51
|
Hoffmann J, Busse S, von Hoff F, Borucki K, Frodl T, Busse M. Association Between Homocysteine and Vitamin Levels in Demented Patients. J Alzheimers Dis 2021; 81:1781-1792. [PMID: 33998538 DOI: 10.3233/jad-201481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Although it is known that the nutritional status among elderly persons and, in particular, patients with dementia, is compromised, malnutrition that results in insufficient uptake of several vitamins is often not diagnosed. OBJECTIVE An elevated homocysteine level is a known strong risk factor for vascular dementia (VaD) and Alzheimer's disease (AD). Several B vitamins are involved in the metabolism of homocysteine. Therefore, we investigated the serum levels of vitamin B1, vitamin B6, folate, and vitamin B12 in 97 patients with mild cognitive impairment (MCI) or different forms of dementia and 54 elderly control persons without dementia. RESULTS Compared to aged non-demented people, vitamins B1, B6, B12, and folate were decreased in serum of patients with AD, and patients with Lewy body dementia had reduced vitamin B12 level. Vitamin B6 was diminished in VaD. Patients with frontotemporal dementia showed no alterations in vitamin levels. Age was identified as an important factor contributing to the concentrations of vitamin B1 and B6 in serum, but not vitamin B12 and folate. Increased levels of total homocysteine were detected especially in MCI and AD. Homocysteine correlated negatively with levels of vitamins B6, B12, and folate and positively with Q Albumin. CONCLUSION Our data suggest that despite increased homocysteine already present in MCI, vitamin levels are decreased only in dementia. We propose to determine the vitamin levels in patients with cognitive decline, but also elderly people in general, and recommend supplementing these nutrients if needed.
Collapse
Affiliation(s)
- Jessica Hoffmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Franz von Hoff
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute for Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Magdeburg, Magdeburg, Germany.,Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
52
|
Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. Proc Natl Acad Sci U S A 2021; 118:2017575118. [PMID: 34099562 DOI: 10.1073/pnas.2017575118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated β-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between β-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.
Collapse
|
53
|
Rana I, Rieswijk L, Steinmaus C, Zhang L. Formaldehyde and Brain Disorders: A Meta-Analysis and Bioinformatics Approach. Neurotox Res 2021; 39:924-948. [PMID: 33400181 PMCID: PMC8102312 DOI: 10.1007/s12640-020-00320-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
While there is significant investigation and investment in brain and neurodegenerative disease research, current understanding of the etiologies of illnesses like Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and brain cancer remains limited. Environmental exposure to the pollutant formaldehyde, an emerging neurotoxin widely used in industry, is suspected to play a critical role in mediating these disorders, although findings are limited and inconsistent. Focusing on highly exposed groups, we performed a meta-analysis of human epidemiological studies of formaldehyde and neurodegenerative disease (N = 19) or brain tumors (N = 12). To assess the biological plausibility of observed associations, we then conducted a bioinformatics analysis using WikiPathways and the Comparative Toxicogenomics Database and identified candidate genes and pathways that may be related to these interactions. We reported the meta-relative risk (meta-RR) of ALS following high exposures to formaldehyde was increased by 78% (meta-RR = 1.78, 95% confidence interval, CI 1.20-2.65). Similarly, the meta-RR for brain cancer was increased by 71% (meta-RR = 1.71; 95% CI 1.07-2.73) among highly exposed individuals. Multiple sensitivity analyses did not reveal sources of heterogeneity or bias. Our bioinformatics analysis revealed that the oxidative stress genes superoxide dismutase (SOD1, SOD2) and the pro-inflammatory marker tumor necrosis factor (TNF) were identified as the top relevant genes, and the folate metabolism, vitamin B12 metabolism, and the ALS pathways were highly affected by formaldehyde and related to the most brain diseases of interest. Further inquiry revealed the two metabolic pathways are also intimately tied with the formaldehyde cycle. Overall, our bioinformatics analysis supports the link of formaldehyde exposure to ALS or brain tumor reported from our meta-analysis. This new multifactorial approach enabled us to both interrogate the robustness of the epidemiological data and identify genes and pathways that may be involved in these interactions, ultimately lending strong evidence and potential biological plausibility for the association between formaldehyde exposure and brain disease.
Collapse
Affiliation(s)
- Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Linda Rieswijk
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Craig Steinmaus
- Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
54
|
Bennett C, Green J, Ciancio M, Goral J, Pitstick L, Pytynia M, Meyer A, Kwatra N, Jadavji NM. Dietary folic acid deficiency impacts hippocampal morphology and cortical acetylcholine metabolism in adult male and female mice. Nutr Neurosci 2021; 25:2057-2065. [PMID: 34042561 DOI: 10.1080/1028415x.2021.1932242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE One-carbon (1C) metabolism is a metabolic network that integrates nutritional signals with biosynthesis, redox homeostasis, and epigenetics. There are sex differences in hepatic 1C metabolism, however, it is unclear whether sex differences in 1C impact the brain. The aim of this study was to investigate if sex modulates the effects of dietary folic acid deficiency, the main component of 1C, in brain tissue using a mouse model. METHODS Male and female C57Bl/6J mice were placed on a folic acid deficient (FD) or control diet (CD) at six weeks until six months of aged. After which brain tissue and serum were collected for analysis. In brain tissue, hippocampal volume, morphology, and apoptosis as well as cortical acetylcholine metabolism were measured. RESULTS Male and female FD mice had reduced serum levels of folate. Both males and females maintained on a FD showed a decrease in the thickness of the hippocampal CA1-CA3 region. Interestingly, there was a sex difference in the levels of active caspase-3 within the CA3 region of the hippocampus. In cortical tissue, there were increased levels of neuronal ChAT and reduced levels of AChE in FD females and male mice. CONCLUSIONS The results indicated that FD impacts hippocampal morphology and cortical neuronal acetylcholine metabolism. The data from our study indicate that there was only one sex difference and that was in hippocampal apoptosis. Our study provides little evidence that sex modulates the effects of dietary folate deficiency on hippocampal morphology and cortical neuronal acetylcholine metabolism.
Collapse
Affiliation(s)
- Calli Bennett
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - Jacalyn Green
- Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Mae Ciancio
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Lenore Pitstick
- Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Matthew Pytynia
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Alice Meyer
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Neha Kwatra
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Dental Medicine, Midwestern University, Glendale, AZ, USA
| | - Nafisa M Jadavji
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ, USA.,College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA.,Department of Neuroscience, Carleton University, Ottawa, Canada
| |
Collapse
|
55
|
Li S, Zhang Q, Gao Y, Nie K, Liang Y, Zhang Y, Wang L. Serum Folate, Vitamin B12 Levels, and Systemic Immune-Inflammation Index Correlate With Motor Performance in Parkinson's Disease: A Cross-Sectional Study. Front Neurol 2021; 12:665075. [PMID: 34093411 PMCID: PMC8175849 DOI: 10.3389/fneur.2021.665075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/29/2021] [Indexed: 11/15/2022] Open
Abstract
This study aimed to investigate the influence of serum folate, vitamin B12 (VitB12) levels, and inflammation-based scores on the motor performance status in Parkinson's disease (PD). We retrospectively collected data from 148 consecutive patients with idiopathic PD first admitted to our hospital. We measured whole blood count, albumin, lactate dehydrogenase, C-reactive protein, folate, and VitB12 levels and calculated the inflammation-based scores. The following scales were applied to assess the motor performance status: activity of daily living scale (ADL, the Barthel Index), the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III), and Hoehn–Yahr (H–Y) classification. The geometric mean of folate and VitB12 levels were 11.87 (ng/ml) and 330.52 (pmol/L), respectively. Folate deficiency (serum level < 4.0 ng/ml) and VitB12 deficiency (serum level < 133 pg/ml) were present in 0.7 and 5.4% of the patients, respectively. The mean prognostic nutritional index (PNI) and systemic immune-inflammation index (SII) were 47.78 ± 4.42 and 470.81 ± 254.05, respectively. The multivariate analyses showed that serum VitB12 level (P = 0.002) and SII (P = 0.005) were significant factors for ADL score; serum folate (P = 0.027) and VitB12 (P = 0.037) levels for UPDRS-III score; and serum folate (P = 0.066) and VitB12 (P = 0.017) levels for H–Y classification. The elevated folate level did correlate with greater decline in UPDRS-III score (P = 0.023) and H–Y classification (P = 0.003), whereas there was an obvious increase in ADL score (P = 0.048). SII was negatively associated (P < 0.001) with the ADL score. The three-dimensional drawing, combined with the effect of folate and VitB12 levels, showed that the lowest level of folate was associated with the lowest ADL score and the highest UPDRS-III score and H–Y classification. This study indicates that serum folate, VitB12 levels, and SII are significant factors influencing the motor performance status in patients with PD. SII is negatively associated with ADL. Elevated serum folate level correlates with mild motor impairment in patients with PD.
