51
|
Asensio JA, Cáceres ARR, Pelegrina LT, Sanhueza MDLÁ, Scotti L, Parborell F, Laconi MR. Allopregnanolone alters follicular and luteal dynamics during the estrous cycle. Reprod Biol Endocrinol 2018; 16:35. [PMID: 29636114 PMCID: PMC5894215 DOI: 10.1186/s12958-018-0353-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Allopregnanolone is a neurosteroid synthesized in the central nervous system independently of steroidogenic glands; it influences sexual behavior and anxiety. The aim of this work is to evaluate the indirect effect of a single pharmacological dose of allopregnanolone on important processes related to normal ovarian function, such as folliculogenesis, angiogenesis and luteolysis, and to study the corresponding changes in endocrine profile and enzymatic activity over 4 days of the rat estrous cycle. We test the hypothesis that allopregnanolone may trigger hypothalamus - hypophysis - ovarian axis dysregulation and cause ovarian failure which affects the next estrous cycle stages. METHODS Allopregnanolone was injected during the proestrous morning and then, the animals were sacrificed at each stage of the estrous cycle. Ovarian sections were processed to determine the number and diameter of different ovarian structures. Cleaved caspase 3, proliferating cell nuclear antigen, α-actin and Von Willebrand factor expressions were evaluated by immunohistochemistry. Luteinizing hormone, prolactin, estrogen and progesterone serum levels were measured by radioimmunoassay. The enzymatic activities of 3β-hydroxysteroid dehydrogenase, 3α-hydroxysteroid oxidoreductase and 20α-hydroxysteroid dehydrogenase were determined by spectrophotometric assays. Two-way ANOVA followed by Bonferroni was performed to determine statistical differences between control and treated groups along the four stages of the cycle. RESULTS The results indicate that allopregnanolone allopregnanolone decreased the number of developing follicles, while atretic follicles and cysts increased with no effects on normal cyclicity. Some cysts in treated ovaries showed morphological characteristics similar to luteinized unruptured follicles. The apoptosis/proliferation balance increased in follicles from treated rats. The endocrine profile was altered at different stages of the estrous cycle of treated rats. The angiogenic markers expression increased in treated ovaries. As regards corpora lutea, the apoptosis/proliferation balance and 20α-hydroxysteroid dehydrogenase enzymatic activity decreased significantly. Progesterone levels and 3β-hydroxysteroid dehydrogenase enzymatic activity increased in treated rats. These data suggest that allopregnanolone interferes with steroidogenesis and folliculogenesis at different stages of the cycle. CONCLUSION Allopregnanolone interferes with corpora lutea regression, which might indicate that this neurosteroid exerts a protective role over the luteal cells and prevents them from luteolysis. Allopregnanolone plays an important role in the ovarian pathophysiology.
Collapse
Affiliation(s)
- Joana Antonela Asensio
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET), Mendoza, Argentina
| | - Antonella Rosario Ramona Cáceres
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET), Mendoza, Argentina
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Laura Tatiana Pelegrina
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET), Mendoza, Argentina
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - María de Los Ángeles Sanhueza
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET), Mendoza, Argentina
| | - Leopoldina Scotti
- Laboratorio de Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME - CONICET), Buenos Aires, Argentina
| | - Fernanda Parborell
- Laboratorio de Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME - CONICET), Buenos Aires, Argentina
| | - Myriam Raquel Laconi
- Laboratorio de Fisiopatología Ovárica, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU - CONICET), Mendoza, Argentina.
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Mendoza, Argentina.
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina.
| |
Collapse
|
52
|
Colmers PLW, Bains JS. Balancing tonic and phasic inhibition in hypothalamic corticotropin-releasing hormone neurons. J Physiol 2018; 596:1919-1929. [PMID: 29419884 DOI: 10.1113/jp275588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA transporter (GAT) blockade recruits extrasynaptic GABAA receptors (GABAA Rs) and amplifies constitutive presynaptic GABAB R activity. Extrasynaptic GABAA Rs contribute to a tonic current. Corticosteroids increase the tonic current mediated by extrasynaptic GABAA Rs. ABSTRACT Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are integratory hubs that regulate the endocrine response to stress. GABA inputs provide a basal inhibitory tone that constrains this system and circulating glucocorticoids (CORT) are important feedback controllers of CRH output. Surprisingly little is known about the direct effects of CORT on GABA synapses in PVN. Here we used whole-cell patch clamp recordings from CRH neurons in mouse hypothalamic brain slices to examine the effects of CORT on synaptic and extrasynaptic GABA signalling. We show that GABA transporters (GATs) limit constitutive activation of presynaptic GABAB receptors and ensure high release probability at GABA synapses. GATs in combination with GABAB receptors also curtail extrasynaptic GABAA R signalling. CORT has no effect on synaptic GABA signalling, but increases extrasynaptic GABA tone through upregulation of postsynaptic GABAA receptors. These data show that efficient GABA clearance and autoinhibition control the balance between synaptic (phasic) and extrasynaptic (tonic) inhibition in PVN CRH neurons. This balance is shifted towards increased extrasynaptic inhibition by CORT.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jaideep S Bains
- Hotchkiss Brain Institute and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
53
|
Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol 2018; 78:238-270. [PMID: 28901728 PMCID: PMC6589839 DOI: 10.1002/dneu.22536] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022]
Abstract
Ubiquitous expression of GABA type A receptors (GABAA R) in the central nervous system establishes their central role in coordinating most aspects of neural function and development. Dysregulation of GABAergic neurotransmission manifests in a number of human health disorders and conditions that in certain cases can be alleviated by drugs targeting these receptors. Precise changes in the quantity or activity of GABAA Rs localized at the cell surface and at GABAergic postsynaptic sites directly impact the strength of inhibition. The molecular mechanisms constituting receptor trafficking to and from these compartments therefore dictate the efficacy of GABAA R function. Here we review the current understanding of how GABAA Rs traffic through biogenesis, plasma membrane transport, and degradation. Emphasis is placed on discussing novel GABAergic synaptic proteins, receptor and scaffolding post-translational modifications, activity-dependent changes in GABAA R confinement, and neuropeptide and neurosteroid mediated changes. We further highlight modern techniques currently advancing the knowledge of GABAA R trafficking and clinically relevant neurodevelopmental diseases connected to GABAergic dysfunction. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 238-270, 2018.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
54
|
Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular Characterization of GABA-A Receptor Subunit Diversity within Major Peripheral Organs and Their Plasticity in Response to Early Life Psychosocial Stress. Front Mol Neurosci 2018; 11:18. [PMID: 29467616 PMCID: PMC5807923 DOI: 10.3389/fnmol.2018.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Gamma aminobutyric acid (GABA) subtype A receptors (GABAARs) are integral membrane ion channels composed of five individual proteins or subunits. Up to 19 different GABAAR subunits (α1–6, β1–3, γ1–3, δ, ε, θ, π, and ρ1–3) have been identified, resulting in anatomically, physiologically, and pharmacologically distinct multiple receptor subtypes, and therefore GABA-mediated inhibition, across the central nervous system (CNS). Additionally, GABAAR-modulating drugs are important tools in clinical medicine, although their use is limited by adverse effects. While significant advances have been made in terms of characterizing the GABAAR system within the brain, relatively less is known about the molecular phenotypes within the peripheral nervous system of major organ systems. This represents a potentially missed therapeutic opportunity in terms of utilizing or repurposing clinically available GABAAR drugs, as well as promising research compounds discarded due to their poor CNS penetrance, for the treatment of peripheral disorders. In addition, a broader understanding of the peripheral GABAAR subtype repertoires will contribute to the design of therapies which minimize peripheral side-effects when treating CNS disorders. We have recently provided a high resolution molecular and function characterization of the GABAARs within the enteric nervous system of the mouse colon. In this study, the aim was to determine the constituent GABAAR subunit expression profiles of the mouse bladder, heart, liver, kidney, lung, and stomach, using reverse transcription polymerase chain reaction and western blotting with brain as control. The data indicate that while some subunits are expressed widely across various organs (α3–5), others are restricted to individual organs (γ2, only stomach). Furthermore, we demonstrate complex organ-specific developmental expression plasticity of the transporters which determine the chloride gradient within cells, and therefore whether GABAAR activation has a depolarizing or hyperpolarizing effect. Finally, we demonstrate that prior exposure to early life psychosocial stress induces significant changes in peripheral GABAAR subunit expression and chloride transporters, in an organ- and subunit-specific manner. Collectively, the data demonstrate the molecular diversity of the peripheral GABAAR system and how this changes dynamically in response to life experience. This provides a molecular platform for functional analyses of the GABA–GABAAR system in health, and in diseases affecting various peripheral organs.
Collapse
Affiliation(s)
- Ethan A Everington
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Adina G Gibbard
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Mohsen Seifi
- Institute for Biomedical and Biomolecular Sciences and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
55
|
Bixo M, Johansson M, Timby E, Michalski L, Bäckström T. Effects of GABA active steroids in the female brain with a focus on the premenstrual dysphoric disorder. J Neuroendocrinol 2018; 30. [PMID: 29072794 DOI: 10.1111/jne.12553] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/21/2017] [Indexed: 12/28/2022]
Abstract
Premenstrual dysphoric disorder (PMDD) afflicts 3%-5% of women of childbearing age, and is characterised by recurrent negative mood symptoms (eg, irritability, depression, anxiety and emotional lability) during the luteal phase of the menstrual cycle. The aetiology of PMDD is unknown, although a temporal association with circulating ovarian steroids, in particular progesterone and its metabolite allopregnanolone, has been established during the luteal phase. Allopregnanolone is a positive modulator of the GABAA receptor: it is sedative in high concentrations but may precipitate paradoxical adverse effects on mood at levels corresponding to luteal phase concentrations in susceptible women. Saccadic eye velocity (SEV) is a measure of GABAA receptor sensitivity; in experimental studies of healthy women, i.v. allopregnanolone decreases SEV. Women with PMDD display an altered sensitivity to an i.v. injection of allopregnanolone compared to healthy controls in this model. In functional magnetic resonance imaging (fMRI) studies, women with PMDD react differently to emotional stimuli in contrast to controls. A consistent finding in PMDD patients is increased amygdala reactivity during the luteal phase. Post-mortem studies in humans have revealed that allopregnanolone concentrations vary across different brain regions, although mean levels in the brain also reflect variations in peripheral serum concentrations. The amygdala processes emotions such as anxiety and aggression. This is interesting because allopregnanolone is detected at high concentrations within the region into which marked increases in blood flow are measured with fMRI following progesterone/allopregnanolone administration. Allopregnanolone effects are antagonised by its isomer isoallopregnanolone (UC1010), which significantly reduces negative mood symptoms in women with PMDD when administered s.c. in the premenstrual phase. This was shown in a randomised, placebo-controlled clinical trial in which the primary outcome was change in symptom scoring on the Daily Rating of Severity of Problems (DRSP): the treatment reduced negative mood scores (P < .005), as well as total DRSP scores (P < .01), compared to placebo in women with PMDD. In conclusion, the underlying studies of this review provide evidence that allopregnanolone is the provoking factor behind the negative mood symptoms in PMDD and that isoallopregnanolone could ameliorate the symptoms as a result of its ability to antagonise the allopregnanolone effect on the GABAA receptor.
