51
|
Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc. J Neurosci 2010; 30:266-75. [PMID: 20053908 DOI: 10.1523/jneurosci.3778-09.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pattern of contralaterally and ipsilaterally projecting retinal ganglion cell (RGC) axons at the optic chiasm is essential for the establishment of binocular vision. Contralateral axons cross the chiasm midline as they progress from the optic nerve to the optic tract. In contrast, ipsilateral axons deviate from the chiasm and continue in the ipsilateral optic tract, avoiding the chiasm midline. The molecular mechanism underlying this phenomenon is not completely understood. Here we show that the Sonic Hedgehog (Shh) receptor Boc is enriched in ipsilateral RGCs of the developing retina. Together with the presence of Shh at the midline, this complementary expression pattern led us to hypothesize that Shh might repel ipsilateral RGC axons at the chiasm. Consistent with this hypothesis, we found that only Boc-positive RGC axons retract in vitro in response to Shh and that this response is lost in Boc mutant RGCs. In vivo, we show that Boc is required for the normal segregation of ipsilateral axons at the optic chiasm and, conversely, that Boc expression in contralateral RGCs prevents their axons from crossing the optic chiasm. Together, these results suggest that Shh repels ipsilateral RGC axons at the optic chiasm via its receptor Boc. This work identifies a novel molecular pathway required for the segregation of axons at the optic chiasm.
Collapse
|
52
|
Qian YS, Chu RY, Hu M, Hoffman MR. Sonic hedgehog expression and its role in form-deprivation myopia in mice. Curr Eye Res 2009; 34:623-35. [PMID: 19899989 DOI: 10.1080/02713680903003492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate whether sonic hedgehog (Shh) plays a role in postnatal eye development and the development of experimentally induced myopia. METHODS Expression of Shh, Patched-1 (Ptc-1), and Gli3 was evaluated in the eyes of 13- to 14-day-old C57B/L6 mice with form-deprivation myopia (FDM) (n = 100) and controls (n = 100) using real-time PCR and Western blot analysis. In a second experiment, 336 mice were divided into two groups: the first wore a unilateral translucent diffuser to induce myopia and the second served as a control. Both groups received four intravitreal injections of either Shh-N (Sonic hedgehog amino-terminal peptide) or cyclopamine (a specific inhibitor of the Shh pathway) every other day. Retinoscopic refraction and axial length measurements were performed on the 11th day of form deprivation. Sections of the eyes were observed using a light microscope. RESULTS Inducing myopia caused a significant increase in expression of Shh mRNA (7 days: t = 6.09, p = 0.004; 14 days: t = 3.48, p = 0.025) and protein (7 days: t = 4.06, p = 0.015; 14 days: t = 4.25, p = 0.013). Expression of both Gli3 mRNA (t = 7.61, p = 0.002) and protein (t = 2.89, p = 0.045) increased after 7 days of occlusion. Administration of Shh-N stimulated the development of myopia and axial growth in both occluded (refraction: F = 7.49, p = 0.001; axial length: F = 9.89, p < 0.001) and non-occluded eyes (refraction: F = 14.20, p < 0.001; axial length: F = 20.37, p < 0.001). Cyclopamine reduced myopic refractive error and axial elongation in occluded eyes (refraction: F = 27.91, p < 0.001; axial length: F = 15.18, p < 0.001). It also influenced non-occluded eyes, reducing axial growth and shifting the refraction toward hyperopia (refraction: F = 14.81, p < 0.001; axial length: F = 3.99, p = 0.024). No difference in retinal thickness was found between experimental and control eyes. CONCLUSIONS The Shh signaling pathway may influence both form-deprivation myopia and the postnatal growth of eyes with normal visual input.
