51
|
Complement upregulation and activation on motor neurons and neuromuscular junction in the SOD1 G93A mouse model of familial amyotrophic lateral sclerosis. J Neuroimmunol 2011; 235:104-9. [DOI: 10.1016/j.jneuroim.2011.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/22/2011] [Accepted: 03/28/2011] [Indexed: 11/17/2022]
|
52
|
Abstract
Traditionally, researchers have believed that axons are highly dependent on their cell bodies for long-term survival. However, recent studies point to the existence of axon-autonomous mechanism(s) that regulate rapid axon degeneration after axotomy. Here, we review the cellular and molecular events that underlie this process, termed Wallerian degeneration. We describe the biphasic nature of axon degeneration after axotomy and our current understanding of how Wld(S)--an extraordinary protein formed by fusing a Ube4b sequence to Nmnat1--acts to protect severed axons. Interestingly, the neuroprotective effects of Wld(S) span all species tested, which suggests that there is an ancient, Wld(S)-sensitive axon destruction program. Recent studies with Wld(S) also reveal that Wallerian degeneration is genetically related to several dying back axonopathies, thus arguing that Wallerian degeneration can serve as a useful model to understand, and potentially treat, axon degeneration in diverse traumatic or disease contexts.
Collapse
Affiliation(s)
- Michael P Coleman
- Laboratory of Molecular Signaling, The Babraham Institute, Cambridge CB223AT, United Kingdom
| | | |
Collapse
|
53
|
Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci U S A 2009; 106:20960-5. [PMID: 19933335 DOI: 10.1073/pnas.0911405106] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During injury to the nervous system, innate immune cells mediate phagocytosis of debris, cytokine production, and axon regeneration. In the neuro-degenerative disease amyotrophic lateral sclerosis (ALS), innate immune cells in the CNS are activated. However, the role of innate immunity in the peripheral nervous system (PNS) has not been well defined. In this study, we characterized robust activation of CD169/CD68/Iba1+ macrophages throughout the PNS in mutant SOD1(G93A) and SOD1(G37R) transgenic mouse models of ALS. Macrophage activation occurred pre-symptomatically, and expanded from focal arrays within nerve bundles to a tissue-wide distribution following symptom onset. We found a striking dichotomy for immune cells within the spinal cord and PNS. Flow cytometry and GFP bone marrow chimeras showed that spinal cord microglia were mainly tissue resident derived, dendritic-like cells, whereas in peripheral nerves, the majority of activated macrophages infiltrated from the circulation. Humoral antibodies and complement localized to PNS tissue in tandem with macrophage recruitment, and deficiency in complement C4 led to decreased macrophage activation. Therefore, cross-talk between nervous and immune systems occurs throughout the PNS during ALS disease progression. These data reveal a progressive innate and humoral immune response in peripheral nerves that is separate and distinct from spinal cord immune activation in ALS transgenic mice.
Collapse
|
54
|
Abstract
The complement (C) system plays a central role in innate immunity and bridges innate and adaptive immune responses. A fine balance of C activation and regulation mediates the elimination of invading pathogens and the protection of the host from excessive C deposition on healthy tissues. If this delicate balance is disrupted, the C system may cause injury and contribute to the pathogenesis of various diseases, including neurodegenerative disorders and neuropathies. Here we review evidence indicating that C factors and regulators are locally synthesized in the nervous system and we discuss the evidence supporting the protective or detrimental role of C activation in health, injury, and disease of the nerve.
Collapse
Affiliation(s)
- V Ramaglia
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
55
|
Ramaglia V, Tannemaat MR, de Kok M, Wolterman R, Vigar MA, King RHM, Morgan BP, Baas F. Complement inhibition accelerates regeneration in a model of peripheral nerve injury. Mol Immunol 2009; 47:302-9. [PMID: 19833392 DOI: 10.1016/j.molimm.2009.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022]
Abstract
Complement (C) activation is a crucial event in peripheral nerve degeneration but its effect on the subsequent regeneration is unknown. Here we show that genetic deficiency of the sixth C component, C6, accelerates axonal regeneration and recovery in a rat model of sciatic nerve injury. Foot-flick test and Sciatic Function Index monitored up to 5 weeks post-injury showed a significant improvement of sensory and motor function in the C6 deficient animals compared to wildtypes. Retrograde tracing experiments showed a significantly higher number of regenerated neurons at 1 week post-injury in C6 deficient rats than wildtypes. Pathology showed improved nerve regeneration in tibials of C6 deficient animals compared to wildtypes. Reconstitution with purified human C6 protein re-established the wildtype phenotype whereas pharmacological inhibition of C activation with soluble C receptor 1 (sCR1) facilitated recovery and improved pathology similarly to C6 deficient animals. We suggest that a destructive C-mediated event during nerve degeneration hampers the subsequent regenerative process. These findings provide a rationale for the testing of anti-complement agents in human nerve injury.