Collapse
Affiliation(s)
- M Bixo
- Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - M Johansson
- Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - E Timby
- Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - L Michalski
- Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - T Bäckström
- Department of Clinical Science, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| |
Collapse
|
56
|
Melón L, Hammond R, Lewis M, Maguire J. A Novel, Synthetic, Neuroactive Steroid Is Effective at Decreasing Depression-Like Behaviors and Improving Maternal Care in Preclinical Models of Postpartum Depression. Front Endocrinol (Lausanne) 2018; 9:703. [PMID: 30532739 PMCID: PMC6265503 DOI: 10.3389/fendo.2018.00703] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Preclinical testing of treatments for postpartum depression (PPD) has been limited due to the lack of available animal models of such a complex disorder. To address this limitation, our laboratory has generated unique preclinical mouse models that exhibit abnormal postpartum behaviors. Mice with a loss or reduction in the expression of the GABAA receptor (GABAAR) δ subunit (Gabrd -/- or Gabrd +/-, respectively) and mice that lack the K+/Cl- co-transporter, KCC2, specifically in corticotropin-releasing hormone (CRH) neurons (KCC2/Crh mice) exhibit depression-like behaviors restricted to the postpartum period and deficits in maternal care, which serve as useful tools for testing novel therapeutic compounds. Utilizing these preclinical models, we tested the ability of a novel, synthetic, neuroactive steroid developed by SAGE Therapeutics, SGE-516, to improve abnormal postpartum behaviors. Gabrd -/-, Gabrd +/-, and KCC2/Crh dams treated with SGE-516 (450 mg/kg chow) during late pregnancy exhibit a decrease in depression-like behaviors and improvements in maternal care at 48 h postpartum. Interestingly, acute treatment with SGE-516 also exhibits robust therapeutic effects in these preclinical PPD models. We previously discovered abnormal stress reactivity associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with depression-like behaviors in the preclinical PPD models, evident from an increase in stress-induced corticosterone levels and dephosphorylation and downregulation of KCC2 in the paraventricular nucleus of the hypothalamus (PVN) during the peripartum period. Here we demonstrated that SGE-516 treatment is sufficient to prevent the stress-induced increase in corticosterone and dephosphorylation and downregulation of KCC2 in the PVN. In contrast, and consistent with the distinct pharmacology of SGE-516 compared to benzodiazepines, treatment with clobazam (250 mg/kg chow) did not alter the depression-like phenotype or deficits in maternal care observed in these preclinical models of PPD. These findings are consistent with the positive double-blind, randomized, placebo-controlled trial findings of a similar compound, brexanolone, in the treatment of patients with postpartum depression. Further, these findings validate the use of these preclinical models of PPD for screening novel compounds for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Laverne Melón
- TEACRS Program, Tufts University School of Medicine, Boston, MA, United States
| | | | - Mike Lewis
- SAGE Therapeutics, Cambridge, MA, United States
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Jamie Maguire
| |
Collapse
|
57
|
Gunn BG, Baram TZ. Stress and Seizures: Space, Time and Hippocampal Circuits. Trends Neurosci 2017; 40:667-679. [PMID: 28916130 DOI: 10.1016/j.tins.2017.08.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Stress is a major trigger of seizures in people with epilepsy. Exposure to stress results in the release of several stress mediators throughout the brain, including the hippocampus, a region sensitive to stress and prone to seizures. Stress mediators interact with their respective receptors to produce distinct effects on the excitability of hippocampal neurons and networks. Crucially, these stress mediators and their actions exhibit unique spatiotemporal profiles, generating a complex combinatorial output with time- and space-dependent effects on hippocampal network excitability and seizure generation.
Collapse
Affiliation(s)
- B G Gunn
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - T Z Baram
- Department of Pediatrics, University of California, Irvine, CA, USA; Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA; Department of Neurology, University of California, Irvine, CA, USA.
| |
Collapse
|
58
|
Tuem KB, Atey TM. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017; 8:442. [PMID: 28894435 PMCID: PMC5581316 DOI: 10.3389/fneur.2017.00442] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Neuroactive steroids (NASs) are naturally occurring steroids, which are synthesized centrally as de novo from cholesterol and are classified as pregnane, androstane, and sulfated neurosteroids (NSs). NASs modulate many processes via interacting with gamma-aminobutyric acid (GABA), N-methyl-d-aspartate, serotonin, voltage-gated calcium channels, voltage-dependent anion channels, α-adrenoreceptors, X-receptors of the liver, transient receptor potential channels, microtubule-associated protein 2, neurotrophin nerve growth factor, and σ1 receptors. Among these, NSs (especially allopregnanolone) have high potency and extensive GABA-A receptors and hence demonstrate anticonvulsant, anesthetic, central cytoprotectant, and baroreflex inhibitory effects. NSs are also involved in mood and learning via serotonin and anti-nociceptive activity via T-type voltage-gated Ca2+ channels. Moreover, they are modulators of mitochondrial function, synaptic plasticity, or regulators of apoptosis, which have a role in neuroprotective via voltage-dependent anion channels receptors. For proper functioning, NASs need to be in their normal level, whereas excess and deficiency may lead to abnormalities. When they are below the normal, NSs could have a part in development of depression, neuro-inflammation, multiple sclerosis, experimental autoimmune encephalitis, epilepsy, and schizophrenia. On the other hand, stress and attention deficit disorder could occur during excessive level. Overall, NASs are very important molecules with major neuropsychiatric activity.
Collapse
Affiliation(s)
- Kald Beshir Tuem
- Department of Pharmacology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Tesfay Mehari Atey
- Clinical Pharmacy Unit, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
59
|
Visual evoked potentials in women with and without preeclampsia during pregnancy and postpartum. J Hypertens 2017; 36:319-325. [PMID: 28837424 DOI: 10.1097/hjh.0000000000001521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Preeclampsia is a severe hypertensive disorder of pregnancy which may lead to brain complications such as eclampsia. Visual symptoms are present in ∼25% of preeclamptic women suggesting the visual cortex to be altered during preeclampsia. Visual evoked potentials (VEPs) measure the functional neuronal integrity of the visual pathway from retina to the occipital cortex of the brain. The objective of this study was to compare neurophysiological changes in women with preeclampsia and other hypertensive disorders of pregnancy, using VEPs. We hypothesized that women with preeclampsia and other hypertensive disorders of pregnancy develop abnormal latency and amplitude of VEPs as compared with normotensive pregnant women. METHODS We performed a prospective observational study in 15 women with mild preeclampsia, 33 with severe preeclampsia (sPE), eight women with chronic hypertension, nine with pregnancy-induced hypertension, and 29 normotensive pregnant women. VEP measurements were made at four different time points of gestation (12-14 weeks, 26-28 weeks, 32-34 weeks, 36-40 weeks) and 6-8 weeks postpartum. RESULTS We defined reference values for normotensive pregnant women. Normotensive pregnant women had a shorter latency during pregnancy compared to their postpartum value (P = 0.005). Women with sPE had a prolonged latency of VEPs compared with normotensive pregnant women (P = 0.006), a difference that disappeared postpartum. CONCLUSION Our study showed neurophysiological adaptation to pregnancy of the visual cortex in normotensive pregnant women, that seemed to be absent in women with sPE. The study groups of women with chronic hypertension and pregnancy-induced hypertension were to small to draw any conslusions from.
Collapse
|
60
|
Optogenetic Visualization of Presynaptic Tonic Inhibition of Cerebellar Parallel Fibers. J Neurosci 2017; 36:5709-23. [PMID: 27225762 DOI: 10.1523/jneurosci.4366-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/31/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Tonic inhibition was imaged in cerebellar granule cells of transgenic mice expressing the optogenetic chloride indicator, Clomeleon. Blockade of GABAA receptors substantially reduced chloride concentration in granule cells due to block of tonic inhibition. This indicates that tonic inhibition is a significant contributor to the resting chloride concentration of these cells. Tonic inhibition was observed not only in granule cell bodies, but also in their axons, the parallel fibers (PFs). This presynaptic tonic inhibition could be observed in slices both at room and physiological temperatures, as well as in vivo, and has many of the same properties as tonic inhibition measured in granule cell bodies. GABA application revealed that PFs possess at least two types of GABAA receptor: one high-affinity receptor that is activated by ambient GABA and causes a chloride influx that mediates tonic inhibition, and a second with a low affinity for GABA that causes a chloride efflux that excites PFs. Presynaptic tonic inhibition regulates glutamate release from PFs because GABAA receptor blockade enhanced both the frequency of spontaneous EPSCs and the amplitude of evoked EPSCs at the PF-Purkinje cell synapse. We conclude that tonic inhibition of PFs could play an important role in regulating information flow though cerebellar synaptic circuits. Such cross talk between phasic and tonic signaling could be a general mechanism for fine tuning of synaptic circuits. SIGNIFICANCE STATEMENT This paper demonstrates that an unconventional form of signaling, known as tonic inhibition, is found in presynaptic terminals and affects conventional synaptic communication. Our results establish the basic characteristics and mechanisms of presynaptic tonic inhibition and show that it occurs in vivo as well as in isolated brain tissue.