Collapse
Affiliation(s)
- Yi-Shan Qian
- Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai Medical College, Shanghai
| | | | | | | |
Collapse
|
53
|
Sánchez-Camacho C, Bovolenta P. Emerging mechanisms in morphogen-mediated axon guidance. Bioessays 2009; 31:1013-25. [PMID: 19705365 DOI: 10.1002/bies.200900063] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early in animal development, gradients of secreted morphogenic molecules, such as Sonic hedgehog (Shh), Wnt and TGFbeta/Bmp family members, regulate cell proliferation and determine the fate and phenotype of the target cells by activating well-characterized signalling pathways, which ultimately control gene transcription. Shh, Wnt and TGFbeta/Bmp signalling also play an important and evolutionary conserved role in neural circuit assembly. They regulate neuronal polarization, axon and dendrite development and synaptogenesis, processes that require rapid and local changes in cytoskeletal organization and plasma membrane components. A key question then is whether morphogen signalling at the growth cone uses similar mechanisms and intracellular pathway components to those described for morphogen-mediated cell specification. This review discusses recent advances towards the understanding of this problem, showing how Shh, Wnt and TGFbeta/Bmp have adapted their 'classical' signalling pathways or adopted alternative and novel molecular mechanisms to influence different aspects of neuronal circuit formation.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
54
|
Robo2 is required for Slit-mediated intraretinal axon guidance. Dev Biol 2009; 335:418-26. [PMID: 19782674 PMCID: PMC2814049 DOI: 10.1016/j.ydbio.2009.09.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.
Collapse
|
55
|
Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning. J Neurosci 2009; 29:10488-98. [PMID: 19710302 DOI: 10.1523/jneurosci.2355-09.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macropinocytosis is a type of poorly characterized fluid-phase endocytosis that results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons through activation of a noncanonical signaling pathway, including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis but dependent on dynamin, myosin II, and Rho GTPase activities. Inhibitors of macropinocytosis also abolished the negative effects of Shh on axonal growth, including growth cone collapse and chemorepulsive axon turning but not turning per se. Conversely, activation of myosin II or treatment of phorbol ester induces macropinocytosis in the axons and elicits growth cone collapse and repulsive axon turning. Furthermore, macropinocytosis is also induced by ephrin-A2, and inhibition of dynamin abolished repulsive axon turning induced by ephrin-A2. Macropinocytosis can be induced ex vivo by high Shh, correlating with axon retraction. These results demonstrate that macropinocytosis-mediated membrane trafficking is an important cellular mechanism involved in axon chemorepulsion induced by negative guidance factors.
Collapse
|
56
|
Yam PT, Langlois SD, Morin S, Charron F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase-dependent signaling pathway. Neuron 2009; 62:349-62. [PMID: 19447091 DOI: 10.1016/j.neuron.2009.03.022] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 11/26/2008] [Accepted: 03/17/2009] [Indexed: 12/12/2022]
Abstract
Sonic hedgehog (Shh) plays essential roles in developmental events such as cell fate specification and axon guidance. Shh induces cell fate specification through canonical Shh signaling, mediated by transcription. However, the mechanism by which Shh guides axons is unknown. To study this, we developed an in vitro assay for axon guidance, in which neurons can be imaged while responding to a defined gradient of a chemical cue. Axons of dissociated commissural neurons placed in a Shh gradient turned rapidly toward increasing concentrations of Shh. Consistent with this rapid response, we showed that attraction by Shh does not require transcription. Instead, Shh stimulates the activity of Src family kinase (SFK) members in a Smoothened-dependent manner. Moreover, SFK activity is required for Shh-mediated guidance of commissural axons, but not for induction of Gli transcriptional reporter activity. Together, these results indicate that Shh acts via a rapidly acting, noncanonical signaling pathway to guide axons.