Collapse
Affiliation(s)
- Siying Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Neurology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingxi Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanling Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
56
|
Balmik AA, Chinnathambi S. Methylation as a key regulator of Tau aggregation and neuronal health in Alzheimer's disease. Cell Commun Signal 2021; 19:51. [PMID: 33962636 PMCID: PMC8103764 DOI: 10.1186/s12964-021-00732-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative diseases like Alzheimer's, Parkinson's and Huntington's disease involves abnormal aggregation and accumulation of toxic proteins aggregates. Post-translational modifications (PTMs) of the causative proteins play an important role in the etiology of disease as they could either slow down or accelerate the disease progression. Alzheimer disease is associated with the aggregation and accumulation of two major protein aggregates-intracellular neurofibrillary tangles made up of microtubule-associated protein Tau and extracellular Amyloid-β plaques. Post-translational modifications are important for the regulation of Tau`s function but an imbalance in PTMs may lead to abnormal Tau function and aggregation. Tau methylation is one of the important PTM of Tau in its physiological state. However, the methylation signature on Tau lysine changes once it acquires pathological aggregated form. Tau methylation can compete with other PTMs such as acetylation and ubiquitination. The state of PTM at these sites determines the fate of Tau protein in terms of its function and stability. The global methylation in neurons, microglia and astrocytes are involved in multiple cellular functions involving their role in epigenetic regulation of gene expression via DNA methylation. Here, we have discussed the effect of methylation on Tau function in a site-specific manner and their cross-talk with other lysine modifications. We have also elaborated the role of methylation in epigenetic aspects and neurodegenerative conditions associated with the imbalance in methylation metabolism affecting global methylation state of cells. Video abstract.
Collapse
Affiliation(s)
- Abhishek Ankur Balmik
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008,, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002,, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, 411008,, Pune, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002,, India.
| |
Collapse
|
57
|
Moretti R, Giuffré M, Caruso P, Gazzin S, Tiribelli C. Homocysteine in Neurology: A Possible Contributing Factor to Small Vessel Disease. Int J Mol Sci 2021; 22:2051. [PMID: 33669577 PMCID: PMC7922986 DOI: 10.3390/ijms22042051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid generated during methionine metabolism, accumulation of which may be caused by genetic defects or the deficit of vitamin B12 and folate. A serum level greater than 15 micro-mols/L is defined as hyperhomocysteinemia (HHcy). Hcy has many roles, the most important being the active participation in the transmethylation reactions, fundamental for the brain. Many studies focused on the role of homocysteine accumulation in vascular or degenerative neurological diseases, but the results are still undefined. More is known in cardiovascular disease. HHcy is a determinant for the development and progression of inflammation, atherosclerotic plaque formation, endothelium, arteriolar damage, smooth muscle cell proliferation, and altered-oxidative stress response. Conversely, few studies focused on the relationship between HHcy and small vessel disease (SVD), despite the evidence that mice with HHcy showed a significant end-feet disruption of astrocytes with a diffuse SVD. A severe reduction of vascular aquaporin-4-water channels, lower levels of high-functioning potassium channels, and higher metalloproteinases are also observed. HHcy modulates the N-homocysteinylation process, promoting a pro-coagulative state and damage of the cellular protein integrity. This altered process could be directly involved in the altered endothelium activation, typical of SVD and protein quality, inhibiting the ubiquitin-proteasome system control. HHcy also promotes a constant enhancement of microglia activation, inducing the sustained pro-inflammatory status observed in SVD. This review article addresses the possible role of HHcy in small-vessel disease and understands its pathogenic impact.
Collapse
Affiliation(s)
- Rita Moretti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Mauro Giuffré
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Paola Caruso
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (M.G.); (P.C.)
| | - Silvia Gazzin
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| | - Claudio Tiribelli
- Italian Liver Foundation, AREA SCIENCE PARK, 34149 Trieste, Italy; (S.G.); (C.T.)
| |
Collapse
|
58
|
Effects of Alzheimer-Like Pathology on Homocysteine and Homocysteic Acid Levels-An Exploratory In Vivo Kinetic Study. Int J Mol Sci 2021; 22:ijms22020927. [PMID: 33477684 PMCID: PMC7831937 DOI: 10.3390/ijms22020927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 01/20/2023] Open
Abstract
Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer’s disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels. The mice received a B-vitamin deficient diet for eight weeks, followed by the return to a balanced control diet for another eight weeks. Serum, urine, and brain tissues of AppNL-G-F knock-in and C57BL/6J wild type mice were analyzed for HCys and HCA using LC-MS/MS methods. Hyperhomocysteinemic levels were found in wild type and knock-in mice due to the consumption of the deficient diet for eight weeks, followed by a rapid normalization of the levels after the return to control chow. Hyperhomocysteinemic AppNL-G-F mice had significantly higher HCys in all matrices, but not HCA, compared to wild type control. Higher serum concentrations were associated with elevated levels in both the brain and in urine. Our findings confirm a significant impact of AD-like pathology on hyperhomocysteinemia in the AppNL-G-F mouse model. The immediate normalization of HCys and HCA after the supply of B-vitamins strengthens the idea of a B-vitamin intervention as a potentially preventive treatment option for HCys-related disorders such as AD.
Collapse
|
59
|
Tauffenberger A, Magistretti PJ. Reactive Oxygen Species: Beyond Their Reactive Behavior. Neurochem Res 2021; 46:77-87. [PMID: 33439432 PMCID: PMC7829243 DOI: 10.1007/s11064-020-03208-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/02/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Cellular homeostasis plays a critical role in how an organism will develop and age. Disruption of this fragile equilibrium is often associated with health degradation and ultimately, death. Reactive oxygen species (ROS) have been closely associated with health decline and neurological disorders, such as Alzheimer's disease or Parkinson's disease. ROS were first identified as by-products of the cellular activity, mainly mitochondrial respiration, and their high reactivity is linked to a disruption of macromolecules such as proteins, lipids and DNA. More recent research suggests more complex function of ROS, reaching far beyond the cellular dysfunction. ROS are active actors in most of the signaling cascades involved in cell development, proliferation and survival, constituting important second messengers. In the brain, their impact on neurons and astrocytes has been associated with synaptic plasticity and neuron survival. This review provides an overview of ROS function in cell signaling in the context of aging and degeneration in the brain and guarding the fragile balance between health and disease.
Collapse
Affiliation(s)
- Arnaud Tauffenberger
- King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.
| | - Pierre J Magistretti
- King Abdullah University of Science and Technology, Thuwal, 23955, Kingdom of Saudi Arabia.
| |
Collapse
|
60
|
Engin A, Engin AB. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:259-283. [PMID: 33539019 DOI: 10.1007/978-3-030-49844-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Although stroke is very often the cause of death worldwide, the burden of ischemic and hemorrhagic stroke varies between regions and over time regarding differences in prognosis, prevalence of risk factors, and treatment strategies. Excitotoxicity, oxidative stress, dysfunction of the blood-brain barrier, neuroinflammation, and lysosomal membrane permeabilization, sequentially lead to the progressive death of neurons. In this process, protein kinases-related checkpoints tightly regulate N-methyl-D-aspartate (NMDA) receptor signaling pathways. One of the major hallmarks of cerebral ischemia is excitotoxicity, characterized by overactivation of glutamate receptors leading to intracellular Ca2+ overload and ultimately neuronal death. Thus, reduced expression of postsynaptic density-95 protein and increased protein S-nitrosylation in neurons is responsible for neuronal vulnerability in cerebral ischemia. In this chapter death-associated protein kinases, cyclin-dependent kinase 5, endoplasmic reticulum stress-induced protein kinases, hyperhomocysteinemia-related NMDA receptor overactivation, ephrin-B-dependent amplification of NMDA-evoked neuronal excitotoxicity and lysosomocentric hypothesis have been discussed.Consequently, ample evidences have demonstrated that enhancing extrasynaptic NMDA receptor activity triggers cell death after stroke. In this context, considering the dual roles of NMDA receptors in both promoting neuronal survival and mediating neuronal damage, selective augmentation of NR2A-containing NMDA receptor activation in the presence of NR2B antagonist may constitute a promising therapy for stroke.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
61
|
Dogra A, Narang RS, Narang JK. Recent Advances in Nanotherapeutic Interventions for the Treatment of Alzheimer's Disease. Curr Pharm Des 2020; 26:2257-2279. [PMID: 32321393 DOI: 10.2174/1381612826666200422092620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), with impairment of learning and memory as the common clinical manifestations, is one of the most challenging diseases affecting individuals, their families and society as a whole. The fact that its prevalence is escalating rapidly, with the total number of AD patients estimated to reach 115.4 million by 2050, has made the disease a very challenging ailment worldwide. Several biological barriers like the bloodbrain barrier (BBB), drug efflux by P-glycoprotein and the blood-cerebrospinal fluid barrier restrict the delivery of conventional AD drugs to the central nervous system (CNS), thereby limiting their effectiveness. In order to overcome the above physiological barriers, the development of nanomedicines has been extensively explored. The present review provides an insight into the pathophysiology of AD and risk factors associated with AD. Besides, various nanoformulations reported in the literature for the diagnosis and treatments of AD have been classified and summarised. The patented nanoformulations for AD and details of nanoformulations which are in clinical trials are also mentioned. The review would be helpful to researchers and scientific community by providing them with information related to the recent advances in nanointerventions for the diagnosis and treatment of AD, which they can further explore for better management of the disease. However, although the nanotherapeutics for managing AD have been extensively explored, the factors which hinder their commercialisation, the toxicity concern being one of them, need to be addressed so that effective nanotherapeutics for AD can be developed for clinical use.
