasticity Team
- Ecole de Neurosciences de Paris-Ile de France; Paris France
| |
Collapse
|
91
|
Ballinger EC, Ananth M, Talmage DA, Role LW. Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline. Neuron 2017; 91:1199-1218. [PMID: 27657448 DOI: 10.1016/j.neuron.2016.09.006] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Recent work continues to place cholinergic circuits at center stage for normal executive and mnemonic functioning and provides compelling evidence that the loss of cholinergic signaling and cognitive decline are inextricably linked. This Review focuses on the last few years of studies on the mechanisms by which cholinergic signaling contributes to circuit activity related to cognition. We attempt to identify areas of controversy, as well as consensus, on what is and is not yet known about how cholinergic signaling in the CNS contributes to normal cognitive processes. In addition, we delineate the findings from recent work on the extent to which dysfunction of cholinergic circuits contributes to cognitive decline associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Elizabeth C Ballinger
- Medical Scientist Training Program, Program in Neuroscience, Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Mala Ananth
- Program in Neuroscience, Department of Neurobiology & Behavior, Department of Psychiatry & Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A Talmage
- Department of Pharmacological Sciences, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lorna W Role
- Department of Neurobiology & Behavior, Neurosciences Institute, CNS Disorders Center, Center for Molecular Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
92
|
Magno L, Barry C, Schmidt-Hieber C, Theodotou P, Häusser M, Kessaris N. NKX2-1 Is Required in the Embryonic Septum for Cholinergic System Development, Learning, and Memory. Cell Rep 2017; 20:1572-1584. [PMID: 28813670 PMCID: PMC5565637 DOI: 10.1016/j.celrep.2017.07.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 02/01/2023] Open
Abstract
The transcription factor NKX2-1 is best known for its role in the specification of subsets of cortical, striatal, and pallidal neurons. We demonstrate through genetic fate mapping and intersectional focal septal deletion that NKX2-1 is selectively required in the embryonic septal neuroepithelium for the development of cholinergic septohippocampal projection neurons and large subsets of basal forebrain cholinergic neurons. In the absence of NKX2-1, these neurons fail to develop, causing alterations in hippocampal theta rhythms and severe deficiencies in learning and memory. Our results demonstrate that learning and memory are dependent on NKX2-1 function in the embryonic septum and suggest that cognitive deficiencies that are sometimes associated with pathogenic mutations in NKX2-1 in humans may be a direct consequence of loss of NKX2-1 function.
Collapse
Affiliation(s)
- Lorenza Magno
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christoph Schmidt-Hieber
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Polyvios Theodotou
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
93
|
Hu JS, Vogt D, Lindtner S, Sandberg M, Silberberg SN, Rubenstein JLR. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons. Development 2017; 144:2837-2851. [PMID: 28694260 DOI: 10.1242/dev.150664] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Distinct cortical interneuron (CIN) subtypes have unique circuit functions; dysfunction in specific subtypes is implicated in neuropsychiatric disorders. Somatostatin- and parvalbumin-expressing (SST+ and PV+) interneurons are the two major subtypes generated by medial ganglionic eminence (MGE) progenitors. Spatial and temporal mechanisms governing their cell-fate specification and differential integration into cortical layers are largely unknown. We provide evidence that Coup-TF1 and Coup-TF2 (Nr2f1 and Nr2f2) transcription factor expression in an arc-shaped progenitor domain within the MGE promotes time-dependent survival of this neuroepithelium and the time-dependent specification of layer V SST+ CINs. Coup-TF1 and Coup-TF2 autonomously repress PV+ fate in MGE progenitors, in part through directly driving Sox6 expression. These results have identified, in mouse, a transcriptional pathway that controls SST-PV fate.
Collapse
Affiliation(s)
- Jia Sheng Hu
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Susan Lindtner
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Magnus Sandberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Shanni N Silberberg
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
94
|
Precious SV, Zietlow R, Dunnett SB, Kelly CM, Rosser AE. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease? Neurochem Int 2017; 106:114-121. [PMID: 28137534 PMCID: PMC5582194 DOI: 10.1016/j.neuint.2017.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/24/2017] [Indexed: 01/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications.
Collapse
Affiliation(s)
- Sophie V Precious
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Rike Zietlow
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Stephen B Dunnett
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit (B.R.A.I.N), School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Claire M Kelly
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, UK
| | - Anne E Rosser
- Brain Repair Group, Sir Martin Evans Building, School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Wales Brain Repair and Intracranial Neurotherapeutics Unit (B.R.A.I.N), School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
95
|
Merchan-Sala P, Nardini D, Waclaw RR, Campbell K. Selective neuronal expression of the SoxE factor, Sox8, in direct pathway striatal projection neurons of the developing mouse brain. J Comp Neurol 2017; 525:2805-2819. [PMID: 28472858 DOI: 10.1002/cne.24232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/24/2023]
Abstract
The striatum is the major component of the basal ganglia and is well known to play a key role in the control of motor function via balanced output from the indirect (iSPNs) and direct pathway striatal projection neurons (dSPNs). Little is known, however, about the molecular genetic mechanisms that control the formation of the iSPNs versus dSPNs. We show here that the SoxE family member, Sox8, is co-expressed with the dSPN markers, Isl1 and Ebf1, in the developing striatum. Moreover, dSPNs, as marked by Isl1-cre fate map, express Sox8 in the embryonic striatum and Sox8-EGFP BAC transgenic mice specifically reveal the direct pathway axons during development. These EGFP+ axons are first observed to reach their midbrain target, the substantia nigra pars reticulata (SNr), at E14 in the mouse with a robust connection observed already at birth. The selective expression of EGFP in dSPNs of Sox8-EGFP BAC mice is maintained at postnatal timepoints. Sox8 is known to be expressed in oligodendrocyte precursor cells (OPCs) together with other SoxE factors and we show here that the EGFP signal co-localizes with the OPC markers throughout the brain. Finally, we show that Sox8-EGFP BAC mice can be used to interrogate the altered dSPN development in Isl1 conditional mutants including aberrant axonal projections detected already at embryonic timepoints. Thus, Sox8 represents an early and specific marker of embryonic dSPNs and the Sox8-EGFP BAC transgenic mice are an excellent tool to study the development of basal ganglia circuitry.