Collapse
|
61
|
Piekarski DJ, Boivin JR, Wilbrecht L. Ovarian Hormones Organize the Maturation of Inhibitory Neurotransmission in the Frontal Cortex at Puberty Onset in Female Mice. Curr Biol 2017; 27:1735-1745.e3. [PMID: 28578932 PMCID: PMC5699709 DOI: 10.1016/j.cub.2017.05.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/03/2017] [Accepted: 05/08/2017] [Indexed: 01/02/2023]
Abstract
The frontal cortex matures late in development, showing dramatic changes after puberty onset, yet few experiments have directly tested the role of pubertal hormones in cortical maturation. One mechanism thought to play a primary role in regulating the maturation of the neocortex is an increase in inhibitory neurotransmission, which alters the balance of excitation and inhibition. We hypothesized that pubertal hormones could regulate maturation of the frontal cortex by this mechanism. Here, we report that manipulations of gonadal hormones do significantly alter the maturation of inhibitory neurotransmission in the cingulate region of the mouse medial frontal cortex, an associative region that matures during the pubertal transition and is implicated in decision making, learning, and psychopathology. We find that inhibitory neurotransmission, but not excitatory neurotransmission, increases onto cingulate pyramidal neurons during peri-pubertal development and that this increase can be blocked by pre-pubertal, but not post-pubertal, gonadectomy. We next used pre-pubertal hormone treatment to model early puberty onset, a phenomenon increasingly observed in girls living in developed nations. We find that pre-pubertal hormone treatment drives an early increase in inhibitory neurotransmission in the frontal cortex, but not the somatosensory cortex, suggesting that earlier puberty can advance cortical maturation in a regionally specific manner. Pre-pubertal hormone treatment also accelerates maturation of tonic inhibition and performance in a frontal-cortex-dependent reversal-learning task. These data provide rare evidence of enduring, organizational effects of ovarian hormones at puberty and provide a potential mechanism by which gonadal hormones could regulate the maturation of the associative neocortex.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, 1550 4(th) Street, San Francisco, CA 94158, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
62
|
Benham RS, Hewage NB, Suckow RF, Engin E, Rudolph U. Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking α2-containing GABA A receptors. Behav Brain Res 2017; 332:172-179. [PMID: 28587819 DOI: 10.1016/j.bbr.2017.05.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/28/2022]
Abstract
Deficits in neuronal inhibition via gamma-aminobutyric acid (GABA) type A receptors (GABAA-Rs) are implicated in the pathophysiology of major depressive disorder and the therapeutic effects of current antidepressant treatments, however, the relevant GABAA-R subtype as defined by its alpha subunit is still unknown. We previously reported anxiety- and depressive-like behavior in alpha2+/- and alpha2-/- mice, respectively (Vollenweider, 2011). We sought to determine whether this phenotype could be reversed by chronic antidepressant treatment. Adult male mice received 4 or 8mg/kg fluoxetine or 53mg/kg desipramine in their drinking water for four weeks before undergoing behavioral testing. In the novelty suppressed feeding test, desipramine had anxiolytic-like effects reducing the latencies to bite and to eat the pellet in both wild-type and alpha2+/- mice. Surprisingly, 4mg/kg fluoxetine had anxiogenic-like effects in alpha2+/- mice increasing latency to bite and to eat while 8mg/kg fluoxetine increased the latency to eat in both wild-type and alpha2+/- mice. In the forced swim and tail suspension tests, chronic desipramine treatment increased latency to immobility in wild-type and alpha2-/- mice. In contrast, chronic fluoxetine treatment increased immobility in alpha2-/- mice in both tasks while generally having no effect in wild-type mice. These findings suggest that in preclinical paradigms of anxiety and behavioral despair the antidepressant-like effects of desipramine are independent of alpha2-containing GABAA-Rs, while a reduction in alpha2 expression leads to an increased sensitivity to anxiogenic- and prodepressant-like effects with chronic fluoxetine treatment, pointing to a potential role of alpha2-containing GABAA-Rs in the response to serotonin-selective antidepressants.
Collapse
Affiliation(s)
- Rebecca S Benham
- Laboratory of Genetic Neuropharmacology, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| | - Nishani B Hewage
- Laboratory of Genetic Neuropharmacology, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| | - Raymond F Suckow
- Analytical Psychopharmacology Laboratory, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Elif Engin
- Laboratory of Genetic Neuropharmacology, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 401 Park Drive, Boston, MA, 02215, USA.
| |
Collapse
|
63
|
Clossen BL, Reddy DS. Catamenial-like seizure exacerbation in mice with targeted ablation of extrasynaptic δGABA-a receptors in the brain. J Neurosci Res 2017; 95:1906-1916. [PMID: 28236431 DOI: 10.1002/jnr.24028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/18/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023]
Abstract
Neurosteroids play a key role in catamenial epilepsy, a menstrual cycle-related seizure clustering in women with epilepsy. While neurosteroids act on all GABA-A receptor isoforms, they cause greater effects on extrasynaptic δGABA-A receptors that mediate tonic inhibition in the brain. Previously, we identified a potential GABA-A receptor mechanism for catamenial epilepsy. However, the precise functional role of extrasynaptic δGABA-A receptors in the pathophysiology of catamenial epilepsy remains unclear. In this study, we utilized mice lacking extrasynaptic δGABA-A receptors (δKO) to investigate whether reduction of tonic inhibition affects catamenial seizure susceptibility or intensity. Intact female wildtype (WT) and δKO mice were subjected to hippocampus kindling until they exhibited stage 5 seizures. Elevated gonadal hormone-based neurosteroid levels were induced by standard gonadotropin regimen and neurosteroid withdrawal (NSW) was triggered by finasteride. NSW increased susceptibility to, as well the intensity of evoked catamenial-like seizures in WT and δKO mice. However, fully kindled δKO mice exhibited an accelerated and augmented response to NSW, with a more rapid increase in seizure susceptibility and intensity than WT mice undergoing the NSW paradigm. Moreover, δKO mice in NSW showed reduced benzodiazepine sensitivity, but in stark contrast to the increased neurosteroid sensitivity observed in WT animals, δKO mice displayed no change in neurosteroid sensitivity in response to NSW. The increased catamenial seizure exacerbation and alterations in antiseizure drug responses are consistent with NSW-induced changes in the abundance of δGABA-A receptors. Collectively, these findings provide evidence of a potential protective role for extrasynaptic δGABA-A receptors in catamenial-like seizures. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
64
|
Reddy DS, Gangisetty O, Wu X. PR-independent neurosteroid regulation of α2-GABA-A receptors in the hippocampus subfields. Brain Res 2017; 1659:142-147. [PMID: 28137424 DOI: 10.1016/j.brainres.2017.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/27/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Progesterone (P) binding to the intracellular progesterone receptors (PRs) plays a key role in epilepsy via modulation of GABA-A receptor plasticity in the brain. This is thought to occur via conversion of P to neurosteroids such as allopregnanolone, an allosteric modulator of GABA-A receptors. In the female brain, the composition of GABA-A receptors is not static and undergoes dynamic spatial changes in response to fluctuations in P and neurosteroid levels. Synaptic α2-containing GABA-A receptors contribute to phasic neuronal excitability and seizure susceptibility. However, the mechanisms underlying α2-subunit plasticity remain unclear. Here, we utilized the neurosteroid synthesis inhibitor finasteride and PR knockout mice to investigate the role of PRs in α2-subunit in the hippocampus. α2-Subunit expression was significantly upregulated during the high-P state of diestrous stage and with P treatment in wildtype and PR knockout mice. In contrast, there was no change in α2-subunit expression when metabolism of P into neurosteroids was blocked by finasteride in both genotypes. These findings suggest that ovarian cycle-related P and neurosteroids regulate α2-GABA-A receptor expression in the hippocampus via a non-PR pathway, which may be relevant to menstrual-cycle related brain conditions.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA.
| | - Omkaram Gangisetty
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
65
|
Albrecht A, Müller I, Ardi Z, Çalışkan G, Gruber D, Ivens S, Segal M, Behr J, Heinemann U, Stork O, Richter-Levin G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neurosci Biobehav Rev 2017; 74:21-43. [PMID: 28088535 DOI: 10.1016/j.neubiorev.2017.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
ALBRECHT, A., MÜLLER, I., ARDI, Z., ÇALIŞKAN, G., GRUBER, D., IVENS, S., SEGAL, M., BEHR, J., HEINEMANN, U., STORK, O., and RICHTER-LEVIN, G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. NEUROSCI BIOBEHAV REV XXX-XXX, 2016.- Childhood adversity is among the most potent risk factors for developing mood and anxiety disorders later in life. Therefore, understanding how stress during childhood shapes and rewires the brain may optimize preventive and therapeutic strategies for these disorders. To this end, animal models of stress exposure in rodents during their post-weaning and pre-pubertal life phase have been developed. Such 'juvenile stress' has a long-lasting impact on mood and anxiety-like behavior and on stress coping in adulthood, accompanied by alterations of the GABAergic system within core regions for the stress processing such as the amygdala, prefrontal cortex and hippocampus. While many regionally diverse molecular and electrophysiological changes are observed, not all of them correlate with juvenile stress-induced behavioral disturbances. It rather seems that certain juvenile stress-induced alterations reflect the system's attempts to maintain homeostasis and thus promote stress resilience. Analysis tools such as individual behavioral profiling may allow the association of behavioral and neurobiological alterations more clearly and the dissection of alterations related to the pathology from those related to resilience.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Iris Müller
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| | - Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - David Gruber
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Sebastian Ivens
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Herzl St 234, 7610001 Rehovot, Israel
| | - Joachim Behr
- Research Department of Experimental and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Garystraße 5, 14195 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Brandenburg Medical School - Campus Neuruppin, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | - Uwe Heinemann
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Psychology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| |
Collapse
|
66
|
Locci A, Porcu P, Talani G, Santoru F, Berretti R, Giunti E, Licheri V, Sanna E, Concas A. Neonatal estradiol exposure to female rats changes GABA A receptor expression and function, and spatial learning during adulthood. Horm Behav 2017; 87:35-46. [PMID: 27769760 DOI: 10.1016/j.yhbeh.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022]
Abstract
Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.