Collapse
Affiliation(s)
- Anmol Dogra
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India.,I.K. Gujral Punjab Technical University, Kapurthala, Punjab, India
| | - R S Narang
- Department of Oral & Maxillofacial Pathology and Microbiology, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab, India
| | - Jasjeet K Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab, India
| |
Collapse
|
62
|
Lee JJ, Baik JS. Peripheral Neuropathy in de novo Patients with Parkinson's Disease. Yonsei Med J 2020; 61:1050-1053. [PMID: 33251779 PMCID: PMC7700880 DOI: 10.3349/ymj.2020.61.12.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study aimed to investigate the prevalence of peripheral neuropathy (PNP) and its related serum metabolites in de novo patients with Parkinson's disease (PD). PNP is a type of frequent comorbidity in PD. Although the administration of levodopa has been described as a presumptive risk factor in its development, few studies have explored its effect on unmedicated PD patients. MATERIALS AND METHODS This study included 105 drug-naïve de novo PD patients. A standardized nerve conduction study (NCS) technique was used to evaluate motor or sensory neuropathy. We analyzed serologic tests including metabolic markers of vitamin B12, homocysteine (Hcy), and uric acid (UA). RESULTS We found abnormal nerve conduction velocity findings in 24 out of 105 total patients. Among them, 20 patients showed a type of combined motor-sensory, while three were a type of pure sensory and one was a pure motor. Nine patients had carpal tunnel syndrome. PD with PNP group demonstrated higher serum levels of Hcy and UA compared to PD without PNP group. CONCLUSION Our data demonstrated a potential role of Hcy and UA on PNP in de novo patients with PD. These results suggest the contribution of the inherent metabolic pathway in deterioration of the peripheral nervous system in PD.
Collapse
Affiliation(s)
- Jae Jung Lee
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Jong Sam Baik
- Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea.
| |
Collapse
|
63
|
Nieraad H, de Bruin N, Arne O, Hofmann MCJ, Schmidt M, Saito T, Saido TC, Gurke R, Schmidt D, Till U, Parnham MJ, Geisslinger G. Impact of Hyperhomocysteinemia and Different Dietary Interventions on Cognitive Performance in a Knock-in Mouse Model for Alzheimer's Disease. Nutrients 2020; 12:nu12113248. [PMID: 33114054 PMCID: PMC7690745 DOI: 10.3390/nu12113248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia is considered a possible contributor to the complex pathology of Alzheimer's disease (AD). For years, researchers in this field have discussed the apparent detrimental effects of the endogenous amino acid homocysteine in the brain. In this study, the roles of hyperhomocysteinemia driven by vitamin B deficiency, as well as potentially beneficial dietary interventions, were investigated in the novel AppNL-G-F knock-in mouse model for AD, simulating an early stage of the disease. METHODS Urine and serum samples were analyzed using a validated LC-MS/MS method and the impact of different experimental diets on cognitive performance was studied in a comprehensive behavioral test battery. Finally, we analyzed brain samples immunohistochemically in order to assess amyloid-β (Aβ) plaque deposition. RESULTS Behavioral testing data indicated subtle cognitive deficits in AppNL-G-F compared to C57BL/6J wild type mice. Elevation of homocysteine and homocysteic acid, as well as counteracting dietary interventions, mostly did not result in significant effects on learning and memory performance, nor in a modified Aβ plaque deposition in 35-week-old AppNL-G-F mice. CONCLUSION Despite prominent Aβ plaque deposition, the AppNL-G-F model merely displays a very mild AD-like phenotype at the investigated age. Older AppNL-G-F mice should be tested in order to further investigate potential effects of hyperhomocysteinemia and dietary interventions.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
- Correspondence:
| | - Natasja de Bruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Olga Arne
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Martine C. J. Hofmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Mike Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; (T.S.); (T.C.S.)
| | - Robert Gurke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dominik Schmidt
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany;
| | - Michael J. Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.d.B.); (O.A.); (M.C.J.H.); (M.S.); (R.G.); (D.S.); (M.J.P.); (G.G.)
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
64
|
Braun DJ, Dimayuga E, Morganti JM, Van Eldik LJ. Microglial-associated responses to comorbid amyloid pathology and hyperhomocysteinemia in an aged knock-in mouse model of Alzheimer's disease. J Neuroinflammation 2020; 17:274. [PMID: 32943069 PMCID: PMC7499995 DOI: 10.1186/s12974-020-01938-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elevated blood homocysteine levels, termed hyperhomocysteinemia (HHcy), is a prevalent risk factor for Alzheimer's disease (AD) in elderly populations. While dietary supplementation of B-vitamins is a generally effective method to lower homocysteine levels, there is little if any benefit to cognition. In the context of amyloid pathology, dietary-induced HHcy is known to enhance amyloid deposition and certain inflammatory responses. Little is known, however, about whether there is a more specific effect on microglia resulting from combined amyloid and HHcy pathologies. METHODS The present study used a knock-in mouse model of amyloidosis, aged to 12 months, given 8 weeks of B-vitamin deficiency-induced HHcy to better understand how microglia are affected in this comorbidity context. RESULTS We found that HHcy-inducing diet increased amyloid plaque burden, altered the neuroinflammatory milieu, and upregulated the expression of multiple damage-associated and "homeostatic" microglial genes. CONCLUSIONS Taken together, these data indicate complex effects of comorbid pathologies on microglial function that are not driven solely by increased amyloid burden. Given the highly dynamic nature of microglia, their central role in AD pathology, and the frequent occurrence of various comorbidities in AD patients, it is increasingly important to understand how microglia respond to mixed pathological processes.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
| | - Edgardo Dimayuga
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
65
|
Pi T, Liu B, Shi J. Abnormal Homocysteine Metabolism: An Insight of Alzheimer's Disease from DNA Methylation. Behav Neurol 2020; 2020:8438602. [PMID: 32963633 PMCID: PMC7495165 DOI: 10.1155/2020/8438602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease in the central nervous system that has complex pathogenesis in the elderly. The current review focuses on the epigenetic mechanisms of AD, according to the latest findings. One of the best-characterized chromatin modifications in epigenetic mechanisms is DNA methylation. Highly replicable data shows that AD occurrence is often accompanied by methylation level changes of the AD-related gene. Homocysteine (Hcy) is not only an intermediate product of one-carbon metabolism but also an important independent risk factor of AD; it can affect the cognitive function of the brain by changing the one-carbon metabolism and interfering with the DNA methylation process, resulting in cerebrovascular disease. In general, Hcy may be an environmental factor that affects AD via the DNA methylation pathway with a series of changes in AD-related substance. This review will concentrate on the relation between DNA methylation and Hcy and try to figure out their rule in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tingting Pi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bo Liu
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jingshan Shi
- Department of Pharmacology and the Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
66
|
Abstract
Vitamin B12 (B12), also known as cobalamin, is a water-soluble vitamin. It is a cofactor in DNA synthesis and is involved in the metabolism of every cell of the human body, including the central nervous system. Those with a deficiency of B12 can present with peripheral neuropathy, pernicious anemia, or a cognitive disorder. Previous studies have revealed that a deficiency of B12 is associated with cognitive decline or Alzheimer disease.The data of 2991 people were evaluated from 2 years of the Korean Frailty and Aging Cohort Study, a nationwide multicenter survey. To assess cognitive function, a short form of the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD-K) was used. Of the CERAD-K tests, we included the Mini-Mental State Examination in the Korean version of the CERAD assessment packet (MMSE-KC), the word list: memory/recall/recognition, digit span (forward, backward), trail making test-A, and the frontal assessment battery. B12 concentrations were classified into clinically relevant categories, insufficient (<350 pg/mL) and sufficient (≥350 pg/mL). A linear regression analysis was used to evaluate the relationship between cognitive function and B12 levels.The mean age of the 2991 participants was 76.4 ± 3.9 years old. Overall, 414 (13.8%) were classified as B12 insufficient, and 2577 (86.2%) as B12 sufficient. The sufficient B12 group performed better in the MMSE-KC, Wordlist: memory, Wordlist: recognition, TMT-A test, digit span, and FAB tests. This was statistically significant (P < .05). However, in the multivariable linear regression analysis, after adjusting for age, sex, education period, marriage, smoking and drinking habits, and comorbidities, the association between the B12 group and cognitive function was not statistically significant.Although our study does not show that B12 insufficiency is a direct risk factor to cognitive decline, B12 levels could be a contributing factor to cognitive function. Our results suggest that cognition was affected by the B12 levels, along with demographic and sociological variables.
Collapse
Affiliation(s)
- Yunsoo Soh
- Department of Physical Medicine and Rehabilitation Medicine
| | - Do Hun Lee
- Department of Physical Medicine and Rehabilitation Medicine
| | - Chang Won Won
- Department of Family Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
67
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
68
|
Wang D, Zhao R, Qu YY, Mei XY, Zhang X, Zhou Q, Li Y, Yang SB, Zuo ZG, Chen YM, Lin Y, Xu W, Chen C, Zhao SM, Zhao JY. Colonic Lysine Homocysteinylation Induced by High-Fat Diet Suppresses DNA Damage Repair. Cell Rep 2019; 25:398-412.e6. [PMID: 30304680 DOI: 10.1016/j.celrep.2018.09.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) onset is profoundly affected by Western diet. Here, we report that high-fat (HF) diet-induced, organ-specific colonic lysine homocysteinylation (K-Hcy) increase might promote CRC onset by impeding DNA damage repair. HF chow induced elevated methionyl-tRNA synthetase (MARS) expression and K-Hcy levels and DNA damage accumulation in the mouse and rat colon, resulting in a phenotype identical to that of CRC tissues. Moreover, the increased copy number of MARS, whose protein product promotes K-Hcy, correlated with increased CRC risk in humans. Mechanistically, MARS preferentially bound to and modified ataxia-telangiectasia and Rad3-related protein (ATR), inhibited ATR and its downstream effectors checkpoint kinase-1 and p53, and relieved cell-cycle arrest and decreased DNA damage-induced apoptosis by disrupting the binding of ATR-interacting protein to ATR. Inhibiting K-Hcy by targeting MARS reversed these effects and suppressed oncogenic CRC cell growth. Our study reveals a mechanism of Western-diet-associated CRC and highlights an intervention approach for reversing diet-induced oncogenic effects.