Collapse
Affiliation(s)
- Patricia T Yam
- Molecular Biology of Neural Development, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada
| | | | | | | |
Collapse
|
57
|
Distinct effects of Hedgehog signaling on neuronal fate specification and cell cycle progression in the embryonic mouse retina. J Neurosci 2009; 29:6932-44. [PMID: 19474320 DOI: 10.1523/jneurosci.0289-09.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cell-extrinsic signals can profoundly influence the production of various neurons from common progenitors. Yet mechanisms by which extrinsic signals coordinate progenitor cell proliferation, cell cycle exit, and cell fate choices are not well understood. Here, we address whether Hedgehog (Hh) signals independently regulate progenitor proliferation and neuronal fate decisions in the embryonic mouse retina. Conditional ablation of the essential Hh signaling component Smoothened (Smo) in proliferating progenitors, rather than in nascent postmitotic neurons, leads to a dramatic increase of retinal ganglion cells (RGCs) and a mild increase of cone photoreceptor precursors without significantly affecting other early-born neuronal cell types. In addition, Smo-deficient progenitors exhibit aberrant expression of cell cycle regulators and delayed G(1)/S transition, especially during the late embryonic stages, resulting in a reduced progenitor pool by birth. Deficiency in Smo function also causes reduced expression of the basic helix-loop-helix transcription repressor Hes1 and preferential elevation of the proneural gene Math5. In Smo and Math5 double knock-out mutants, the enhanced RGC production observed in Smo-deficient retinas is abolished, whereas defects in the G(1)/S transition persist, suggesting that Math5 mediates the Hh effect on neuronal fate specification but not on cell proliferation. These findings demonstrate that Hh signals regulate progenitor pool expansion primarily by promoting cell cycle progression and influence cell cycle exit and neuronal fates by controlling specific proneural genes. Together, these distinct cellular effects of Hh signaling in neural progenitor cells coordinate a balanced production of diverse neuronal cell types.
Collapse
|
58
|
Sánchez-Camacho C, Bovolenta P. Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development 2008; 135:3531-41. [PMID: 18832395 DOI: 10.1242/dev.023663] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In non-mammalian vertebrates, the relatively homogeneous population of retinal ganglion cells (RGCs) differentiates and projects entirely to the contralateral side of the brain under the influence of sonic hedgehog (Shh). In mammals, by contrast, there are two different RGC types: the Zic2-positive ipsilateral projecting and the Isl2-positive contralateral projecting. We asked whether the axons of these two populations respond to Shh and if their response differs. We have also analysed whether midline- and RGC-derived Shh contributes to the growth of the axons in the proximal visual pathway. We show that these two RGC types are characterised by a differential expression of Shh signalling components and that they respond differently to Shh when challenged in vitro. In vivo blockade of Shh activity, however, alters the path and distribution mostly of the contralateral projecting RGC axons at the chiasm, indicating that midline-derived Shh participates in funnelling contralateral visual fibres in this region. Furthermore, interference with Shh signalling in the RGCs themselves causes abnormal growth and navigation of contralateral projecting axons in the proximal portion of the pathway, highlighting a novel cell-autonomous mechanism by which Shh can influence growth cone behaviour.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER) 37, Madrid 28002, Spain
| | | |
Collapse
|
59
|
Pittman AJ, Law MY, Chien CB. Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points. Development 2008; 135:2865-71. [PMID: 18653554 PMCID: PMC2562560 DOI: 10.1242/dev.025049] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Navigating axons respond to environmental guidance signals, but can also follow axons that have gone before--pioneer axons. Pioneers have been studied extensively in simple systems, but the role of axon-axon interactions remains largely unexplored in large vertebrate axon tracts, where cohorts of identical axons could potentially use isotypic interactions to guide each other through multiple choice points. Furthermore, the relative importance of axon-axon interactions compared with axon-autonomous receptor function has not been assessed. Here, we test the role of axon-axon interactions in retinotectal development, by devising a technique to selectively remove or replace early-born retinal ganglion cells (RGCs). We find that early RGCs are both necessary and sufficient for later axons to exit the eye. Furthermore, introducing misrouted axons by transplantation reveals that guidance from eye to tectum relies heavily on interactions between axons, including both pioneer-follower and community effects. We conclude that axon-axon interactions and ligand-receptor signaling have co-equal roles, cooperating to ensure the fidelity of axon guidance in developing vertebrate tracts.