Collapse
Affiliation(s)
- Andrea Locci
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Francesca Santoru
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Roberta Berretti
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Elisa Giunti
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Valentina Licheri
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
67
|
Maguire J. Calming Down During Coming of Age. Epilepsy Curr 2017; 17:57-59. [PMID: 28331476 PMCID: PMC5340562 DOI: 10.5698/1535-7511-17.1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
|
68
|
Piantadosi SC, French BJ, Poe MM, Timić T, Marković BD, Pabba M, Seney ML, Oh H, Orser BA, Savić MM, Cook JM, Sibille E. Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABA A Receptor Positive Allosteric Modulator. Front Pharmacol 2016; 7:446. [PMID: 27920723 PMCID: PMC5118774 DOI: 10.3389/fphar.2016.00446] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
Rationale: Current first-line treatments for stress-related disorders such as major depressive disorder (MDD) act on monoaminergic systems and take weeks to achieve a therapeutic effect with poor response and low remission rates. Recent research has implicated the GABAergic system in the pathophysiology of depression, including deficits in interneurons targeting the dendritic compartment of cortical pyramidal cells. Objectives: The present study evaluates whether SH-053-2’F-R-CH3 (denoted “α5-PAM”), a positive allosteric modulator selective for α5-subunit containing GABAA receptors found predominantly on cortical pyramidal cell dendrites, has anti-stress effects. Methods: Female and male C57BL6/J mice were exposed to unpredictable chronic mild stress (UCMS) and treated with α5-PAM acutely (30 min prior to assessing behavior) or chronically before being assessed behaviorally. Results: Acute and chronic α5-PAM treatments produce a pattern of decreased stress-induced behaviors (denoted as “behavioral emotionality”) across various tests in female, but not in male mice. Behavioral Z-scores calculated across a panel of tests designed to best model the range and heterogeneity of human symptomatology confirmed that acute and chronic α5-PAM treatments consistently produce significant decreases in behavioral emotionality in several independent cohorts of females. The behavioral responses to α5-PAM could not be completely accounted for by differences in drug brain disposition between female and male mice. In mice exposed to UCMS, expression of the Gabra5 gene was increased in the frontal cortex after acute treatment and in the hippocampus after chronic treatment with α5-PAM in females only, and these expression changes correlated with behavioral emotionality. Conclusion: We showed that acute and chronic positive modulation of α5 subunit-containing GABAA receptors elicit anti-stress effects in a sex-dependent manner, suggesting novel therapeutic modalities.
Collapse
Affiliation(s)
- Sean C Piantadosi
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Department of Psychiatry, University of PittsburghPittsburgh, PA, USA
| | - Beverly J French
- Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA
| | - Michael M Poe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Tamara Timić
- Department of Pharmacology, University of Belgrade Belgrade, Serbia
| | - Bojan D Marković
- Department of Pharmaceutical Chemistry, University of Belgrade Belgrade, Serbia
| | - Mohan Pabba
- Neurobiology of Depression and Aging, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA
| | - Hyunjung Oh
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Department of Psychiatry, University of PittsburghPittsburgh, PA, USA; Neurobiology of Depression and Aging, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthToronto, ON, Canada
| | - Beverley A Orser
- Department of Anesthesia-Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Miroslav M Savić
- Department of Pharmacology, University of Belgrade Belgrade, Serbia
| | - James M Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Etienne Sibille
- Center for Neuroscience, University of PittsburghPittsburgh, PA, USA; Department of Psychiatry, University of PittsburghPittsburgh, PA, USA; Neurobiology of Depression and Aging, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental HealthToronto, ON, Canada; Department of Psychiatry- Department of Pharmacology and Toxicology, University of TorontoToronto, ON, Canada
| |
Collapse
|
69
|
Lee V, MacKenzie G, Hooper A, Maguire J. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory. Hippocampus 2016; 26:1276-1290. [PMID: 27163381 DOI: 10.1002/hipo.22604] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 11/11/2022]
Abstract
It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition in dentate gyrus granule cells contributes, at least in part, to deficits in learning and memory associated with chronic stress. These findings have significant implications regarding the pathophysiological mechanisms underlying impairments in learning and memory associated with stress and suggest a role for GABAA R δ subunit containing receptors in dentate gyrus granule cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vallent Lee
- Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Georgina MacKenzie
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Andrew Hooper
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
70
|
Coronel MF, Labombarda F, González SL. Neuroactive steroids, nociception and neuropathic pain: A flashback to go forward. Steroids 2016; 110:77-87. [PMID: 27091763 DOI: 10.1016/j.steroids.2016.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 11/26/2022]
Abstract
The present review discusses the potential role of neurosteroids/neuroactive steroids in the regulation of nociceptive and neuropathic pain, and recapitulates the current knowledge on the main mechanisms involved in the reduction of pain, especially those occurring at the dorsal horn of the spinal cord, a crucial site for nociceptive processing. We will make special focus on progesterone and its derivative allopregnanolone, which have been shown to exert remarkable actions in order to prevent or reverse the maladaptive changes and pain behaviors that arise after nervous system damage in various experimental neuropathic conditions.
Collapse
Affiliation(s)
- María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
71
|
Reddy DS. Catamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy. Front Cell Neurosci 2016; 10:101. [PMID: 27147973 PMCID: PMC4840555 DOI: 10.3389/fncel.2016.00101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/04/2016] [Indexed: 01/22/2023] Open
Abstract
Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurosteroids due to the decline in progesterone level at the time of menstruation. These manifestations can be faithfully reproduced in rodents by specific neuroendocrine manipulations. Since mice and rats, like humans, have ovarian cycles with circulating hormones, they appear to be suitable animal models for studies of perimenstrual seizures. Recently, we created specific experimental models to mimic perimenstrual seizures. Studies in rat and mouse models of catamenial epilepsy show enhanced susceptibility to seizures or increased seizure exacerbations following neurosteroid withdrawal. During such a seizure exacerbation period, there is a striking decrease in the anticonvulsant effect of commonly prescribed antiepileptics, such as benzodiazepines, but an increase in the anticonvulsant potency of exogenous neurosteroids. We discovered an extrasynaptic molecular mechanism of catamenial epilepsy. In essence, extrasynaptic δGABA-A receptors are upregulated during perimenstrual-like neuroendocrine milieu. Consequently, there is enhanced antiseizure efficacy of neurosteroids in catamenial models because δGABA-A receptors confer neurosteroid sensitivity and greater seizure protection. Molecular mechanisms such as these offer a strong rationale for the clinical development of a neurosteroid replacement therapy for catamenial epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine Bryan, TX, USA
| |
Collapse
|
72
|
Enduring changes in tonic GABAA receptor signaling in dentate granule cells after controlled cortical impact brain injury in mice. Exp Neurol 2016; 277:178-189. [DOI: 10.1016/j.expneurol.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
|
73
|
Dentate cannabinoid-sensitive interneurons undergo unique and selective strengthening of mutual synaptic inhibition in experimental epilepsy. Neurobiol Dis 2016; 89:23-35. [PMID: 26804027 DOI: 10.1016/j.nbd.2016.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
Altered inhibition is a salient feature of hippocampal network reorganization in epilepsy. Hippocampal pyramidal cells and dentate granule cells show specific reduction in cannabinoid receptor type 1 (CB1R)-sensitive GABAergic inputs in experimental epilepsy. In the dentate gyrus, CB1Rs regulate synaptic release from accommodating interneurons (AC-INs) with adapting firing characteristics and axonal projections in the molecular layer, but not from fast-spiking basket cells (FS-BCs). However, it is not known whether the intrinsic physiology and synaptic inhibition of AC-INs responsible for CB1R-sensitive inhibition is altered in epilepsy. Using the pilocarpine-induced status epilepticus (SE) model of epilepsy, we find that the basic physiological characteristics of AC-INs in epileptic rats are not different from age-matched controls. In paired interneuronal recordings, the amplitude of unitary inhibitory synaptic currents (uIPSCs) between AC-INs doubled after SE. Non-stationary noise analysis revealed that the post-SE strengthening of synapses between AC-INs resulted from an increase in postsynaptic receptors. Baseline synaptic release and CB1R antagonist enhancement of release at synapses between AC-INs were not different between control and post-SE rats. Additionally, uIPSC amplitude in FS-BCs to AC-INs pairs was unchanged after SE indicating input-specific microcircuit alterations in inhibitory inputs to AC-INs. At the network level, AC-INs showed no reduction in spontaneous and miniature inhibitory synaptic current (sIPSC or mIPSC) frequency or amplitude after SE. However, AC-IN mIPSC amplitude was persistently enhanced in post-SE and epileptic rats. CB1R agonist reduced the amplitude and suppressed a greater proportion of sIPSCs in AC-INs from post-SE and epileptic rats demonstrating a novel, cell-type specific increase in CB1R-sensitive inhibition of AC-INs after SE. This unique post-SE strengthening of inhibition between AC-INs could lead to activity-dependent suppression of AC-IN firing and compromise dentate CB1R-sensitive inhibition in epilepsy.
Collapse
|
74
|
Behavioral Deficits in Juveniles Mediated by Maternal Stress Hormones in Mice. Neural Plast 2015; 2016:2762518. [PMID: 26819762 PMCID: PMC4706939 DOI: 10.1155/2016/2762518] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/14/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022] Open
Abstract
Maternal depression has been shown to negatively impact offspring development. Investigation into the impact of maternal depression and offspring behavior has relied on correlative studies in humans. Further investigation into the underlying mechanisms has been hindered by the lack of useful animal models. We previously characterized a mouse model which exhibits depression-like behaviors restricted to the postpartum period and abnormal/fragmented maternal care (Gabrd−/− mice). Here we utilized this unique mouse model to investigate the mechanism(s) through which maternal depression-like behaviors adversely impact offspring development. Cross-fostering experiments reveal increased anxiety-like and depression-like behaviors in mice reared by Gabrd−/− mothers. Wild type and Gabrd−/− mice subjected to unpredictable stress during late pregnancy exhibit decreased pup survival and depression-like behavior in the postpartum period. Exogenous corticosterone treatment in wild type mice during late pregnancy is sufficient to decrease pup survival and induce anxiety-like and depression-like behaviors in the offspring. Further, the abnormal behaviors in juvenile mice reared by Gabrd−/− mice are alleviated by treatment of the mothers with the corticotropin-releasing hormone (CRH) antagonist, Antalarmin. These studies suggest that hyperresponsiveness of the HPA axis is associated with postpartum depression and may mediate the adverse effects of maternal depression on offspring behavior.