Collapse
Affiliation(s)
- Dan Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Department of Neonatology and Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200438, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200438, China
| | - Xin-Yu Mei
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Xuan Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Qian Zhou
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Yang Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China
| | - Shao-Bo Yang
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China
| | - Zhi-Gui Zuo
- Department of Neonatology and Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yi-Ming Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chao Chen
- Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai 200438, China; Key Laboratory of Reproduction Regulation of NPFPC, Collaborative Innovation Center for Genetics and Development and Children's Hospital of Fudan University, Shanghai 200438, China; Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
69
|
Wyse ATS, Sanches EF, Dos Santos TM, Siebert C, Kolling J, Netto CA. Chronic mild hyperhomocysteinemia induces anxiety-like symptoms, aversive memory deficits and hippocampus atrophy in adult rats: New insights into physiopathological mechanisms. Brain Res 2019; 1728:146592. [PMID: 31816318 DOI: 10.1016/j.brainres.2019.146592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
In the last decade, increased homocysteine levels have been implicated as a risk factor for neurodegenerative and psychiatric disorders. We have developed an experimental model of chronic mild hyperhomocysteinemia (HHcy) in order to observe metabolic impairments in the brain of adult rodents. Besides its known effects on brain metabolism, the present study sought to investigate whether chronic mild HHcy could induce learning/memory impairments associated with biochemical and histological damage to the hippocampus. Adult male Wistar rats received daily subcutaneous injections of homocysteine (0.03 μmol/g of body weight) twice a day, from the 30th to the 60th day of life or saline solution (Controls). After injections, anxiety-like and memory tests were performed. Following behavioral analyses, brains were sliced and hippocampal volumes assessed and homogenized for redox state assessment, antioxidant activity, mitochondrial functioning (chain respiratory enzymes and ATP levels) and DNA damage analyses. Behavioral analyses showed that chronic mild HHcy may induce anxiety-like behavior and impair long-term aversive memory (24 h) that was evaluated by inhibitory avoidance task. Mild HHcy decreased locomotor and/or exploratory activities in elevated plus maze test and caused hippocampal atrophy. Decrease in cytochrome c oxidase, DNA damage and redox state changes were also observed in hippocampus of adult rats subjected to mild HHcy. Our findings show that chronic mild HHcy alters biochemical and histological parameters in the hippocampus, leading to behavioral impairments. These findings might be considered in future studies aiming to search for alternative strategies for treating the behavioral impairments in patients with mild elevations in homocysteine levels.
Collapse
Affiliation(s)
- A T S Wyse
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - E F Sanches
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - T M Dos Santos
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C Siebert
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - J Kolling
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - C A Netto
- Biochemistry Department, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-Graduation Program of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
70
|
Lv X, Wang X, Wang Y, Zhou D, Li W, Wilson JX, Chang H, Huang G. Folic acid delays age-related cognitive decline in senescence-accelerated mouse prone 8: alleviating telomere attrition as a potential mechanism. Aging (Albany NY) 2019; 11:10356-10373. [PMID: 31757935 PMCID: PMC6914419 DOI: 10.18632/aging.102461] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
The occurrence of telomere attrition in brain may cause senescence and death of neurons, leading to cognitive decline. Folic acid (FA) has been reported to improve cognitive performance in mild cognitive impairment; however, its association with telomere remains unclear. The study aimed to investigate if alleviation of telomere attrition by FA supplementation could act as a potential mechanism to delay age-related cognitive decline in senescence-accelerated mouse prone 8 (SAMP8). Aged SAMP8 mice were assigned to four treatment groups: FAdeficient diet (FA-D) group, FA-normal diet (FA-N) group, low FA-supplemented diet (FA-L) group and high FAsupplemented diet (FA-H) group. There was also an age-matched senescence-accelerated mouse resistant 1 (SAMR1) control group (Con-R), and a young SAMP8 control group (Con-Y). The results demonstrated that FA supplementation delayed age-related cognitive decline and neurodegeneration in SAMP8 mice. Importantly, this effect could be attributed to the alleviated telomere attrition, which might be interpreted by the decreased levels of reactive oxygen species. Additionally, improved telomere integrity stimulated mitochondrial function via telomere-p53-mithondria pathway, consequently delayed neuronal degeneration. In conclusion, we demonstrate that FA supplementation delays age-related neurodegeneration and cognitive decline in SAMP8 mice, in which alleviated telomere attrition could serve as one influential factor in the process.
Collapse
Affiliation(s)
- Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Xinyan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Yalan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| | - John X. Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Hong Chang
- Department of Rehabilitation Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
71
|
Qiu W, Gobinath AR, Wen Y, Austin J, Galea LAM. Folic acid, but not folate, regulates different stages of neurogenesis in the ventral hippocampus of adult female rats. J Neuroendocrinol 2019; 31:e12787. [PMID: 31478270 DOI: 10.1111/jne.12787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022]
Abstract
Folate is an important regulator of hippocampal neurogenesis, and folic acid is needed prenatally to reduce the risk of neural tube defects. Both high levels of folic acid and low levels of folate can be harmful to health because low levels of folate have been linked to several diseases while high folic acid supplements can mask a vitamin B12 deficiency. Depressed patients exhibit folate deficiencies, lower levels of hippocampal neurogenesis, elevated levels of homocysteine and elevated levels of the stress hormone, cortisol, which may be inter-related. In the present study, we were interested in whether different doses of natural folate or synthetic folic acid diets can influence neurogenesis in the hippocampus, levels of plasma homocysteine and serum corticosterone in adult female rats. Adult female Sprague-Dawley rats underwent dietary interventions for 29 days. Animals were randomly assigned to six different dietary groups: folate deficient + succinylsulphathiazole (SST), low 5-methyltetrahydrofolate (5-MTHF), low 5-MTHF + (SST), high 5-MTHF + SST, low folic acid and high folic acid. SST was added to a subset of the 5-MTHF diets to eliminate folic acid production in the gut. Before and after dietary treatment, blood samples were collected for corticosterone and homocysteine analysis, and brain tissue was collected for neurogenesis analysis. High folic acid and low 5-MTHF without SST increased the number of immature neurones (doublecortin-expressing cells) within the ventral hippocampus compared to folate deficient controls. Low 5-MTHF without SST significantly increased the number of immature neurones compared to low and high 5-MTHF + SST, indicating that SST interfered with elevations in neurogenesis. Low folic acid and high 5-MTHF + SST reduced plasma homocysteine levels compared to controls, although there was no significant effect of diet on serum corticosterone levels. In addition, low folic acid and high 5-MTHF + SST reduced the number of mature new neurones in the ventral hippocampus (bromodeoxyuridine/NeuN-positive cells) compared to folate deficient controls. Overall, folic acid dose-dependently influenced neurogenesis with low levels decreasing but high levels increasing neurogenesis in the ventral hippocampus, suggesting that this region, which is important for regulating stress, is particularly sensitive to folic acid in diets. Furthermore, the addition of SST negated the effects of 5-MTHF to increase neurogenesis in the ventral hippocampus.
Collapse
Affiliation(s)
- Wansu Qiu
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Aarthi R Gobinath
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Yanhua Wen
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jehannine Austin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
72
|
Moretti R. Homocysteine: New Aspects of an Ancient Enigma. Cardiology 2019; 144:36-39. [PMID: 31466056 DOI: 10.1159/000501997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 11/19/2022]
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy,
| |
Collapse
|
73
|
Ertuzun T, Semerci A, Cakir ME, Ekmekcioglu A, Gok MO, Soltys DT, de Souza-Pinto NC, Sezerman U, Muftuoglu M. Investigation of base excision repair gene variants in late-onset Alzheimer's disease. PLoS One 2019; 14:e0221362. [PMID: 31415677 PMCID: PMC6695184 DOI: 10.1371/journal.pone.0221362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer’s disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase β (POLβ) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLβ rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLβ variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or–translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.