Collapse
Affiliation(s)
- Andrew J Pittman
- Program in Neuroscience, University of Utah Medical Center, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
60
|
Chemoattractive Activity of Sonic Hedgehog in the Adult Subventricular Zone Modulates the Number of Neural Precursors Reaching the Olfactory Bulb. Stem Cells 2008; 26:2311-20. [DOI: 10.1634/stemcells.2008-0297] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
61
|
Shirane M, Ogawa M, Motoyama J, Nakayama KI. Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes Cells 2008; 13:635-51. [DOI: 10.1111/j.1365-2443.2008.01194.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
62
|
Abstract
The role of sonic hedgehog (SHH) in maintaining corpora cavernosal morphology in the adult penis has been established; however, the mechanism of how SHH itself is regulated remains unclear. Since decreased SHH protein is a cause of smooth muscle apoptosis and erectile dysfunction (ED) in the penis, and SHH treatment can suppress cavernous nerve (CN) injury-induced apoptosis, the question of how SHH signaling is regulated is significant. It is likely that neural input is involved in this process since two models of neuropathy-induced ED exhibit decreased SHH protein and increased apoptosis in the penis. We propose the hypothesis that SHH abundance in the corpora cavernosa is regulated by SHH signaling in the pelvic ganglia, neural activity, or neural transport of a trophic factor from the pelvic ganglia to the corpora. We have examined each of these potential mechanisms. SHH inhibition in the penis shows a 12-fold increase in smooth muscle apoptosis. SHH inhibition in the pelvic ganglia causes significantly increased apoptosis (1.3-fold) and decreased SHH protein (1.1-fold) in the corpora cavernosa. SHH protein is not transported by the CN. Colchicine treatment of the CN resulted in significantly increased smooth muscle apoptosis (1.2-fold) and decreased SHH protein (1.3-fold) in the penis. Lidocaine treatment of the CN caused a similar increase in apoptosis (1.6-fold) and decrease in SHH protein (1.3-fold) in the penis. These results show that neural activity and a trophic factor from the pelvic ganglia/CN are necessary to regulate SHH protein and smooth muscle abundance in the penis.
Collapse
Affiliation(s)
- Christopher Bond
- Department of Urology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
63
|
Pujic Z, Giacomantonio CE, Unni D, Rosoff WJ, Goodhill GJ. Analysis of the growth cone turning assay for studying axon guidance. J Neurosci Methods 2008; 170:220-8. [DOI: 10.1016/j.jneumeth.2008.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/16/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
64
|
|
65
|
Breitling R. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism. Bioessays 2008; 29:1085-94. [PMID: 17935218 DOI: 10.1002/bies.20663] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The close link between signaling by the developmental regulators of the Hedgehog family and cholesterol biochemistry has been known for some time. The morphogen is covalently attached to cholesterol in a peculiar autocatalytic reaction and embryonal disruption of cholesterol synthesis leads to malformations that mimic Hh signaling defects. Recently, it was furthermore shown that secreted Hh could hitchhike on lipoprotein particles to establish its morphogenic gradient in the developing embryo. Additionally, there is new evidence that the Hh-receptor Patched transmits the Hh signal by modulating the secretion of an inhibitory sterol molecule from the receiving cells. Here we present some of the most recent discoveries on the Hh-sterol link and discuss their implications from a systems design perspective. We predict that a robust functioning of the Hh pathway will require the involvement of more sterol metabolites, and these should be the subject of future research.
Collapse
Affiliation(s)
- Rainer Breitling
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands.
| |
Collapse
|
66
|
Bao ZZ. Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation. Brain Res 2008; 1192:165-77. [PMID: 17320832 PMCID: PMC2267003 DOI: 10.1016/j.brainres.2007.01.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 01/19/2023]
Abstract
The initial step of retinal ganglion cell (RGC) axon pathfinding involves directed growth of RGC axons toward the center of the retina, the optic disc, a process termed "intraretinal guidance". Due to the accessibility of the system, and with various embryological, molecular and genetic approaches, significant progress has been made in recent years toward understanding the mechanisms involved in the precise guidance of the RGC axons. As axons are extending from RGCs located throughout the retina, a multitude of factors expressed along with the differentiation wave are important for the guidance of the RGC axons. To ensure that the RGC axons are oriented correctly, restricted to the optic fiber layer (OFL) of the retina, and exit the eye properly, different sets of positive and negative factors cooperate in the process. Fasciculation mediated by a number of cell adhesion molecules (CAMs) and modulation of axonal response to guidance factors provide additional mechanisms to ensure proper guidance of the RGC axons. The intraretinal axon guidance thus serves as an excellent model system for studying how different signals are regulated, modulated and integrated for guiding a large number of axons in three-dimensional space.