Collapse
|
75
|
Kuver A, Smith SS. Flumazenil decreases surface expression of α4β2δ GABAA receptors by increasing the rate of receptor internalization. Brain Res Bull 2015; 120:131-43. [PMID: 26592470 DOI: 10.1016/j.brainresbull.2015.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 11/25/2022]
Abstract
Increases in expression of α4βδ GABAA receptors (GABARs), triggered by fluctuations in the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one), are associated with changes in mood and cognition. We tested whether α4βδ trafficking and surface expression would be altered by in vitro exposure to flumazenil, a benzodiazepine ligand which reduces α4βδ expression in vivo. We first determined that flumazenil (100 nM-100 μM, IC50=∼1 μM) acted as a negative modulator, reducing GABA (10 μM)-gated current in the presence of 100 nM THP (to increase receptor efficacy), assessed with whole cell patch clamp recordings of recombinant α4β2δ expressed in HEK-293 cells. Surface expression of recombinant α4β2δ receptors was detected using a 3XFLAG reporter at the C-terminus of α4 (α4F) using confocal immunocytochemical techniques following 48 h exposure of cells to GABA (10 μM)+THP (100 nM). Flumazenil (10 μM) decreased surface expression of α4F by ∼60%, while increasing its intracellular accumulation, after 48 h. Reduced surface expression of α4β2δ after flumazenil treatment was confirmed by decreases in the current responses to 100 nM of the GABA agonist gaboxadol. Flumazenil-induced decreases in surface expression of α4β2δ were prevented by the dynamin blocker, dynasore, and by leupeptin, which blocks lysosomal enzymes, suggesting that flumazenil is acting to increase endocytosis and lysosomal degradation of the receptor. Flumazenil increased the rate of receptor removal from the cell surface by 2-fold, assessed using botulinum toxin B to block insertion of new receptors. These findings may suggest new therapeutic strategies for regulation of α4β2δ expression using flumazenil.
Collapse
Affiliation(s)
- Aarti Kuver
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Sheryl S Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| |
Collapse
|
76
|
Kourdougli N, Varpula S, Chazal G, Rivera C. Detrimental effect of post Status Epilepticus treatment with ROCK inhibitor Y-27632 in a pilocarpine model of temporal lobe epilepsy. Front Cell Neurosci 2015; 9:413. [PMID: 26557054 PMCID: PMC4615811 DOI: 10.3389/fncel.2015.00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/28/2015] [Indexed: 01/18/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults where 20-30% of the patients are refractory to currently available anti-epileptic drugs. The RhoA/Rho-kinase signaling pathway activation has been involved in inflammatory responses, neurite outgrowth and neuronal death under pathological conditions such as epileptic insults. Acute preventive administration of ROCK inhibitor has been reported to have beneficial outcomes in Status Epilepticus (SE) epilepsy. In the present study, we evaluate the effect of chronic post SE treatment with the ROCK inhibitor Y-27632 in a rat pilocarpine model of TLE. We used chronic i.p. injections of Y-27632 for 5 days in 6 week old control rats or rats subjected to pilocarpine treatment as a model of TLE. Surprisingly, our findings demonstrate that a systemic administration of Y-27632 in pilocarpine-treated rats increases neuronal death in the CA3 region and ectopic recurrent mossy fiber sprouting (rMFS) in the dentate gyrus of the hippocampal formation. Interestingly, we found that chronic treatment with Y-27632 exacerbates the down-regulation and pathological distribution of the K(+)-Cl(-) cotransporter KCC2, thus providing a putative mechanism for post SE induced neuronal death. The involvement of astrogliosis in this mechanism appears to be intricate as ROCK inhibition reduces reactive astrogliosis in pilocarpine rats. Conversely, in control rats, chronic Y-27632 treatment increases astrogliosis. Together, our findings suggest that Y-27632 has a detrimental effect when chronically used post SE in a rat pilocarpine model of TLE.
Collapse
Affiliation(s)
- Nazim Kourdougli
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
| | - Saara Varpula
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Genevieve Chazal
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
| | - Claudio Rivera
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|
77
|
Abstract
Eclampsia, clinically defined as unexplained seizure in a woman with preeclampsia, is a life threatening complication unique to the pregnant state. However, a subpopulation of women with seemingly uncomplicated pregnancies experience de novo seizure without preeclamptic signs or symptoms, suggesting pregnancy alone may predispose the brain to seizure. Here, we hypothesized that normal pregnancy lowers seizure threshold and investigated mechanisms by which pregnancy may affect seizure susceptibility, including neuroinflammation and plasticity of gamma-aminobutyric acid type A receptor (GABAAR) subunit expression. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ) required to elicit electrical seizure in Sprague Dawley rats that were either nonpregnant (Nonpreg, n = 7) or pregnant (Preg; d20, n = 6). Seizure-induced vasogenic edema was also measured. Further, activation of microglia, a measure of neuroinflammation (n = 6-8/group), and GABAAR δ- and γ2-subunit protein expression in the cerebral cortex and hippocampus (n = 6/group) was determined. Seizure threshold was lower in Preg compared to Nonpreg rats (36.7±9.6 vs. 65.0±14.5 mg/kg PTZ; p<0.01) that was associated with greater vasogenic edema formation (78.55±0.11 vs. 78.04±0.19% water; p<0.05). The % of active microglia was similar between groups; however, pregnancy was associated with downregulation of cortical GABAAR-δ and hippocampal GABAAR-γ2 expression. Overall, pregnancy appears to be a state of increased seizure susceptibility that is not due to neuroinflammation, but rather is associated with reduced expression of GABAAR subunits and greater edema. Understanding neurophysiological changes occurring in normal pregnancy could allow for better prevention and management of de novo seizure, including pathologic states such as eclampsia.
Collapse
Affiliation(s)
- Abbie Chapman Johnson
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Keith J. Nagle
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Sarah M. Tremble
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
| | - Marilyn J. Cipolla
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont, 05405, United States of America
- * E-mail:
| |
Collapse
|
78
|
MacKenzie G, Maguire J. Neurosteroids and GABAergic signaling in health and disease. Biomol Concepts 2015; 4:29-42. [PMID: 25436563 DOI: 10.1515/bmc-2012-0033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/12/2012] [Indexed: 11/15/2022] Open
Abstract
Endogenous neurosteroids such as allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are synthesized either de novo in the brain from cholesterol or are generated from the local metabolism of peripherally derived progesterone or corticosterone. Fluctuations in neurosteroid concentrations are important in the regulation of a number of physiological responses including anxiety and stress, reproductive, and sexual behaviors. These effects are mediated in part by the direct binding of neurosteroids to γ-aminobutyric acid type-A receptors (GABAARs), resulting in the potentiation of GABAAR-mediated currents. Extrasynaptic GABAARs containing the δ subunit, which contribute to the tonic conductance, are particularly sensitive to low nanomolar concentrations of neurosteroids and are likely their preferential target. Considering the large charge transfer generated by these persistently open channels, even subtle changes in neurosteroid concentrations can have a major impact on neuronal excitability. Consequently, aberrant levels of neurosteroids have been implicated in numerous disorders, including, but not limited to, anxiety, neurodegenerative diseases, alcohol abuse, epilepsy, and depression. Here we review the modulation of GABAAR by neurosteroids and the consequences for health and disease.
Collapse
|
79
|
Sukhbaatar U, Mijiddorj T, Oride A, Kanasaki H. Stimulation of δ subunit-containing GABAA receptor by DS1 increases GnRH receptor expression but reduces GnRH mRNA expression in GnRH-producing GT1-7 cells. Endocrine 2015; 49:222-30. [PMID: 25355308 DOI: 10.1007/s12020-014-0464-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/23/2014] [Indexed: 12/23/2022]
Abstract
Acting via ionotropic GABAA receptors, the neurotransmitter γ-aminobutyric acid (GABA) is an important modulator of gonadotropin-releasing hormone (GnRH) neurons. In the present study, we examined the effect of DS1, a GABAA α4β3δ receptor agonist, on a strain of mouse hypothalamic immortalized GnRH neuronal cells, the GT1-7 cell line. DS1 increased the activities of serum-response element (SRE) and cAMP-response element (CRE) promoters, which reflect the activities of extracellular signal-regulated kinase and cAMP/protein kinase A (PKA) pathways, respectively. In G protein-coupled receptor 54 (GPR54)-overexpressing GT1-7 cells, both DS1 and kisspeptin-10 stimulated SRE promoter activity, and combined treatment with DS1 and kisspeptin further increased SRE promoter activity compared with DS1 or kisspeptin alone. Pituitary adenylate cyclase-activating polypeptide (PACAP) increased CRE promoter activity in PACAP type I receptor-overexpressing GT1-7 cells, with an effect similar to that of DS1 alone, and combined stimulation with PACAP and DS1 potentiated their individual effects. DS1 stimulated the transcriptional activity of GnRH receptor, and DS1 induced GnRH receptor mRNA and protein expression. PACAP-increased GnRH receptor expression was enhanced in the presence of DS1. However, DS1 significantly inhibited the basal expression of GnRH mRNA in GT1-7 cells. Our current observations suggest that DS1 exerts its stimulatory effect on the intracellular signal transduction system via GABAA α4β3δ receptors in GnRH-producing neurons. Stimulation with DS1 increased the expression of GnRH receptor but decreased the basal expression of GnRH mRNA.
Collapse
Affiliation(s)
- Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, 89-1 Enya, Izumo City, Shimane Prefecture, 693-8501, Japan
| | | | | | | |
Collapse
|
80
|
Martinez Botella G, Salituro FG, Harrison BL, Beresis RT, Bai Z, Shen K, Belfort GM, Loya CM, Ackley MA, Grossman SJ, Hoffmann E, Jia S, Wang J, Doherty JJ, Robichaud AJ. Neuroactive Steroids. 1. Positive Allosteric Modulators of the (γ-Aminobutyric Acid)A Receptor: Structure-Activity Relationships of Heterocyclic Substitution at C-21. J Med Chem 2015; 58:3500-11. [PMID: 25799373 DOI: 10.1021/acs.jmedchem.5b00032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neuroactive steroids (NASs) have been shown to impact central nervous system (CNS) function through positive allosteric modulation of the GABA(A) receptor (GABA(A)-R). Herein we report the effects on the activity and pharmacokinetic properties of a series of nor-19 pregnanolone analogues bearing a heterocyclic substituent at C-21. These efforts resulted in the identification of SGE-516, a balanced synaptic/extrasynaptic GABA(A) receptor modulator, and SGE-872, a selective extrasynaptic GABA(A) receptor modulator. Both molecules possess excellent druglike properties, making them advanced leads for oral delivery of GABA(A) receptor modulators.