Collapse
Affiliation(s)
- Tugce Ertuzun
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Asli Semerci
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Emin Cakir
- Department of Neurology, Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Ekmekcioglu
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Oguz Gok
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Daniela T. Soltys
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C. de Souza-Pinto
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
74
|
The role of one-carbon metabolism and homocysteine in Parkinson’s disease onset, pathology and mechanisms. Nutr Res Rev 2019; 32:218-230. [DOI: 10.1017/s0954422419000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractParkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterised by the progressive degeneration of dopaminergic (DA) neurons. The cause of degeneration is not well understood; however, both genetics and environmental factors, such as nutrition, have been implicated in the disease process. Deficiencies in one-carbon metabolism in particular have been associated with increased risk for PD onset and progression, though the precise relationship is unclear. The aim of the present review is to determine the role of one-carbon metabolism and elevated levels of homocysteine in PD onset and pathology and to identify potential mechanisms involved. A search of PubMed, Google Scholar and Web of Science was undertaken to identify relevant human and animal studies. Case–control, prospective cohort studies, meta-analyses and non-randomised trials were included in the present review. The results from human studies indicate that polymorphisms in one-carbon metabolism may increase risk for PD development. There is an unclear role for dietary B-vitamin intake on PD onset and progression. However, dietary supplementation with B-vitamins may be beneficial for PD-affected individuals, particularly those onl-DOPA (levodopa orl-3,4-dihydroxyphenylalanine) treatment. Additionally, one-carbon metabolism generates methyl groups, and methylation capacity in PD-affected individuals is reduced. This reduced capacity has an impact on expression of disease-specific genes that may be involved in PD progression. During B-vitamin deficiency, animal studies report increased vulnerability of DA cells through increased oxidative stress and altered methylation. Nutrition, especially folates and related B-vitamins, may contribute to the onset and progression of PD by making the brain more vulnerable to damage; however, further investigation is required.
Collapse
|
75
|
Harilal S, Jose J, Parambi DGT, Kumar R, Mathew GE, Uddin MS, Kim H, Mathew B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol 2019; 71:1370-1383. [DOI: 10.1111/jphp.13132] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Objectives
Considerable progress has been made in the treatment of Alzheimer’s disease (AD), but all available strategies focus on alleviating symptoms rather than curing, which means that AD is viewed as an unresolvable neurodegenerative disease. Nanotechnological applications offer an alternative platform for the treatment of neurodegenerative diseases. This review aims to summarize the recent nanomedicine and nanotechnology developments for the treatment of AD.
Key findings
A plethora of nanocarriers and nanoparticle prodrugs have been reported to have negligible cytotoxicity in animal models, and these developments have revealed new opportunities for development of new classes of potent drug formulations for AD. Different nanotechnology-based approaches such as polymers, emulsions, lipo-carriers, solid lipid carriers, carbon nanotubes and metal-based carriers have been developed over the past decade, and they have been focusing on both neuroprotective and neurogenerative techniques to treat AD. Studies also reveal that nanotechnological approaches can aid in early diagnosis of AD and enhance therapeutic efficacy and bioavailability.
Summary
Notably, the drugs used conventionally to target the central nervous system have limitations that include an inability to cross the ‘blood–brain barrier’ or the ‘blood–cerebrospinal fluid barrier’ effectively and high drug efflux due to the activity of P-glycoprotein, but these limitations can be successfully overcome when nanocarriers are used for targeted drug delivery in AD.
Collapse
Affiliation(s)
- Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore, India
| | | | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala, India
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Bijo Mathew
- Division of Drug Design, Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala, India
| |
Collapse
|
76
|
Tian X, Gong L, Jin A, Wang Y, Zhou X, Tan Y. E3 ubiquitin ligase siah‑1 nuclear accumulation is critical for homocysteine‑induced impairment of C6 astroglioma cells. Mol Med Rep 2019; 20:2227-2235. [PMID: 31322210 PMCID: PMC6691270 DOI: 10.3892/mmr.2019.10449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 12/03/2018] [Indexed: 01/30/2023] Open
Abstract
Elevated plasma homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), is an independent risk factor for neurodegenerative diseases. Hcy, even at a low concentration, can promote free radical formation and increase oxidative stress, leading to neuronal death, which may be an important mechanism underlying the pathogenesis of neurodegenerative diseases. Although several reports have indicated that the nuclear translocation of glyceraldehyde 3‑phosphate dehydrogenase (GAPDH) may be involved in Hcy‑induced apoptosis, the exact mechanism remains to be fully elucidated. The siah E3 ubiquitin protein ligase 1 (siah‑1) gene was found to be critical for the translocation of GAPDH from the cytoplasm to the nucleus. In the present study, the role of siah‑1 was investigated in the nuclear translocation of GAPDH in rat C6 astroglioma cells treated with Hcy. C6 cells were treated with various concentrations of Hcy for 48 h and the expression level of siah‑1 was examined using reverse transcription‑quantitative polymerase chain reaction and western blotting analysis. In addition, the subcellular localization of siah‑1 and GAPDH and the interaction between these two factors were investigated by immunofluorescence staining and co‑immunoprecipitation assay, respectively. The results showed that Hcy at a high concentration increased the expression of siah‑1 and induced nuclear translocation of siah‑1 and GAPDH. In addition, siah‑1 knockdown by siah‑1 small interfering RNA significantly decreased the Hcy‑induced nuclear accumulation of GAPDH and inhibited the impairment of C6 cells. These findings suggest that siah‑1 is involved in Hcy‑induced cell damage by promoting the nuclear translocation of GAPDH.
Collapse
Affiliation(s)
- Xiangzhu Tian
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Li Gong
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Aiping Jin
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yu Wang
- Department of Neurology, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226011, P.R. China
| | - Xiaoyu Zhou
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| | - Yan Tan
- Department of Neurology, Tenth People's Hospital, Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
77
|
Jang S, Han JW, Shin J, Kim TH, Kwak KP, Kim K, Kim BJ, Kim SG, Kim JL, Kim TH, Moon SW, Park JY, Park JH, Byun S, Suh SW, Seo J, So Y, Ryu SH, Youn JC, Lee KH, Lee DY, Lee DW, Lee SB, Lee JJ, Lee JR, Jeong H, Jeong HG, Jhoo JH, Han K, Hong JW, Kim KW. Normal-But-Low Serum Folate Levels and the Risks for Cognitive Impairment. Psychiatry Investig 2019; 16:532-538. [PMID: 31352735 PMCID: PMC6664218 DOI: 10.30773/pi.2019.05.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study aimed to examine the association between normal-but-low folate levels and cognitive function in the elderly population using a prospective cohort study. METHODS We analyzed 3,910 participants whose serum folate levels were within the normal reference range (1.5-16.9 ng/mL) at baseline evaluation in the population-based prospective cohort study named the "Korean Longitudinal Study on Cognitive Aging and Dementia." The association between baseline folate quartile categories and baseline cognitive disorders [mild cognitive impairment (MCI) or dementia] was examined using binary logistic regression analysis adjusting for confounding variables. The risks of incident MCI and dementia associated with the decline of serum folate level during a 4-year follow-up period were examined using multinomial logistic regression analysis. RESULTS The lowest quartile group of serum folate (≥1.5, ≤5.9 ng/mL) showed a higher risk of cognitive disorders than did the highest quartile group at baseline evaluation (odds ratio 1.314, p=0.012). Over the 4 years of follow-up, the risk of incident dementia was 2.364 times higher among subjects whose serum folate levels declined from the 2nd-4th quartile group to the 1st quartile than among those for whom it did not (p=0.031). CONCLUSION Normal-but-low serum folate levels were associated with the risk of cognitive disorders in the elderly population, and a decline to normal-but-low serum folate levels was associated with incident dementia. Maintaining serum folate concentration above 5.9 ng/mL may be beneficial for cognitive status.