Collapse
Affiliation(s)
- Paloma Merchan-Sala
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Kenneth Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
96
|
Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci Rep 2017; 7:45656. [PMID: 28361918 PMCID: PMC5374502 DOI: 10.1038/srep45656] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified.
Collapse
|
97
|
Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon. Sci Rep 2017; 7:42895. [PMID: 28276447 PMCID: PMC5343589 DOI: 10.1038/srep42895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon.
Collapse
|
98
|
Close JL, Yao Z, Levi BP, Miller JA, Bakken TE, Menon V, Ting JT, Wall A, Krostag AR, Thomsen ER, Nelson AM, Mich JK, Hodge RD, Shehata SI, Glass IA, Bort S, Shapovalova NV, Ngo NK, Grimley JS, Phillips JW, Thompson CL, Ramanathan S, Lein E. Single-Cell Profiling of an In Vitro Model of Human Interneuron Development Reveals Temporal Dynamics of Cell Type Production and Maturation. Neuron 2017; 93:1035-1048.e5. [PMID: 28279351 PMCID: PMC5480972 DOI: 10.1016/j.neuron.2017.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/12/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
Abstract
GABAergic interneurons are essential for neural circuit function, and their loss or dysfunction is implicated in human neuropsychiatric disease. In vitro methods for interneuron generation hold promise for studying human cellular and functional properties and, ultimately, for therapeutic cell replacement. Here we describe a protocol for generating cortical interneurons from hESCs and analyze the properties and maturation time course of cell types using single-cell RNA-seq. We find that the cell types produced mimic in vivo temporal patterns of neuron and glial production, with immature progenitors and neurons observed early and mature cortical neurons and glial cell types produced late. By comparing the transcriptomes of immature interneurons to those of more mature neurons, we identified genes important for human interneuron differentiation. Many of these genes were previously implicated in neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennie L Close
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Vilas Menon
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Abigail Wall
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Angel M Nelson
- Allen Institute for Cell Science, Seattle, WA 98109, USA
| | - John K Mich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Susan Bort
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - N Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Sharad Ramanathan
- Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
99
|
Minocha S, Valloton D, Arsenijevic Y, Cardinaux JR, Guidi R, Hornung JP, Lebrand C. Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Sci Rep 2017; 7:43093. [PMID: 28266561 PMCID: PMC5339799 DOI: 10.1038/srep43093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 11/22/2022] Open
Abstract
The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1−/−) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors.
Collapse
Affiliation(s)
- Shilpi Minocha
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Delphine Valloton
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Yvan Arsenijevic
- Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Av. de France 15, CH-1004 Lausanne, Switzerland
| | - Jean-René Cardinaux
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, CH-1008 Lausanne, Switzerland
| | - Raffaella Guidi
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, CH-1008 Lausanne, Switzerland
| | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Cécile Lebrand
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| |
Collapse
|
100
|
Waclaw RR, Ehrman LA, Merchan-Sala P, Kohli V, Nardini D, Campbell K. Foxo1 is a downstream effector of Isl1 in direct pathway striatal projection neuron development within the embryonic mouse telencephalon. Mol Cell Neurosci 2017; 80:44-51. [PMID: 28213137 DOI: 10.1016/j.mcn.2017.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 02/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that the LIM-homeodomain transcription factor Isl1 is required for the survival and differentiation of direct pathway striatonigral neurons during embryonic development. The downstream effectors of Isl1 in these processes are presently unknown. We show here that Foxo1, a transcription factor that has been implicated in cell survival, is expressed in striatal projection neurons (SPNs) that derive from the Isl1 lineage (i.e. direct pathway SPNs). Moreover, Isl1 conditional knockouts (cKOs) show a severe loss of Foxo1 expression at E15.5 with a modest recovery by E18.5. Although Foxo1 is enriched in the direct pathway SPNs at embryonic stages, it is expressed in both direct and indirect pathway SPNs at postnatal time points as evidenced by co-localization with EGFP in both Drd1-EGFP and Drd2-EGFP BAC transgenic mice. Foxo1 was not detected in striatal interneurons as marked by the transcription factor Nkx2.1. Conditional knockout of Foxo1 using Dlx5/6-CIE mice results in reduced expression of the SPN marker Darpp-32, as well as in the direct pathway SPN markers Ebf1 and Zfp521 within the embryonic striatum at E15.5. However, this phenotype improves in the conditional mutants by E18.5. Interestingly, the Foxo family members, Foxo3 and Foxo6, remain expressed at late embryonic stages in the Foxo1 cKOs unlike the Isl1 cKOs where Foxo1/3/6 as well as the Foxo1/3 target Bach2 are all reduced. Taken together, these findings suggest that Foxo-regulated pathways are downstream of Isl1 in the survival and/or differentiation of direct pathway SPNs.
Collapse
Affiliation(s)
- R R Waclaw
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - L A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - P Merchan-Sala
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - V Kohli
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - D Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - K Campbell
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|