Collapse
Affiliation(s)
| | - Francesco G Salituro
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Boyd L Harrison
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | - Zhu Bai
- §WuXi AppTec, 288 Fute Zhong Road, Shanghai, China 200131
| | - Kaisheng Shen
- ‡Shanghai Chempartner, 998 Halei Road, Shanghai, China 201203
| | - Gabriel M Belfort
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Carlos M Loya
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Michael A Ackley
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Scott J Grossman
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Ethan Hoffmann
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Shiling Jia
- ‡Shanghai Chempartner, 998 Halei Road, Shanghai, China 201203
| | - Jiamiao Wang
- ‡Shanghai Chempartner, 998 Halei Road, Shanghai, China 201203
| | - James J Doherty
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Albert J Robichaud
- †SAGE Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
81
|
Lamotrigine and GABAA receptor modulators interact with menstrual cycle phase and oral contraceptives to regulate mood in women with bipolar disorder. J Affect Disord 2015; 175:108-15. [PMID: 25601310 PMCID: PMC4352404 DOI: 10.1016/j.jad.2014.12.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVES To examine the occurrence of menstrually-entrained mood cycling in women with treated bipolar disorder as compared to healthy controls, and to explore whether there is a specific effect of lamotrigine in dampening menstrually-entrained cyclicity of mood. METHODS Observational comparison study of daily self-ratings of mood, sleep, and insomnia obtained over a mean of four menstrual cycles in 42 women with bipolar disorder taking lamotrigine as part of their treatment, 30 women with bipolar disorder receiving mood stabilizing regimens without lamotrigine, and 13 healthy controls, all with physiological menstrual cycles. Additional exploratory analysis of interactions between psychopharmacological regimen and hormonal contraceptive use in the group of women with bipolar disorder, with the addition of 19 women with bipolar disorder who were using hormonal contraceptives. RESULTS Women treated for bipolar disorder manifested lower average mood, longer average nightly sleep duration, and greater fluctuations in mood and sleep across menstrual cycle phases than healthy controls. Women with bipolar disorder who were taking lamotrigine had less fluctuation in mood both within and across menstrual cycle phases, and were more similar to the control group than to women with bipolar disorder who were not taking lamotrigine in this respect. In addition, medications with GABA-A receptor modulating effects were found to result in improved mood ratings when combined with hormonal contraceptives. CONCLUSIONS Menstrually-entrained mood fluctuation is present in women treated for bipolar disorder to a greater degree than in healthy controls. Lamotrigine may be of use in mitigating this fluctuation. GABA-A receptor modulators in general may act synergistically with hormonal contraceptives to enhance mood in women with bipolar disorder; this hypothesis merits further study.
Collapse
|
82
|
Puia G, Ravazzini F, Castelnovo LF, Magnaghi V. PKCε and allopregnanolone: functional cross-talk at the GABAA receptor level. Front Cell Neurosci 2015; 9:83. [PMID: 25852476 PMCID: PMC4365694 DOI: 10.3389/fncel.2015.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
Abstract
Changes in GABAergic inhibition occur during physiological processes, during response to drugs and in various pathologies. These changes can be achieved through direct allosteric modifications at the γ-amino butyric acid (GABA) type A (GABAA) receptor protein level, or by altering the synthesis, trafficking and stability of the receptor. Neurosteroids (NSs) and protein kinase C (PKC) are potent modulators of GABAA receptors and their effects are presumably intermingled, even though evidence for this hypothesis is only partially explored. However, several PKC isoforms are able to phosphorylate the GABAA receptor, producing different functional effects. We focused on the ε isoform, that has been correlated to the sensitivity of the GABAA receptor to allosteric modulators and whose expression may be regulated in peripheral sensory neurons by NSs. The cross-talk between PKC-ε and NSs, leading to changes in GABAA receptor functionality, is considered and discussed in this perspective.
Collapse
Affiliation(s)
- Giulia Puia
- Department of Life Science, University of Modena and Reggio Emilia Modena, Italy
| | - Federica Ravazzini
- Department of Life Science, University of Modena and Reggio Emilia Modena, Italy
| | - Luca Franco Castelnovo
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| |
Collapse
|
83
|
Hengen KB, Nelson NR, Stang KM, Johnson SM, Smith SM, Watters JJ, Mitchell GS, Behan M. Daily isoflurane exposure increases barbiturate insensitivity in medullary respiratory and cortical neurons via expression of ε-subunit containing GABA ARs. PLoS One 2015; 10:e0119351. [PMID: 25748028 PMCID: PMC4352015 DOI: 10.1371/journal.pone.0119351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022] Open
Abstract
The parameters governing GABAA receptor subtype expression patterns are not well understood, although significant shifts in subunit expression may support key physiological events. For example, the respiratory control network in pregnant rats becomes relatively insensitive to barbiturates due to increased expression of ε-subunit-containing GABAARs in the ventral respiratory column. We hypothesized that this plasticity may be a compensatory response to a chronic increase in inhibitory tone caused by increased central neurosteroid levels. Thus, we tested whether increased inhibitory tone was sufficient to induce ε-subunit upregulation on respiratory and cortical neurons in adult rats. Chronic intermittent increases in inhibitory tone in male and female rats was induced via daily 5-min exposures to 3% isoflurane. After 7d of treatment, phrenic burst frequency was less sensitive to barbiturate in isoflurane-treated male and female rats in vivo. Neurons in the ventral respiratory group and cortex were less sensitive to pentobarbital in vitro following 7d and 30d of intermittent isoflurane-exposure in both male and female rats. The pentobarbital insensitivity in 7d isoflurane-treated rats was reversible after another 7d. We hypothesize that increased inhibitory tone in the respiratory control network and cortex causes a compensatory increase in ε-subunit-containing GABAARs.
Collapse
Affiliation(s)
- Keith B. Hengen
- Neuroscience Training Program, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Nathan R. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Kyle M. Stang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephen M. Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Stephanie M. Smith
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Jyoti J. Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Mary Behan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
84
|
Bhandage AK, Hellgren C, Jin Z, Olafsson EB, Sundström-Poromaa I, Birnir B. Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health. Acta Physiol (Oxf) 2015; 213:575-85. [PMID: 25529063 DOI: 10.1111/apha.12440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 12/31/2022]
Abstract
AIM The concept of nerve-driven immunity recognizes a link between the nervous and the immune system. γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain, and receptors activated by GABA can be expressed by immune cells. Here, we examined whether the expression of GABA receptors and chloride transporters in human peripheral blood mononuclear cells (PBMCs) was influenced by gender, pregnancy or mental health. METHODS We used RT-qPCR to determine the mRNA expression level in PBMCs from men (n = 16), non-pregnant women (n = 19), healthy pregnant women (n = 27) and depressed pregnant women (n = 15). RESULTS The ρ2 subunit had the most prominent expression level of the GABA-A receptor subunits in all samples. The δ and ρ2 subunits were up-regulated by pregnancy, whereas the ε subunit was more frequently expressed in healthy pregnant women than non-pregnant women who, in turn, commonly expressed the α6 and the γ2 subunits. The β1 and ε subunits expression was altered by depression in pregnant women. The GABA-B1 receptor was up-regulated by depression in pregnant women, while the transporters NKCC1 and KCC4 were down-regulated by pregnancy. The changes recorded in the mRNA expression levels imply participation of GABA receptors in establishing and maintaining tolerance in pregnancy. Importantly, the correlation of mental health with the expression of specific receptor subunits reveals a connection between the immune cells and the brain. Biomarkers for mental health may be identified in PBMCs. CONCLUSION The results demonstrate the impact gender, pregnancy and mental health have on the expression of GABA receptors and chloride transporters expressed in human PBMCs.
Collapse
Affiliation(s)
- A. K. Bhandage
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - C. Hellgren
- Department of Women's and Children's Health; Uppsala University; Uppsala Sweden
| | - Z. Jin
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - E. B. Olafsson
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- Department of Molecular Biosciences; Stockholm University; Stockholm Sweden
| | | | - B. Birnir
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
85
|
Preterm birth affects GABAA receptor subunit mRNA levels during the foetal-to-neonatal transition in guinea pigs. J Dev Orig Health Dis 2015; 6:250-60. [DOI: 10.1017/s2040174415000069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Modulation of gamma-aminobutyric acid A (GABAA) receptor signalling by the neurosteroid allopregnanolone has a major role in late gestation neurodevelopment. The objective of this study was to characterize the mRNA levels of GABAA receptor subunits (α4, α5, α6 and δ) that are key to neurosteroid binding in the brain, following preterm birth. Myelination, measured by the myelin basic protein immunostaining, was used to assess maturity of the preterm brains. Foetal guinea pig brains were obtained at 62 days’ gestational age (GA, preterm) or at term (69 days). Neonates were delivered by caesarean section, at 62 days GA and term, and maintained until tissue collection at 24 h of age. Subunit mRNA levels were quantified by RT-PCR in the hippocampus and cerebellum of foetal and neonatal brains. Levels of the α6 and δ subunits were markedly lower in the cerebellum of preterm guinea pigs compared with term animals. Importantly, there was an increase in mRNA levels of these subunits during the foetal-to-neonatal transition at term, which was not seen following preterm birth. Myelination was lower in preterm neonatal brains, consistent with marked immaturity. Salivary cortisol concentrations, measured by EIA, were also higher for the preterm neonates, suggesting greater stress. We conclude that there is an adaptive increase in the levels of mRNA of the key GABAA receptor subunits involved in neurosteroid action after term birth, which may compensate for declining allopregnanolone levels. The lower levels of these subunits in preterm neonates may heighten the adverse effect of the premature decline in neurosteroid exposure.
Collapse
|
86
|
Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015; 146:48-61. [PMID: 25196185 DOI: 10.1016/j.jsbmb.2014.09.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023]
Abstract
Progesterone is a well-known steroid hormone, synthesized by ovaries and placenta in females, and by adrenal glands in both males and females. Several tissues are targets of progesterone and the nervous system is a major one. Progesterone is also locally synthesized by the nervous system and qualifies, therefore, as a neurosteroid. In addition, the nervous system has the capacity to bio-convert progesterone into its active metabolite allopregnanolone. The enzymes required for progesterone and allopregnanolone synthesis are widely distributed in brain and spinal cord. Increased local biosynthesis of pregnenolone, progesterone and 5α-dihydroprogesterone may be a part of an endogenous neuroprotective mechanism in response to nervous system injuries. Progesterone and allopregnanolone neuroprotective effects have been widely recognized. Multiple receptors or associated proteins may contribute to the progesterone effects: classical nuclear receptors (PR), membrane progesterone receptor component 1 (PGRMC1), membrane progesterone receptors (mPR), and γ-aminobutyric acid type A (GABAA) receptors after conversion to allopregnanolone. In this review, we will succinctly describe progesterone and allopregnanolone biosynthetic pathways and enzyme distribution in brain and spinal cord. Then, we will summarize our work on progesterone receptor distribution and cellular expression in brain and spinal cord; neurosteroid stimulation after nervous system injuries (spinal cord injury, traumatic brain injury, and stroke); and on progesterone and allopregnanolone neuroprotective effects in different experimental models including stroke and spinal cord injury. We will discuss in detail the neuroprotective effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABAA receptors.