Collapse
Affiliation(s)
- Valeria Ramaglia
- Neurogenetics Laboratory, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Ramaglia V, King RHM, Morgan BP, Baas F. Deficiency of the complement regulator CD59a exacerbates Wallerian degeneration. Mol Immunol 2009; 46:1892-6. [PMID: 19246097 DOI: 10.1016/j.molimm.2009.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/22/2009] [Accepted: 01/25/2009] [Indexed: 11/18/2022]
Abstract
The complement system is implicated in Wallerian degeneration (WD). We have previously shown that the membrane attack complex (MAC), the terminal activation product of the complement cascade, mediates rapid axonal degradation and myelin clearance during WD after peripheral nerve injury. In this study we analyzed the contribution of CD59a, a cell membrane negative regulator of the MAC, to WD. Following injury, the level of MAC deposition was higher in the CD59a deficient mice than wildtypes whereas the residual axonal content was lower in CD59a deficient mice than wildtypes, strongly implicating MAC as a determinant of axonal damage during WD. The number of endoneurial macrophages was significantly higher in CD59a deficient mice compared to wildtypes at 1 day post-injury. These findings are relevant to the understanding of the mechanisms of axon loss in injury and disease.
Collapse
Affiliation(s)
- Valeria Ramaglia
- Neurogenetics Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
57
|
Halstead SK, Humphreys PD, Zitman FMP, Hamer J, Plomp JJ, Willison HJ. C5 inhibitor rEV576 protects against neural injury in an in vitro mouse model of Miller Fisher syndrome. J Peripher Nerv Syst 2009; 13:228-35. [PMID: 18844789 DOI: 10.1111/j.1529-8027.2008.00181.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guillain-Barré syndrome and its clinical variants, including the anti-GQ1b ganglioside-mediated Miller Fisher syndrome (MFS), comprise the world's leading cause of acute neuromuscular paralysis. Presently, no specific drug therapies exist. The complement cascade, which is activated in these patients, forms an attractive drug target. In this study, we tested whether the complement C5-inhibiting recombinant protein, rEV576, was able to prevent neural injury in a previously developed in vitro mouse model for MFS. Mouse hemidiaphragm preparations were treated with anti-GQ1b antibody and normal human serum as a source of complement with added rEV576 or control protein. Immunohistology in control tissue showed deposition of C3c and membrane attack complex at neuromuscular junctions (NMJs), along with terminal motor axonal neurofilament degradation as well as ethidium homodimer-2 staining showing perisynaptic Schwann cell (pSC) injury. Electrophysiological and functional analyses showed block of synaptic transmission at the NMJ after an initial period of a dramatically high level of asynchronous acetylcholine release. In tissue treated with rEV576, all these indicators of motor neuronal damage were absent, except for the presence of C3c, indicating effective inhibition of C5. These results demonstrate that rEV576 effectively prevents development of neuronal and pSC damage in experimental murine neuropathy.
Collapse
Affiliation(s)
- Susan K Halstead
- Divison of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
58
|
Galvan MD, Luchetti S, Burgos AM, Nguyen HX, Hooshmand MJ, Hamers FPT, Anderson AJ. Deficiency in complement C1q improves histological and functional locomotor outcome after spinal cord injury. J Neurosci 2008; 28:13876-88. [PMID: 19091977 PMCID: PMC2680920 DOI: 10.1523/jneurosci.2823-08.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/29/2008] [Accepted: 10/24/2008] [Indexed: 02/08/2023] Open
Abstract
Although studies have suggested a role for the complement system in the pathophysiology of spinal cord injury (SCI), that role remains poorly defined. Additionally, the relative contribution of individual complement pathways in SCI is unknown. Our initial studies revealed that systemic complement activation was strongly influenced by genetic background and gender. Thus, to investigate the role of the classical complement pathway in contusion-induced SCI, male C1q knock-out (KO) and wild-type (WT) mice on a complement sufficient background (BUB) received a mild-moderate T9 contusion injury with the Infinite Horizon impactor. BUB C1q KO mice exhibited greater locomotor recovery compared with BUB WT mice (p<0.05). Improved recovery observed in BUB C1q KO mice was also associated with decreased threshold for withdrawal from a mild stimulus using von Frey filament testing. Surprisingly, quantification of microglia/macrophages (F4/80) by FACS analysis showed that BUB C1q KO mice exhibited a significantly greater percentage of macrophages in the spinal cord compared with BUB WT mice 3 d post-injury (p<0.05). However, this increased macrophage response appeared to be transient as stereological assessment of spinal cord tissue obtained 28 d post-injury revealed no difference in F4/80-positive cells between groups. Stereological assessment of spinal cord tissue showed that BUB C1q KO mice had reduced lesion volume and an increase in tissue sparing compared with BUB WT mice (p<0.05). Together, these data suggest that initiation of the classical complement pathway via C1q is detrimental to recovery after SCI.