Collapse
Affiliation(s)
- Zheng-Zheng Bao
- Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
67
|
Wallace VA. Proliferative and cell fate effects of Hedgehog signaling in the vertebrate retina. Brain Res 2008; 1192:61-75. [PMID: 17655833 DOI: 10.1016/j.brainres.2007.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/19/2007] [Accepted: 06/03/2007] [Indexed: 11/26/2022]
Abstract
The retina is an excellent system for delving into the question of how cell fate, number and organization are regulated in the central nervous system. Multipotential progenitor cells in the immature retina proliferate, exit the cell cycle and generate neurons and one glial cell type in a prescribed temporal sequence. While some aspects of progenitor behavior are controlled cell intrinsically, extrinsic signals present in the retina environment have been shown to impact on proliferation, differentiation and cell fate of progenitors. Intercellular signaling proteins of the Hedgehog (Hh) family regulate several aspects of visual system development in vertebrates--ranging from early eye field patterning to retinal and optic nerve development. This review highlights the role of Hh signaling on retinal progenitor proliferation and diversification.
Collapse
Affiliation(s)
- Valerie A Wallace
- Molecular Medicine Program, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6.
| |
Collapse
|
68
|
Callander DC, Lamont RE, Childs SJ, McFarlane S. Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons. Dev Dyn 2008; 236:2918-24. [PMID: 17879313 DOI: 10.1002/dvdy.21315] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retinal ganglion cells (RGCs) extend axons that exit the eye, cross the midline at the optic chiasm, and synapse on target cells in the optic tectum. Class three semaphorins (Sema3s) are a family of molecules known to direct axon growth. We undertook an expression screen to identify sema3s expressed in the retina and/or brain close to in-growing RGC axons, which might therefore influence retinal-tectal pathfinding. We find that sema3Aa, 3Fa, 3Ga, and 3Gb are expressed in the retina, although only sema3Fa is present during the time window when the axons extend. Also, we show that sema3Aa and sema3E are present near or at the optic chiasm. Furthermore, sema3C, 3Fa, 3Ga, and 3Gb are expressed in regions of the diencephalon near the path taken by RGC axons. Finally, the optic tectum expresses sema3Aa, 3Fa, 3Fb, and 3Gb. Thus, sema3s are spatiotemporally placed to influence RGC axon growth.