Collapse
Affiliation(s)
- R Guennoun
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France.
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | | | - P Liere
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - M Schumacher
- UMR 788, Inserm and University Paris-Sud, 80 rue du Général Leclerc, 94276 Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
87
|
Perimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity. J Neurosci 2015; 34:14181-97. [PMID: 25339733 DOI: 10.1523/jneurosci.0596-14.2014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial epilepsy.
Collapse
|
88
|
Luscher B, Fuchs T. GABAergic control of depression-related brain states. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 73:97-144. [PMID: 25637439 DOI: 10.1016/bs.apha.2014.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GABAergic deficit hypothesis of major depressive disorders (MDDs) posits that reduced γ-aminobutyric acid (GABA) concentration in brain, impaired function of GABAergic interneurons, altered expression and function of GABA(A) receptors, and changes in GABAergic transmission dictated by altered chloride homeostasis can contribute to the etiology of MDD. Conversely, the hypothesis posits that the efficacy of currently used antidepressants is determined by their ability to enhance GABAergic neurotransmission. We here provide an update for corresponding evidence from studies of patients and preclinical animal models of depression. In addition, we propose an explanation for the continued lack of genetic evidence that explains the considerable heritability of MDD. Lastly, we discuss how alterations in GABAergic transmission are integral to other hypotheses of MDD that emphasize (i) the role of monoaminergic deficits, (ii) stress-based etiologies, (iii) neurotrophic deficits, and (iv) the neurotoxic and neural circuit-impairing consequences of chronic excesses of glutamate. We propose that altered GABAergic transmission serves as a common denominator of MDD that can account for all these other hypotheses and that plays a causal and common role in diverse mechanistic etiologies of depressive brain states and in the mechanism of action of current antidepressant drug therapies.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Thomas Fuchs
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Center for Molecular Investigation of Neurological Disorders, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
89
|
MacKenzie G, Maguire J. Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility. Epilepsy Res 2015; 109:13-27. [PMID: 25524838 PMCID: PMC4272449 DOI: 10.1016/j.eplepsyres.2014.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
The most commonly reported precipitating factor for seizures is stress. However, the underlying mechanisms whereby stress triggers seizures are not yet fully understood. Here we demonstrate a potential mechanism underlying changes in neuronal excitability in the hippocampus following chronic stress, involving a shift in the reversal potential for GABA (EGABA) associated with a dephosphorylation of the potassium chloride co-transporter, KCC2. Mice subjected to chronic restraint stress (30min/day for 14 consecutive days) exhibit an increase in serum corticosterone levels which is associated with increased susceptibility to seizures induced with kainic acid (20mg/kg). Following chronic stress, but not acute stress, we observe a dephosphorylation of KCC2 residue S940, which regulates KCC2 cell surface expression and function, in the hippocampus. To determine the impact of alterations in KCC2 expression following chronic stress, we performed gramicidin perforated patch recordings to measure changes in EGABA and neuronal excitability of principal hippocampal neurons. We observe a depolarizing shift in EGABA in hippocampal CA1 pyramidal neurons after chronic stress. In addition, there is an increase in the intrinsic excitability of CA1 pyramidal neurons, evident by a shift in the input-output curve which could be reversed with the NKCC1 inhibitor, bumetanide. These data uncover a potential mechanism involving chronic stress-induced plasticity in chloride homeostasis which may contribute to stress-induced seizure susceptibility.
Collapse
Affiliation(s)
- Georgina MacKenzie
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
90
|
Adams JM, Thomas P, Smart TG. Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors. Neuropharmacology 2015; 88:63-73. [PMID: 25278033 PMCID: PMC4239298 DOI: 10.1016/j.neuropharm.2014.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 01/21/2023]
Abstract
GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3(S408A,S409A)γ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3(S408A,S409A)δ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4(S443A)β3(S408A,S409A)δ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3(S408,S409) implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by two endogenous neuromodulators.
Collapse
Affiliation(s)
- Joanna M Adams
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
91
|
Mijiddorj T, Kanasaki H, Sukhbaatar U, Oride A, Kyo S. DS1, a delta subunit-containing GABA(A) receptor agonist, increases gonadotropin subunit gene expression in mouse pituitary gonadotrophs. Biol Reprod 2014; 92:45. [PMID: 25519184 DOI: 10.1095/biolreprod.114.123893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
4-Chloro-N-[6,8-dibromo-2-(2-thienyl)imidazo[1,2-alpyridine-3-yl] (DS1) is a GABA(A) receptor agonist that selectively binds to delta subunit-containing GABA(A) alpha4beta3delta receptors. In the present study, we examined the effect of DS1 on pituitary gonadotropin subunit gene expression using the mouse pituitary gonadotroph cell line LbetaT2. DS1 increased the promoter activity of the gonadotropin subunits luteinizing hormone beta (LHbeta), follicle-stimulating hormone beta (FSHbeta), and alpha. Gonadotropin-releasing hormone (GnRH) receptor promoters were also activated by DS1. The effects of DS1 on gonadotropin subunit promoters were obvious, but they were less than those induced by stimulation with GnRH. GnRH-stimulated gonadotropin subunit promoters were enhanced in the presence of DS1. A prototypic specific agonist for GABAA receptors, muscimol, failed to increase LHbeta and FSHbeta subunit promoter activity and had no effect on GnRH-increased LHbeta and FSHbeta promoter activity. In addition, SKF97541, a specific agonist for GABAB receptors, did not modulate basal or GnRH-induced LHbeta and FSHbeta promoter activity. A natural GABA compound failed to increase gonadotropin promoter activity and potentiated the effect of GnRH on the FSHbeta promoter. DS1 increased the activity of serum response element (SRE) and cAMP response element (CRE) promoters, which reflect the activity of the extracellular signal-regulated kinase and cAMP/protein kinase A (PKA) pathways, and GnRH-increased SRE and CRE promoter activity was enhanced in the presence of DS1. A specific inhibitor of the ERK signaling pathway, U0126, prevented DS1-induced LHbeta and FSHbeta promoter activity almost completely; however, H89, a PKA inhibitor, did not modulate the effect of DS1. Our current observations demonstrate that the GABAA alpha4beta3delta receptor agonist DS1 can stimulate gonadotropin subunit gene expression in association with the ERK signaling pathway.
Collapse
Affiliation(s)
- Tselmeg Mijiddorj
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Unurjargal Sukhbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
92
|
Çalışkan G, Schulz SB, Gruber D, Behr J, Heinemann U, Gerevich Z. Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro. Eur J Neurosci 2014; 41:31-44. [PMID: 25306895 DOI: 10.1111/ejn.12750] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022]
Abstract
Stressful experiences do not only cause peripheral changes in stress hormone levels, but also affect central structures such as the hippocampus, implicated in spatial orientation, stress evaluation, and learning and memory. It has been suggested that formation of memory traces is dependent on hippocampal gamma oscillations observed during alert behaviour and rapid eye movement sleep. Furthermore, during quiescent behaviour, sharp wave-ripple (SW-R) activity emerges. These events provide a temporal window during which reactivation of memory ensembles occur. We hypothesized that stress-responsive modulators, such as corticosterone (CORT), corticotropin-releasing factor (CRF) and the neurosteroid 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) are able to modulate gamma oscillations and SW-Rs. Using in vitro hippocampal slices, we studied acute and subacute (2 h) impact of these agents on gamma oscillations in area cornu ammonis 3 of the ventral hippocampus induced by acetylcholine (10 μm) combined with physostigmine (2 μm). CORT increased the gamma oscillations in a dose-dependent fashion. This effect was mediated by glucocorticoid receptors. Likewise, CRF augmented gamma oscillations via CRF type 1 receptor. Lastly, THDOC was found to diminish cholinergic gamma oscillations in a dose-dependent manner. Neither CORT, CRF nor THDOC modulated gamma power when pre-applied for 1 h, 2 h before the induction of gamma oscillations. Interestingly, stress-related neuromodulators had rather mild effects on spontaneous SW-R compared with their effects on gamma oscillations. These data suggest that the alteration of hippocampal gamma oscillation strength in vitro by stress-related agents is an acute process, permitting fast adaptation to new attention-requiring situations in vivo.
Collapse
Affiliation(s)
- Gürsel Çalışkan
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Ferando I, Mody I. In vitro gamma oscillations following partial and complete ablation of δ subunit-containing GABAA receptors from parvalbumin interneurons. Neuropharmacology 2014; 88:91-8. [PMID: 25261782 DOI: 10.1016/j.neuropharm.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Perisynaptic and extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) mediate tonic conductances in many neurons. On principal cells of the neocortex and hippocampus they comprise α4 subunits, whereas they usually contain α1 on various interneurons. Specific characteristics of δ-GABAARs are their pharmacology and high plasticity. In particular δ-GABAARs are sensitive to low concentrations of neurosteroids (NS) and during times of altered NS production (stress, puberty, ovarian cycle and pregnancy) δ-GABAARs expression varies in many neurons regardless of the α subunits they contain, with direct consequences for neuronal excitability and network synchrony. For example δ-GABAARs plasticity on INs underlies modifications in hippocampal γ oscillations during pregnancy or over the ovarian cycle. Most δ-GABAAR-expressing INs in CA3 stratum pyramidale (SP) are parvalbumin (PV) + INs, whose fundamental role in γ oscillations generation and control has been extensively investigated. In this study we reduced or deleted δ-subunits in PV + INs, with the use of a PV/Cre-Gabrd/floxed genetic system. We find that in vitro CA3 γ oscillations of both PV-Gabrd(+/-)and PV-Gabrd(-/-) mice are characterized by higher frequencies than WT controls. The increased frequencies could be lowered to control levels in PV-Gabrd(+/-) by the NS allopregnanolone (3α,5α-tetrahydroprogesterone, 100 nM) but not the synthetic δ-GABAAR positive allosteric modulator 4-Chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl] benzamide (DS-2, 10 μM). This is consistent with the idea that DS-2, in contrast to ALLO, selectively targets α4/δ-GABAARs but not the α1/δ-GABAARs found on INs. Therefore, development of drugs selective for IN-specific α1/δ-GABAARs may be useful in neurological and psychiatric conditions correlated with altered PV + IN function and aberrant γ oscillations.