Collapse
Affiliation(s)
- Soomin Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jiyoon Shin
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae Hui Kim
- Department of Psychiatry, Yonsei University Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Kyung Phil Kwak
- Department of Psychiatry, Dongguk University Gyeongju Hospital, Gyeongju, Republic of Korea
| | - Kayoung Kim
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bong Jo Kim
- Department of Psychiatry, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Shin Gyeom Kim
- Department of Neuropsychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jeong Lan Kim
- Department of Psychiatry, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Hyun Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seok Woo Moon
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Chungju Hospital, Chungju, Republic of Korea
| | - Jae Young Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joon Hyuk Park
- Department of Neuropsychiatry, Jeju National University Hospital, Jeju, Republic of Korea
| | - Seonjeong Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung Wan Suh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jiyeong Seo
- Department of Psychiatry, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Yoonseop So
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seung-Ho Ryu
- Department of Psychiatry, School of Medicine, Konkuk University, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jong Chul Youn
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Republic of Korea
| | - Kyoung Hwan Lee
- Department of Psychiatry, Bongseng Memorial Hospital, Busan, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Woo Lee
- Department of Neuropsychiatry, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Seok Bum Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
| | - Ju Ri Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyeon Jeong
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyun-Ghang Jeong
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Kyuhee Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jong Woo Hong
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| |
Collapse
|
78
|
Bihaqi SW. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer’s disease. REVIEWS ON ENVIRONMENTAL HEALTH 2019; 34:187-195. [DOI: 10.1515/reveh-2018-0076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 05/08/2023]
Abstract
Abstract
Recent advances in neuroepigenetics have revealed its essential role in governing body function and disease. Epigenetics regulates an array of mechanisms that are susceptible to undergoing alteration by intracellular or extracellular factors. DNA methylation, one of the most extensively studied epigenetic markers is involved in the regulation of gene expression and also plays a vital role in neuronal development. The epigenome is most vulnerable during early the embryonic stage and perturbation in DNA methylation during this period can result in a latent outcome which can persist during the entire lifespan. Accumulating evidence suggests that environmental insults during the developmental phase can impart changes in the DNA methylation landscape. Based on reports on human subjects and animal models this review will explore the evidence on how developmental exposure of the known environmental pollutant, lead (Pb), can induce changes in the DNA methylation of genes which later can induce development of neurodegenerative disorders like Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Syed Waseem Bihaqi
- George and Anne Ryan Institute for Neuroscience , University of Rhode Island , Avedisian Hall, Lab: 390, 7 Greenhouse Road , Kingston, RI 02881 , USA
| |
Collapse
|
79
|
Rajagopal S, Fitzgerald AA, Deep SN, Paul S, Poddar R. Role of GluN2A NMDA receptor in homocysteine-induced prostaglandin E2 release from neurons. J Neurochem 2019; 150:44-55. [PMID: 31125437 DOI: 10.1111/jnc.14775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
Hyperhomocysteinemia or systemic elevation of homocysteine is a metabolic condition that has been linked to multiple neurological disorders where inflammation plays an important role in the progression of the disease. However, it is unclear whether hyperhomocysteinemia contributes to disease pathology by inducing an inflammatory response. The current study investigates whether exposure of primary cultures from rat and mice cortical neurons to high levels of homocysteine induces the expression and release of the proinflammatory prostanoid, Prostaglandin E2 (PGE2). Using enzymatic assays and immunoblot analysis we show concurrent increase in the activity of cytosolic phospholipase A2 (cPLA2) and level of cyclooxygenase-2 (COX2), two enzymes involved in PGE2 biosynthesis. The findings also show an increase in PGE2 release from neurons. Pharmacological inhibition of GluN2A-containing NMDAR (GluN2A-NMDAR) with NVP-AAM077 significantly reduces homocysteine-induced cPLA2 activity, COX2 expression, and subsequent PGE2 release. Whereas, inhibition of GluN2B-containing NMDAR (GluN2A-NMDAR) with Ro 25-6981 has no effect. Complementary studies in neuron cultures obtained from wild type and GluN2A knockout mice show that genetic deletion of GluN2A subunit of NMDAR attenuates homocysteine-induced neuronal increase in cPLA2 activity, COX2 expression, and PGE2 release. Pharmacological studies further establish the role of both extracellular-regulated kinase/mitogen-activated protein kinase and p38 MAPK in homocysteine-GluN2A NMDAR-dependent activation of cPLA2-COX2-PGE2 pathway. Collectively, these findings reveal a novel role of GluN2A-NMDAR in facilitating homocysteine-induced proinflammatory response in neurons.
Collapse
Affiliation(s)
- Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ashley Anne Fitzgerald
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
80
|
Deep SN, Mitra S, Rajagopal S, Paul S, Poddar R. GluN2A-NMDA receptor-mediated sustained Ca 2+ influx leads to homocysteine-induced neuronal cell death. J Biol Chem 2019; 294:11154-11165. [PMID: 31167782 DOI: 10.1074/jbc.ra119.008820] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Indexed: 11/06/2022] Open
Abstract
Homocysteine, a metabolite of the methionine cycle, is a known agonist of N-methyl-d-aspartate receptor (NMDAR), a glutamate receptor subtype and is involved in NMDAR-mediated neurotoxicity. Our previous findings have shown that homocysteine-induced, NMDAR-mediated neurotoxicity is facilitated by a sustained increase in phosphorylation and activation of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK MAPK). In the current study, we investigated the role GluN1/GluN2A-containing functional NMDAR (GluN2A-NMDAR) and GluN1/GluN2B-containing functional NMDAR (GluN2B-NMDAR) in homocysteine-induced neurotoxicity. Our findings revealed that exposing primary cortical neuronal cultures to homocysteine leads to a sustained low-level increase in intracellular Ca2+ We also showed that pharmacological inhibition of GluN2A-NMDAR or genetic deletion of the GluN2A subunit attenuates homocysteine-induced increase in intracellular Ca2+ Our results further established the role of GluN2A-NMDAR in homocysteine-mediated sustained ERK MAPK phosphorylation and neuronal cell death. Of note, the preferential role of GluN2A-NMDAR in homocysteine-induced neurotoxicity was distinctly different from glutamate-NMDAR-induced excitotoxic cell death that involves overactivation of GluN2B-NMDAR and is independent of ERK MAPK activation. These findings indicate a critical role of GluN2A-NMDAR-mediated signaling in homocysteine-induced neurotoxicity.
Collapse
Affiliation(s)
- Satya Narayan Deep
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sumonto Mitra
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sathyanarayanan Rajagopal
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Surojit Paul
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Ranjana Poddar
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
81
|
Liu L, Liang J, Liu Q, Luo C, Liu J, Fan R, Chen Z, Chen Y, Peng F, Jiang Y. Elevated Plasma Homocysteine Levels in Anti-N-methyl-D-aspartate Receptor Encephalitis. Front Neurol 2019; 10:464. [PMID: 31130913 PMCID: PMC6509947 DOI: 10.3389/fneur.2019.00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
Objective: Homocysteine (Hcy) levels have been investigated in many diseases, such as neurodegenerative and autoimmune diseases. However, changes in Hcy levels in anti-N-Methyl-D-aspartate receptor (anti-NMDAR) encephalitis have not been investigated thus far. Methods: Case data were collected from 45 patients with anti-NMDAR encephalitis and 179 age- and sex-matched healthy controls (HCs). Clinical characteristics, Hcy levels, C reactive protein (CRP) levels, and cerebrospinal fluid (CSF) parameters were determined. Association of Hcy and clinical parameters were evaluated in these patients. Among these 45 patients, 15 had a follow-up evaluation at 3 months after treatment. Results: Hcy levels (p < 0.001) and CRP levels (p = 0.005) from the patients with anti-NMDAR encephalitis were significantly higher than those from HCs. Hcy levels from male patients were significantly lower than those from male HCs (p < 0.001). Comparing anti-NMDAR encephalitis patients after treatment with before treatment, the former has significantly higher Hcy levels (p = 0.004), CRP levels (p = 0.041) and mRS scores (p = 0.002). Furthermore, a significant negative correlation between the changes in Hcy levels and the changes in mRS scores (r = −0.534, p = 0.040) was observed. Conclusion: Elevated plasma homocysteine occurs in anti-NMDAR encephalitis, and seems associated with male sex.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Jie Liang
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Department of Neurology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Chongliang Luo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Jia Liu
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Fan
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Chen
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Fuhua Peng
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Jiang
- Department of Neurology and Multiple Sclerosis Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
82
|
Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients 2019; 11:nu11051076. [PMID: 31096592 PMCID: PMC6566411 DOI: 10.3390/nu11051076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Collapse
|
83
|
Cheng M, Yang L, Dong Z, Wang M, Sun Y, Liu H, Wang X, Sai N, Huang G, Zhang X. Folic acid deficiency enhanced microglial immune response via the Notch1/nuclear factor kappa B p65 pathway in hippocampus following rat brain I/R injury and BV2 cells. J Cell Mol Med 2019; 23:4795-4807. [PMID: 31087489 PMCID: PMC6584545 DOI: 10.1111/jcmm.14368] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Recent studies revealed that folic acid deficiency (FD) increased the likelihood of stroke and aggravated brain injury after focal cerebral ischaemia. The microglia-mediated inflammatory response plays a crucial role in the complicated pathologies that lead to ischaemic brain injury. However, whether FD is involved in the activation of microglia and the neuroinflammation after experimental stroke and the underlying mechanism is still unclear. The aim of the present study was to assess whether FD modulates the Notch1/nuclear factor kappa B (NF-κB) pathway and enhances microglial immune response in a rat middle cerebral artery occlusion-reperfusion (MCAO) model and oxygen-glucose deprivation (OGD)-treated BV-2 cells. Our results exhibited that FD worsened neuronal cell death and exaggerated microglia activation in the hippocampal CA1, CA3 and Dentate gyrus (DG) subregions after cerebral ischaemia/reperfusion. The hippocampal CA1 region was more sensitive to ischaemic injury and FD treatment. The protein expressions of proinflammatory cytokines such as tumour necrosis factor-α, interleukin-1β and interleukin-6 were also augmented by FD treatment in microglial cells of the post-ischaemic hippocampus and in vitro OGD-stressed microglia model. Moreover, FD not only dramatically enhanced the protein expression levels of Notch1 and NF-κB p65 but also promoted the phosphorylation of pIkBα and the nuclear translocation of NF-κB p65. Blocking of Notch1 with N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester partly attenuated the nuclear translocation of NF-κB p65 and the protein expression of neuroinflammatory cytokines in FD-treated hypoxic BV-2 microglia. These results suggested that Notch1/NF-κB p65 pathway-mediated microglial immune response may be a molecular mechanism underlying cerebral ischaemia-reperfusion injury worsened by FD treatment.