Collapse
|
69
|
Knöll B, Weinl C, Nordheim A, Bonhoeffer F. Stripe assay to examine axonal guidance and cell migration. Nat Protoc 2008; 2:1216-24. [PMID: 17546017 DOI: 10.1038/nprot.2007.157] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stripe assays have been widely employed as in vitro test systems to study the responses of growing axons, as well as migrating cells, to established or novel guidance molecules. We provide detailed protocols for both the original and the modified version of this assay, as they allow the analysis of the 'guidance properties' of active components present in crude membrane fractions or as purified molecules. Silicon matrices are used to produce striped patterns of active molecules on a surface (referred to as 'carpet'), followed by culturing of neurons, or any other cell type, on these carpets. After 1-2 days in culture, striped outgrowth of extending neurites--indicative of guided migration of cell processes--can be observed. We also discuss potential other applications (e.g., in neuronal regeneration and development) and modifications of the assay. The preparation of 10-12 carpets takes approximately 4-5 h.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfaculty Institute for Cell Biology, Department of Molecular Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
70
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
71
|
Abstract
Signalling by Hh (Hedgehog) proteins is among the most actively studied receptor-mediated phenomena relevant to development and post-embryonic homoeostatic events. The impact of signalling by the Hh proteins is profound, and work pertaining to the presentation of these proteins and the pathways engaged by them continues to yield unique insights into basic aspects of morphogenic signalling. We review here the mechanisms of signalling relevant to the actions of Hh proteins in vertebrates. We emphasize findings within the past several years on the recognition of, in particular, Sonic hedgehog by target cells, pathways of transduction employed by the seven-pass transmembrane protein Smoothened and end points of action, as manifest in the regulation of the Gli transcription factors. Topics of extended interest are those regarding the employment of heterotrimeric G-proteins and G-protein-coupled receptor kinases by Smoothened. We also address the pathways, insofar as known, linking Smoothened to the expression and stability of Gli1, Gli2 and Gli3. The mechanisms by which Hh proteins signal have few, if any, parallels. It is becoming clear in vertebrates, however, that several facets of signalling are shared in common with other venues of signalling. The challenge in understanding both the actions of Hh proteins and the overlapping forms of regulation will be in understanding, in molecular terms, both common and divergent signalling events.
Collapse
Affiliation(s)
- Natalia A Riobo
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
72
|
Lindwall C, Fothergill T, Richards LJ. Commissure formation in the mammalian forebrain. Curr Opin Neurobiol 2007; 17:3-14. [PMID: 17275286 DOI: 10.1016/j.conb.2007.01.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/18/2007] [Indexed: 01/06/2023]
Abstract
Commissural formation in the mammalian brain is highly organised and regulated both by the cell-autonomous expression of transcription factors, and by non-cell-autonomous mechanisms including the formation of midline glial structures and their expression of specific axon guidance molecules. These mechanisms channel axons into the correct path and enable the subsequent connection of specific brain areas to their appropriate targets. Several key findings have been made over the past two years, including the discovery of novel mechanisms of action that 'classical' guidance factors such as the Slits, Netrins, and their receptors have in axon guidance. Moreover, novel guidance factors such as members of the Wnt family, and extracellular matrix components such as heparan sulphate proteoglycans, have been shown to be important for mammalian brain commissure formation. Additionally, there have been significant discoveries regarding the role of FGF signalling in the formation of midline glial structures. In this review, we discuss the most recent advances in the field that have contributed to our current understanding of commissural development in the telencephalon.
Collapse
Affiliation(s)
- Charlotta Lindwall
- The University of Queensland, School of Biomedical Sciences and The Queensland Brain Institute, St Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
73
|
Shi P, Shen K, Kam LC. Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron functionin vitro. Dev Neurobiol 2007; 67:1765-76. [PMID: 17659593 DOI: 10.1002/dneu.20553] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to pattern multiple bioactive cues on a surface is valuable for understanding how neurons interact with their complex extracellular environment. In this report, we introduce a set of methods for creating such surfaces, with the goals of understanding how developing neurons integrate multiple biologically relevant signals and as a tool for studying interactions between multiple neurons. Multiple microcontact printing steps are combined on a single surface to produce an array of polylysine nodes, interconnected by lines of proteins based on the extracellular domains of L1 or N-cadherin. Surprisingly, the N-cadherin protein could also be directly printed onto surfaces while retaining its biological activity. Rat hippocampal neurons selectively attached to the polylysine nodes, differentially extending axonal and dendritic processes along the patterns of L1 and N-cadherin, thus demonstrating control over neuron attachment and outgrowth. Combining these three biomolecules on a single surface revealed a highly complex pattern of protein recognition. Dendrites extended exclusively on N-cadherin patterns, while axons exhibited a very high degree of selectivity on L1 patterns, preferentially at distances greater than 55 mum from the cell body. At shorter distances, axonal processes recognized both L1 and N-cadherin, revealing a new aspect of neuron polarity and axon specification. This onset of L1 selectivity correlated with the establishment of intracellular L1 polarity, suggesting a functional outcome of the process of neuron polarization that has implications in development of neural tissues and creation of in vitro neuron networks.