Collapse
Affiliation(s)
- Isabella Ferando
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Interdepartmental Graduate Program in Molecular, Cellular, and Integrative Physiology, University of California, Los Angeles, CA, USA
| | - Istvan Mody
- Departments of Neurology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Departments of Physiology, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
94
|
Biggio G, Pisu MG, Biggio F, Serra M. Allopregnanolone modulation of HPA axis function in the adult rat. Psychopharmacology (Berl) 2014; 231:3437-44. [PMID: 24658404 DOI: 10.1007/s00213-014-3521-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/25/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE GABAergic neuronal circuits regulate neuroendocrine stress response, and the most potent positive endogenous modulator of GABAA receptor function is allopregnanolone. This neurosteroid acts in a nongenomic manner to selectively increase the inhibitory signal meditated by GABAA receptors; in addition, it also induces long-lasting changes in the expression of specific GABAA receptor subunits in various brain regions, with consequent changes in receptor function. OBJECTIVE The objective of this review is to summarize our findings on emotional state and stress responsiveness in three animal models in which basal brain concentrations of allopregnanolone differ. It is postulated that individual differences in allopregnanolone levels can influence general resilience. RESULTS The results showed that there is an apparent correlation between endogenous levels of brain allopregnanolone and basal and stress-stimulated HPA axis activity. CONCLUSION The relationship between endogenous brain levels of allopregnanolone and HPA axis activity and function sustains the therapeutic potential of this neurosteroid for the treatment of stress-associated disorders.
Collapse
|
95
|
Comenencia-Ortiz E, Moss SJ, Davies PA. Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions. Psychopharmacology (Berl) 2014; 231:3453-65. [PMID: 24847959 PMCID: PMC4135009 DOI: 10.1007/s00213-014-3617-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE Gamma-aminobutyric acid type A receptors (GABAARs) are the principal mediators of inhibitory transmission in the mammalian central nervous system. GABAARs can be localized at post-synaptic inhibitory specializations or at extrasynaptic sites. While synaptic GABAARs are activated transiently following the release of GABA from presynaptic vesicles, extrasynaptic GABAARs are typically activated continuously by ambient GABA concentrations and thus mediate tonic inhibition. The tonic inhibitory currents mediated by extrasynaptic GABAARs control neuronal excitability and the strength of synaptic transmission. However, the mechanisms by which neurons control the functional properties of extrasynaptic GABAARs had not yet been explored. OBJECTIVES We review GABAARs, how they are assembled and trafficked, and the role phosphorylation has on receptor insertion and membrane stabilization. Finally, we review the modulation of GABAARs by neurosteroids and how GABAAR phosphorylation can influence the actions of neurosteroids. CONCLUSIONS Trafficking and stability of functional channels to the membrane surface are critical for inhibitory efficacy. Phosphorylation of residues within GABAAR subunits plays an essential role in the assembly, trafficking, and cell surface stability of GABAARs. Neurosteroids are produced in the brain and are highly efficacious allosteric modulators of GABAAR-mediated current. This allosteric modulation by neurosteroids is influenced by the phosphorylated state of the GABAAR which is subunit dependent, adding temporal and regional variability to the neurosteroid response. Possible links between neurosteroid actions, phosphorylation, and GABAAR trafficking remain to be explored, but potential novel therapeutic targets may exist for numerous neurological and psychological disorders which are linked to fluctuations in neurosteroid levels and GABAA subunit expression.
Collapse
|
96
|
Altered expression of δGABAA receptors in health and disease. Neuropharmacology 2014; 88:24-35. [PMID: 25128850 DOI: 10.1016/j.neuropharm.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid type A receptors that contain the δ subunit (δGABAA receptors) are expressed in multiple types of neurons throughout the central nervous system, where they generate a tonic conductance that shapes neuronal excitability and synaptic plasticity. These receptors regulate a variety of important behavioral functions, including memory, nociception and anxiety, and may also modulate neurogenesis. Given their functional significance, δGABAA receptors are considered to be novel therapeutic targets for the treatment of memory dysfunction, pain, insomnia and mood disorders. These receptors are highly responsive to sedative-hypnotic drugs, general anesthetics and neuroactive steroids. A further remarkable feature of δGABAA receptors is that their expression levels are highly dynamic and fluctuate substantially during development and in response to physiological changes including stress and the reproductive cycle. Furthermore, the expression of these receptors varies in pathological conditions such as alcoholism, fragile X syndrome, epilepsy, depression, schizophrenia, mood disorders and traumatic brain injury. Such fluctuations in receptor expression have significant consequences for behavior and may alter responsiveness to therapeutic drugs. This review considers the alterations in the expression of δGABAA receptors associated with various states of health and disease and the implications of these changes.
Collapse
|
97
|
Barth AMI, Ferando I, Mody I. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo. Front Cell Neurosci 2014; 8:222. [PMID: 25157218 PMCID: PMC4128222 DOI: 10.3389/fncel.2014.00222] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/21/2014] [Indexed: 12/04/2022] Open
Abstract
GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30–120 Hz), a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT) females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd-/-), and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS) or premenstrual dysphoric disorder (PMDD).
Collapse
Affiliation(s)
- Albert M I Barth
- Department of Neurology, The David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA ; Interdepartmental Graduate Program in Molecular, Cellular, and Integrative Physiology, University of California at Los Angeles Los Angeles, CA, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA ; Department of Physiology, The David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA
| |
Collapse
|
98
|
Neurosteroids and their role in sex-specific epilepsies. Neurobiol Dis 2014; 72 Pt B:198-209. [PMID: 24960208 DOI: 10.1016/j.nbd.2014.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/11/2014] [Accepted: 06/14/2014] [Indexed: 01/21/2023] Open
Abstract
Neurosteroids are involved in sex-specific epilepsies. Allopregnanolone and related endogenous neurosteroids in the brain control excessive neuronal excitability and seizure susceptibility. Neurosteroids activate GABA-A receptors, especially extrasynaptic αγδ-GABA-A receptor subtypes that mediate tonic inhibition and thus dampen network excitability. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. Neurosteroids also exert antiepileptogenic effects. There is emerging evidence on a critical role for neurosteroids in the pathophysiology of the sex-specific forms of epilepsies such as catamenial epilepsy, a menstrual cycle-related seizure disorder in women. Catamenial epilepsy is a neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around the perimenstrual or periovulatory period. Apart from ovarian hormones, fluctuations in neurosteroid levels could play a critical role in this gender-specific epilepsy. Neurosteroids also regulate the plasticity of synaptic and extrasynaptic GABA-A receptors in the hippocampus and other regions involved in epilepsy pathology. Based on these studies, we proposed a neurosteroid replacement therapy for catamenial epilepsy. Thus, neurosteroids are novel drug targets for pharmacotherapy of epilepsy.
Collapse
|
99
|
Maguire J. Stress-induced plasticity of GABAergic inhibition. Front Cell Neurosci 2014; 8:157. [PMID: 24936173 PMCID: PMC4047962 DOI: 10.3389/fncel.2014.00157] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/19/2014] [Indexed: 12/18/2022] Open
Abstract
GABAergic neurotransmission is highly plastic, undergoing dynamic alterations in response to changes in the environment, such as following both acute and chronic stress. Stress-induced plasticity of GABAergic inhibition is thought to contribute to changes in neuronal excitability associated with stress, which is particularly relevant for stress-related disorders and seizure susceptibility. Here we review the literature demonstrating several mechanisms altering GABAergic inhibition associated with stress, including brain region-specific alterations in GABAA receptor (GABAAR) subunit expression, changes in chloride homeostasis, and plasticity at GABAergic synapses. Alterations in the expression of specific GABAAR subunits have been documented in multiple brain regions associated with acute or chronic stress. In addition, recent work demonstrates stress-induced alterations in GABAergic inhibition resulting from plasticity in intracellular chloride levels. Acute and chronic stress-induced dephosphorylation and downregulation of the K+/Cl− co-transporter, KCC2, has been implicated in compromising GABAergic control of corticotropin-releasing hormone (CRH) neurons necessary for mounting the physiological response to stress. Acute stress also unmasks the capacity for both long-term potentiation and long-term depression, in distinct temporal windows, at GABAergic synapses on parvocellular neuroendocrine cells (PNCs) in the paraventricular nucleus (PVN) of the hypothalamus. This review highlights the complexity in the plasticity of GABAergic neurotransmission associated with stress and the relationship to neuronal excitability, including alterations in GABAAR expression, synaptic plasticity at GABAergic synapses, and changes in chloride homeostasis.
Collapse
Affiliation(s)
- Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
100
|
Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors. Proc Natl Acad Sci U S A 2014; 111:7132-7. [PMID: 24778259 DOI: 10.1073/pnas.1403285111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurosteroids are synthesized within the brain and act as endogenous anxiolytic, anticonvulsant, hypnotic, and sedative agents, actions that are principally mediated via their ability to potentiate phasic and tonic inhibitory neurotransmission mediated by γ-aminobutyric acid type A receptors (GABAARs). Although neurosteroids are accepted allosteric modulators of GABAARs, here we reveal they exert sustained effects on GABAergic inhibition by selectively enhancing the trafficking of GABAARs that mediate tonic inhibition. We demonstrate that neurosteroids potentiate the protein kinase C-dependent phosphorylation of S443 within α4 subunits, a component of GABAAR subtypes that mediate tonic inhibition in many brain regions. This process enhances insertion of α4 subunit-containing GABAAR subtypes into the membrane, resulting in a selective and sustained elevation in the efficacy of tonic inhibition. Therefore, the ability of neurosteroids to modulate the phosphorylation and membrane insertion of α4 subunit-containing GABAARs may underlie the profound effects these endogenous signaling molecules have on neuronal excitability and behavior.
Collapse
|