Collapse
Affiliation(s)
- Man Cheng
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Liu Yang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Zhiping Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Mengying Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Yan Sun
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xuan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Na Sai
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
84
|
Gundogdu G, Dodurga Y, Kucukatay V. The sulfite molecule enhances homocysteine toxicity in SH-SY5Y cells. Mol Biol Rep 2019; 46:4017-4025. [PMID: 31079315 DOI: 10.1007/s11033-019-04850-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
Homocysteine (hcy) is an amino acid that contains sulfur species. In healthy individuals, plasma hcy levels are low. The aim of this study was to investigate the potential neurotoxic effects of hcy and sulfite (sft) molecules alone and in their combination, and also to identify the relationship of these substances on oxidative stress. SH-SY5Y cells were used as an invitro neurodegenerative disease model. The SH-SY5Y cells were treated with various concentrations of hcy alone, sft alone (final concentrations in the well were 10-250 µM and 0.1-5 mM, respectively) and a combination of both (hcy + sft). Their cytotoxicity and genotoxic effects were investigated using the XTT test and Comet assay and, their impact on oxidative stress was examined using total antioxidant-oxidant status (TAS-TOS) kits. The highest toxic doses of hcy and sft were found to be 250 μM and 5 mM, respectively, but the maximum toxic effect was observed for hcy + sft (p < 0.001). In addition, an increase in DNA damage was evident in all groups, but maximal damage was inflicted using in hcy + sft (p < 0.001). The oxidative stress index was significantly increased in hcy + sft (p < 0.05). Determining the increase in sft and hcy levels may contribute to delaying the occurrence of diseases before symptoms of neurodegenerative disease appear.
Collapse
Affiliation(s)
- Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
85
|
Exposure to homocysteine leads to cell cycle damage and reactive gliosis in the developing brain. Reprod Toxicol 2019; 87:60-69. [PMID: 31082465 DOI: 10.1016/j.reprotox.2019.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
Studies that investigate the cellular effects of homocysteine (Hcy) on the differentiation of neural cells, and their involvement in establishment of cell layers in the developing brain are scarce. This study evaluated how Hcy affects the neural cell cycle and proteins involved in neuronal differentiation in the telencephalon and mesencephalon using the chicken embryo as a model. Embryos at embryonic day 2 (E2) received 20 μmol D-L Hcy/50 μl saline and analyzed at E6. The Hcy treatment induced an increase in the ventricular length of the telencephalon and also a reduction of the mantle layer thickness. We observed that Hcy induced impairments to the neural cell cycle and differentiation, which compromised the cell layers establishment in the developing brain. Hcy treatment also induced changes in gene and protein expression of astrocytes, characteristic of reactive gliosis. Our results point to new perspectives of evaluation of cellular targets of Hcy toxicity.
Collapse
|
86
|
Price JS, Larsen SE, Miller LA, Smith HM, Apps JA, Weis JM. Clinical Biopsychosocial Reflection on Coping With Chronic Illness and Reliance Upon Nutrition Support: An Integrated Healthcare Approach. Nutr Clin Pract 2019; 34:220-225. [DOI: 10.1002/ncp.10263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | | | | | | | | | - Jo M. Weis
- Medical College of Wisconsin; Milwaukee Wisconsin USA
| |
Collapse
|
87
|
Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GluN2A NMDA receptors. Neurobiol Dis 2019; 127:287-302. [PMID: 30885791 DOI: 10.1016/j.nbd.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/19/2019] [Accepted: 03/14/2019] [Indexed: 11/24/2022] Open
Abstract
Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.
Collapse
|
88
|
Sade D, Shaham-Niv S, Arnon ZA, Tavassoly O, Gazit E. Seeding of proteins into amyloid structures by metabolite assemblies may clarify certain unexplained epidemiological associations. Open Biol 2019; 8:rsob.170229. [PMID: 29367352 PMCID: PMC5795054 DOI: 10.1098/rsob.170229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
The accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes. Here, we suggest and discuss a possible mechanistic insight into metabolite accumulation in conditions such as neurodegenerative diseases and cancer. Our hypothesis is based on the demonstrated ability of metabolites to form amyloid-like structures in inborn error of metabolism disorders and the potential of such metabolite amyloids to promote protein aggregation. This notion can provide a new paradigm for neurodegeneration and cancer, as both conditions were linked to loss of function due to protein aggregation. Similar to the well-established observation of amyloid formation in many degenerative disorders, the formation of amyloids by tumour-suppressor proteins, including p53, was demonstrated in malignant states. Moreover, this new paradigm could fill the gap in understanding the high occurrence of specific types of cancer among genetic error of metabolism patients. This hypothesis offers a fresh view on the aetiology of some of the most abundant human maladies and may redirect the efforts towards new therapeutic developments.
Collapse
Affiliation(s)
- Dorin Sade
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shira Shaham-Niv
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Zohar A Arnon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omid Tavassoly
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel .,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel.,Blavatnik Center for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
89
|
Smith AD, Refsum H, Bottiglieri T, Fenech M, Hooshmand B, McCaddon A, Miller JW, Rosenberg IH, Obeid R. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis 2019; 62:561-570. [PMID: 29480200 PMCID: PMC5836397 DOI: 10.3233/jad-171042] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Identification of modifiable risk factors provides a crucial approach to the prevention of dementia. Nutritional or nutrient-dependent risk factors are especially important because dietary modifications or use of dietary supplements may lower the risk factor level. One such risk factor is a raised concentration of the biomarker plasma total homocysteine, which reflects the functional status of three B vitamins (folate, vitamins B12, B6). A group of experts reviewed literature evidence from the last 20 years. We here present a Consensus Statement, based on the Bradford Hill criteria, and conclude that elevated plasma total homocysteine is a modifiable risk factor for development of cognitive decline, dementia, and Alzheimer’s disease in older persons. In a variety of clinical studies, the relative risk of dementia in elderly people for moderately raised homocysteine (within the normal range) ranges from 1.15 to 2.5, and the Population Attributable risk ranges from 4.3 to 31%. Intervention trials in elderly with cognitive impairment show that homocysteine-lowering treatment with B vitamins markedly slows the rate of whole and regional brain atrophy and also slows cognitive decline. The findings are consistent with moderately raised plasma total homocysteine (>11 μmol/L), which is common in the elderly, being one of the causes of age-related cognitive decline and dementia. Thus, the public health significance of raised tHcy in the elderly should not be underestimated, since it is easy, inexpensive, and safe to treat with B vitamins. Further trials are needed to see whether B vitamin treatment will slow, or prevent, conversion to dementia in people at risk of cognitive decline or dementia.
Collapse
Affiliation(s)
- A David Smith
- OPTIMA, Department of Pharmacology, University of Oxford, Oxford, UK
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Michael Fenech
- Genome Health and Personalised Nutrition Laboratory, CSIRO Health and Biosecurity, Adelaide BC, SA, Australia
| | - Babak Hooshmand
- Aging Research Centre, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Andrew McCaddon
- Cardiff University, School of Medicine, Gwenfro Units 6/7, Wrexham, UK
| | - Joshua W Miller
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Irwin H Rosenberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Germany
| |
Collapse
|
90
|
Craenen K, Verslegers M, Baatout S, Abderrafi Benotmane M. An appraisal of folates as key factors in cognition and ageing-related diseases. Crit Rev Food Sci Nutr 2019; 60:722-739. [PMID: 30729795 DOI: 10.1080/10408398.2018.1549017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Folic acid (FA) is often consumed as a food supplement and can be found in fortified staple foods in various western countries. Even though FA supplementation during pregnancy is known to prevent severe congenital anomalies in the developing child (e.g., neural tube defects), much less is known about its influence on cognition and neurological functioning. In this review, we address the advances in this field and situate how folate intake during pregnancy, postnatal life, adulthood and in the elderly affects cognition. In addition, an association between folate status and ageing, dementia and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis is discussed. While its role in the incidence and severity of these diseases is becoming apparent, the underlying action of folates and related metabolites remains elusive. Finally, the potential of FA as a nutraceutical has been proposed, although the efficacy will highly depend on the interplay with other micronutrients, the disease stage and the duration of supplementation. Hence, the lack of consistent data urges for more animal studies and (pre)clinical trials in humans to ascertain a potential beneficial role for folates in the treatment or amelioration of cognitive decline and ageing-related disorders.
Collapse
Affiliation(s)
- Kai Craenen
- Radiobiology Unit, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium.,Biology Department, Research Group Neural Circuit Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mieke Verslegers
- Radiobiology Unit, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | | |
Collapse
|
91
|
ITRAQ-Based Quantitative Proteomics Reveals the Proteome Profiles of Primary Duck Embryo Fibroblast Cells Infected with Duck Tembusu Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1582709. [PMID: 30809531 PMCID: PMC6369498 DOI: 10.1155/2019/1582709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively. The Gene Ontology analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes, metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that the molecular functions in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection mechanisms.