Collapse
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW Advances in tumor genetics have increasingly linked pediatric neoplasms with disordered mechanisms of normal development, supporting the model of embryonal tumorigenesis. We provide a detailed discussion of two pediatric neural tumors, medulloblastoma and neuroblastoma, addressing tumorigenic causality and similarities within a pharmacological context. RECENT FINDINGS Expression profiling, elegant murine models, and chemical blockades of oncogenic signaling pathways have encouraged a new generation of therapeutic approaches for tumor treatment. Recent data have further clarified regulation of neural developmental and factors triggering malignancy. SUMMARY Medulloblastoma and neuroblastoma exemplify the current embryonal tumor model. Sonic hedgehog signaling is required for cerebellar development and its dysregulation is implicated in formation of medulloblastoma. The transcription factor Mycn orchestrates proliferation and differentiation of the developing peripheral neural crest. Amplification of the MYCN gene is the predominant marker for aggressive neuroblastoma, and correlates with poor prognosis. Current evidence suggests that Mycn is also the primary executor of Sonic hedgehog signaling in the cerebellum and that the Sonic hedgehog pathway regulates levels of both MYCN mRNA and Mycn protein product independently. Destabilization of Myc through inhibition of phosphoinositide 3-kinase signaling exhibits promise not only in medulloblastoma and neuroblastoma, but in a wide range of Myc-driven tumors.
Collapse
Affiliation(s)
- Matthew R Grimmer
- Department of Neurology, University of California, San Francisco, CA 94143, USA.
| | | |
Collapse
|
75
|
Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J Neurosci 2006; 26:8082-91. [PMID: 16885222 PMCID: PMC6673773 DOI: 10.1523/jneurosci.1342-06.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An early step in the formation of the optic pathway is the directed extension of retinal ganglion cell (RGC) axons into the optic fiber layer (OFL) of the retina in which they project toward the optic disc. Using analysis of knock-out mice and in vitro assays, we found that, in the mammalian retina, Slit1 and Slit2, known chemorepellents for RGC axons, regulate distinct aspects of intraretinal pathfinding in different regions of the retina. In ventral and, to a much lesser extent, dorsal retina, Slits help restrict RGC axons to the OFL. Additionally, within dorsal retina exclusively, Slit2 also regulates the initial polarity of outgrowth from recently differentiated RGCs located in the retinal periphery. This regional specificity occurs despite the fact that Slits are expressed throughout the retina, and both dorsal and ventral RGCs are responsive to Slits. The gross morphology and layering of the retina of the slit-deficient retinas is normal, demonstrating that these distinct guidance defects are not the result of changes in the organization of the tissue. Although displaced or disorganized, the aberrant axons within both dorsal and ventral retina exit the eye. We also have found that the lens, which because of its peripheral location within the developing eye is ideally located to influence the initial direction of RGC axon outgrowth, secretes Slit2, suggesting this is the source of Slit regulating OFL development. These data demonstrate clearly that multiple mechanisms exist in the retina for axon guidance of which Slits are an important component.
Collapse
|
76
|
Hochman E, Castiel A, Jacob-Hirsch J, Amariglio N, Izraeli S. Molecular pathways regulating pro-migratory effects of Hedgehog signaling. J Biol Chem 2006; 281:33860-70. [PMID: 16943197 DOI: 10.1074/jbc.m605905200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Hedgehog proteins play a crucial role in metazoan embryo development. Constitutive activation of the pathway is associated with multiple types of cancer. Recent experimental data suggest involvement of Hedgehog signaling in vascular remodeling, germ cell migration, and axon guidance. The molecular mechanisms underlying these effects remain elusive. Here we show that yolk sac-derived endothelial cells and embryonic fibroblasts can directly respond to the Hedgehog signal by increased migration in an in vitro scratch (wound) assay. We also identify Hedgehog transcriptional target genes in these cells, many of which participate in cell migration, axon guidance, and angiogenesis processes. Inhibition of one such molecular pathway, neuropilin-flavomonooxygenase, blocks Hedgehog-induced cell migration. These findings suggest that Hedgehog signaling directly affects embryonic endothelial and fibroblast cell migration via molecules and pathways known to regulate cell migration in response to a variety of environmental cues.