Collapse
Affiliation(s)
- Manuel D. Galvan
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Sabina Luchetti
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Adrian M. Burgos
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Hal X. Nguyen
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Mitra J. Hooshmand
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| | - Frank P. T. Hamers
- Rehabilitation Hospital “DE Hoogstraat,” Rudolf Magnus Institute of Neuroscience, 3583 TM Utrecht, The Netherlands
| | - Aileen J. Anderson
- Departments of Physical Medicine & Rehabilitation and
- Anatomy & Neurobiology, Reeve-Irvine Research Center, University of California, Irvine, Irvine, California 92697-4292, and
| |
Collapse
|
59
|
Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 2008; 107:1169-87. [PMID: 18786171 DOI: 10.1111/j.1471-4159.2008.05668.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.
Collapse
|
60
|
Ramaglia V, Daha M, Baas F. The complement system in the peripheral nerve: Friend or foe? Mol Immunol 2008; 45:3865-77. [DOI: 10.1016/j.molimm.2008.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/09/2008] [Accepted: 06/13/2008] [Indexed: 12/21/2022]
|
61
|
Ramaglia V, Wolterman R, de Kok M, Vigar MA, Wagenaar-Bos I, King RHM, Morgan BP, Baas F. Soluble complement receptor 1 protects the peripheral nerve from early axon loss after injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1043-52. [PMID: 18349134 PMCID: PMC2276415 DOI: 10.2353/ajpath.2008.070660] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/27/2007] [Indexed: 11/20/2022]
Abstract
Complement activation is a crucial early event in Wallerian degeneration. In this study we show that treatment of rats with soluble complement receptor 1 (sCR1), an inhibitor of all complement pathways, blocked both systemic and local complement activation after crush injury of the sciatic nerve. Deposition of membrane attack complex (MAC) in the nerve was inhibited, the nerve was protected from axonal and myelin breakdown at 3 days after injury, and macrophage infiltration and activation was strongly reduced. We show that both classical and alternative complement pathways are activated after acute nerve trauma. Inhibition of the classical pathway by C1 inhibitor (Cetor) diminished, but did not completely block, MAC deposition in the injured nerve, blocked myelin breakdown, inhibited macrophage infiltration, and prevented macrophage activation at 3 days after injury. However, in contrast to sCR1 treatment, early signs of axonal degradation were visible in the nerve, linking MAC deposition to axonal damage. We conclude that sCR1 protects the nerve from early axon loss after injury and propose complement inhibition as a potential therapy for the treatment of diseases in which axon loss is the main cause of disabilities.
Collapse
Affiliation(s)
- Valeria Ramaglia
- Academic Medical Center, Neurogenetics Laboratory, Meibergdreef 9, Amsterdam Zuidoost, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Halstead SK, Zitman FMP, Humphreys PD, Greenshields K, Verschuuren JJ, Jacobs BC, Rother RP, Plomp JJ, Willison HJ. Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. ACTA ACUST UNITED AC 2008; 131:1197-208. [PMID: 18184663 DOI: 10.1093/brain/awm316] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anti-GQ1b ganglioside antibodies are the serological hallmark of the Miller Fisher syndrome (MFS) variant of the paralytic neuropathy, Guillain-Barré syndrome, and are believed to be the principal pathogenic mediators of the disease. In support of this, we previously showed in an in vitro mouse model of MFS that anti-GQ1b antibodies were able to bind and disrupt presynaptic motor nerve terminals at the neuromuscular junction (NMJ) as one of their target sites, thereby causing muscle paralysis. This injury only occurred through activation of complement, culminating in the formation and deposition of membrane attack complex (MAC, C5b-9) in nerve membranes. Since this step is crucial to the neuropathic process and an important convergence point for antibody and complement mediated membrane injury in general, it forms an attractive pharmacotherapeutic target. Here, we assessed the efficacy of the humanized monoclonal antibody eculizumab, which blocks the formation of human C5a and C5b-9, in preventing the immune-mediated motor neuropathy exemplified in this model. Eculizumab completely prevented electrophysiological and structural lesions at anti-GQ1b antibody pre-incubated NMJs in vitro when using normal human serum (NHS) as a complement source. In a novel in vivo mouse model of MFS generated through intraperitoneal injection of anti-GQ1b antibody and NHS, mice developed respiratory paralysis due to transmission block at diaphragm NMJs, resulting from anti-GQ1b antibody binding and complement activation. Intravenous injection of eculizumab effectively prevented respiratory paralysis and associated functional and morphological hallmarks of terminal motor neuropathy. We show that eculizumab protects against complement-mediated damage in murine MFS, providing the rationale for undertaking clinical trials in this disease and other antibody-mediated neuropathies in which complement activation is believed to be involved.
Collapse
Affiliation(s)
- Susan K Halstead
- University of Glasgow, Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|