Collapse
|
92
|
Moretti R, Caruso P. The Controversial Role of Homocysteine in Neurology: From Labs to Clinical Practice. Int J Mol Sci 2019; 20:231. [PMID: 30626145 PMCID: PMC6337226 DOI: 10.3390/ijms20010231] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy can be caused by deficiency of either vitamin B12 or folate. Hyperhomocysteinemia (HHcy) can be responsible of different systemic and neurological disease. Actually, HHcy has been considered as a risk factor for systemic atherosclerosis and cardiovascular disease (CVD) and HHcy has been reported in many neurologic disorders including cognitive impairment and stroke, independent of long-recognized factors such as hyperlipidemia, hypertension, diabetes mellitus, and smoking. HHcy is typically defined as levels >15 micromol/L. Treatment of hyperhomocysteinemia with folic acid and B vitamins seems to be effective in the prevention of the development of atherosclerosis, CVD, and strokes. However, data from literature show controversial results regarding the significance of homocysteine as a risk factor for CVD and stroke and whether patients should be routinely screened for homocysteine. HHcy-induced oxidative stress, endothelial dysfunction, inflammation, smooth muscle cell proliferation, and endoplasmic reticulum (ER) stress have been considered to play an important role in the pathogenesis of several diseases including atherosclerosis and stroke. The aim of our research is to review the possible role of HHcy in neurodegenerative disease and stroke and to understand its pathogenesis.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| | - Paola Caruso
- Neurology Clinic, Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy.
| |
Collapse
|
93
|
Soltys DT, Pereira CP, Rowies FT, Farfel JM, Grinberg LT, Suemoto CK, Leite RE, Rodriguez RD, Ericson NG, Bielas JH, Souza-Pinto NC. Lower mitochondrial DNA content but not increased mutagenesis associates with decreased base excision repair activity in brains of AD subjects. Neurobiol Aging 2019; 73:161-170. [DOI: 10.1016/j.neurobiolaging.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/13/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
94
|
Eskandary A, Moazedi AA, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran. Effect of co-administration of donepezil and folic acid on spatial memory impairment in adult male rat model of Alzheimer's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
95
|
Romagnolo A, Merola A, Artusi CA, Rizzone MG, Zibetti M, Lopiano L. Levodopa-Induced Neuropathy: A Systematic Review. Mov Disord Clin Pract 2018; 6:96-103. [PMID: 30838307 DOI: 10.1002/mdc3.12688] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022] Open
Abstract
Background Clinical, neurophysiological, and pathological evidence suggest an association between Parkinson's disease (PD) and peripheral neuropathy (PNP), with a possible causative role of levodopa metabolic products, such as homocysteine and methylmalonic acid. Methods We conducted a systematic review of studies reporting cases of PNP in l-dopa-treated PD patients indexed in PubMed between January 1990 and March 2018. Results We identified 38 articles reporting cases of PNP in PD patients treated with oral l-dopa or with l-dopa/carbidopa intestinal gel infusion (LCIG). Prevalence of PNP was 30.2% in the former group and 42.1% in the latter. Oral l-dopa was mostly associated with slowly progressive PNP, whereas LCIG showed an acute or subacute onset in 35.7% of cases. In both groups, there was an association between PNP and higher l-dopa doses, as well as with the following biochemical alterations: increased homocysteine; reduced vitamin B12; increased methylmalonic acid; and reduced vitamin B6. A skin biopsy was performed in 181 patients, showing signs of small fibers neuropathy in 169 (93.4%). Positive, yet preliminary, results were observed in patients receiving periodic vitamin supplementation. Conclusions Over one third of PD patients in treatment with l-dopa may develop PNP, with a significantly higher prevalence of acute and subacute forms in those receiving LCIG. Pathogenic mechanisms remain unclear, but possibly related to a complex interplay between peripheral neurodegenerative processes and l-dopa neurotoxic metabolites. Prospective, randomized, clinical trials are required to identify factors associated with the onset and progression of PD-associated PNP and clarify the protective role of B-group vitamin supplementation.
Collapse
Affiliation(s)
- Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| | - Aristide Merola
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology University of Cincinnati Cincinnati Ohio USA
| | - Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| | | | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini" University of Turin Torino Italy
| |
Collapse
|
96
|
Lin L, Du H. An anthraquinone compound and its protective effects against homocysteine-induced cytotoxicity and oxidative stress. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:314-318. [PMID: 29800895 DOI: 10.1016/j.saa.2018.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
In this work, we designed an anthraquinone derivative: 1,4-diacrylateanthracene-9,10-dione (DAAD) with antioxidant activity for preventing Alzheimer's disease (AD) through preventing the neurotoxicity of Homocysteine (Hcy). This compound has very low cytotoxicity and protects the cells against Hcy-induced cytotoxicity and oxidative stress. Thus, maybe DAAD can be used as a potential reagent to preventing AD. In addition, we investigated the UV-Vis and fluorescence spectra of DAAD in PBS (pH 7.29)/DMSO (v/v, 1:1) solution for detecting Hcy, and the detection limit of DAAD for Hcy was found to be 0.121 μM. Thus, DAAD also can be used to monitor the Hcy level in plasma and cells.
Collapse
Affiliation(s)
- Lixia Lin
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Huizhi Du
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
97
|
FRANKE SILVIAI, MOLZ PATRÍCIA, MAI CAMILA, ELLWANGER JOELH, ZENKNER FERNANDAF, HORTA JORGEA, PRÁ DANIEL. Influence of hesperidin and vitamin C on glycemic parameters, lipid profile, and DNA damage in rats treated with sucrose overload. ACTA ACUST UNITED AC 2018; 90:2203-2210. [DOI: 10.1590/0001-3765201820170751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022]
Affiliation(s)
- SILVIA I.R. FRANKE
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| | - PATRÍCIA MOLZ
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - CAMILA MAI
- Universidade de Santa Cruz do Sul, Brazil
| | | | | | - JORGE A. HORTA
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| | - DANIEL PRÁ
- Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil; Universidade de Santa Cruz do Sul, Brazil
| |
Collapse
|
98
|
Effect of gender, age, diet and smoking status on the circadian rhythm of ascorbic acid (vitamin C) of healthy Indians. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
99
|
Leiteritz A, Dilberger B, Wenzel U, Fitzenberger E. Betaine reduces β-amyloid-induced paralysis through activation of cystathionine-β-synthase in an Alzheimer model of Caenorhabditis elegans. GENES & NUTRITION 2018; 13:21. [PMID: 30065790 PMCID: PMC6062997 DOI: 10.1186/s12263-018-0611-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND The neurodegenerative disorder Alzheimer's disease is caused by the accumulation of toxic aggregates of β-amyloid in the human brain. On the one hand, hyperhomocysteinemia has been shown to be a risk factor for cognitive decline in Alzheimer's disease. On the other hand, betaine has been demonstrated to attenuate Alzheimer-like pathological changes induced by homocysteine. It is reasonable to conclude that this is due to triggering the remethylation pathway mediated by betaine-homocysteine-methyltransferase. In the present study, we used the transgenic Caenorhabditis elegans strain CL2006, to test whether betaine is able to reduce β-amyloid-induced paralysis in C. elegans. This model expresses human β-amyloid 1-42 under control of a muscle-specific promoter that leads to progressive, age-dependent paralysis in the nematodes. RESULTS Betaine at a concentration of 100 μM was able to reduce homocysteine levels in the presence and absence of 1 mM homocysteine. Simultaneously, betaine both reduced normal paralysis rates in the absence of homocysteine and increased paralysis rates triggered by addition of homocysteine. Knockdown of cystathionine-β-synthase using RNA interference both increased homocysteine levels and paralysis. Additionally, it prevented the reducing effects of betaine on homocysteine levels and paralysis. CONCLUSION Our studies show that betaine is able to reduce homocysteine levels and β-amyloid-induced toxicity in a C. elegans model for Alzheimer's disease. This effect is independent of the remethylation pathway but requires the transsulfuration pathway mediated by cystathionine-β-synthase.
Collapse
Affiliation(s)
- Anne Leiteritz
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Benjamin Dilberger
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Uwe Wenzel
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Elena Fitzenberger
- Molecular Nutrition Research, Interdisciplinary Research Center, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
100
|
Kim HL, Kim DK, Kang SW, Park YK. Association of Nutrient Intakes with Cognitive Function in Koreans Aged 50 years and Older. Clin Nutr Res 2018; 7:199-212. [PMID: 30079318 PMCID: PMC6073172 DOI: 10.7762/cnr.2018.7.3.199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023] Open
Abstract
This study attempted to investigate whether nutrient and food intake were related with mild cognitive impairment (MCI) in adults and elderly over 50 years of age in Korea. Questionnaires and anthropometric measurements were conducted on general aspects of the research, and food frequency questionnaires (FFQs) were conducted to determine nutritional status. The relative theta power (RTP) through electroencephalography (EEG) measurements, neurocognitive function test (NFT; CNS Vital Signs), and cognitive function was measured. The MCI group consumed significantly lower C18:4, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) among the N-3 fatty acids, N-6 fatty acids dihomo-γ-linolenic acid (DGLA), mono unsaturated fatty acids, C22:1, biotin, vitamin D in the nutrients, and sweet potato (12.35g/day, p = 0.015), mackerel (3.38g/day, p = 0.017), mandarin orange (p = 0.016), persimmon (p = 0.013) and apple (p = 0.023) in the food than the normal group did. And the MCI group consumed salted fish (3.14g/day, p = 0.041) and ice-cream (5.01g/day, p = 0.050) at a significantly higher level. Delayed verbal score, delayed visual score, and verbal memory score of the NFT and RTP values of the prefrontal cortex among the EEGs were significantly lower in the MCI group compared to those in the normal group. From this study, we found that nutrient and food intake are closely related to MCI in Korean aged 50 years and older, but more human studies are needed to verify these findings.
Collapse
Affiliation(s)
- Hae Lim Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Dae-Keun Kim
- College of Nursing, Seoul National University, Seoul 03080, Korea
- Research Institute of Nursing Science, Seoul National University, Seoul 03080, Korea
- National Standard Reference Data Center for Korean EEG, Seoul 03080, Korea
| | - Seung Wan Kang
- College of Nursing, Seoul National University, Seoul 03080, Korea
- Research Institute of Nursing Science, Seoul National University, Seoul 03080, Korea
- National Standard Reference Data Center for Korean EEG, Seoul 03080, Korea
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|