Collapse
Affiliation(s)
- Eldar Hochman
- Research Section of Childhood Malignancies, Sheba Cancer Research Center, Safra Children Hospital, Sheba Medical Center and Faculty of Medicine, Tel-Aviv University, Tel Hashomer 52621, Israel
| | | | | | | | | |
Collapse
|
77
|
Abstract
The hedgehog pathway is a major regulator of embryonic development, and mutations that decrease its activity are known to be associated with severe defects in nervous system development. Recent evidence suggests hedgehog continues to function in adult tissue, normal as well as diseased, by regulating both cell proliferation and the production of growth and angiogenic factors. In the adult nervous system, this dual ability is especially important in regulating the behavior of neural stem and progenitor cells. This review summarizes information connecting hedgehog signaling and neural diseases, including neurodegenerative disorders and brain tumors, particularly medulloblastoma. We also describe the discovery and utility of small molecule agonists and antagonists of this pathway and their potential as novel types of therapeutics.
Collapse
|
78
|
Jin Z, Chau MD, Bao ZZ. Sema3D, Sema3F, and Sema5A are expressed in overlapping and distinct patterns in chick embryonic heart. Dev Dyn 2006; 235:163-9. [PMID: 16261621 PMCID: PMC1768559 DOI: 10.1002/dvdy.20614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An increasing number of axon guidance cues have been shown recently to play important roles in the development of non-neural tissues. Semaphorins comprise one of the largest conserved families of axon guidance factors. We analyzed the expression patterns of Sema3D, Sema3F, and Sema5A genes in the chick embryonic heart by in situ hybridization. All three genes are expressed in the cardiac cushion regions, both in the mesenchymal cells, and epithelial cells in the endocardial layer, during the period of cardiac remodeling. In addition to the overlapping expression patterns in the cardiac cushion regions, these genes also exhibit distinct expression patterns in the developing heart: Sema3D is additionally expressed in the tips of the ventricular trabeculae; Sema3F is expressed in a subset of cells scattered throughout the ventricles; and Sema5A is expressed in the newly formed atrioventricular valves. The overlapping and distinct expression patterns of these genes suggest that they may play important roles in heart development.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
79
|
Zelina P, Avci HX, Thelen K, Pollerberg GE. The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons. Development 2005; 132:3609-18. [PMID: 16033798 DOI: 10.1242/dev.01934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the role of the cell adhesion molecule NrCAM for axonal growth and pathfinding in the developing retina. Analysis of the distribution pattern of NrCAM in chick embryo retina sections and flat-mounts shows its presence during extension of retinal ganglion cell (RGC) axons; NrCAM is selectively present on RGC axons and is absent from the soma. Single cell cultures show an enrichment of NrCAM in the distal axon and growth cone. When offered as a substrate in addition to Laminin, NrCAM promotes RGC axon extension and the formation of growth cone protrusions. In substrate stripe assays, mimicking the NrCAM-displaying optic fibre layer and the Laminin-rich basal lamina, RGC axons preferentially grow on NrCAM lanes. The three-dimensional analysis of RGC growth cones in retina flat-mounts reveals that they are enlarged and form more protrusions extending away from the correct pathway under conditions of NrCAM-inhibition. Time-lapse analyses show that these growth cones pause longer to explore their environment, proceed for shorter time spans, and retract more often than under control conditions; in addition, they often deviate from the correct pathway towards the optic fissure. Inhibition of NrCAM in organ-cultured intact eyes causes RGC axons to misroute at the optic fissure; instead of diving into the optic nerve head, these axons cross onto the opposite side of the retina. Our results demonstrate a crucial role for NrCAM in the navigation of RGC axons in the developing retina towards the optic fissure, and also for pathfinding into the optic nerve.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Developmental Neurobiology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|