51
|
Luo H, Wang Q, Yang F, Liu R, Gao Q, Cheng B, Lin X, Huang L, Chen C, Xiang J, Wang K, Qin B, Tang N. Signaling metabolite succinylacetone activates HIF-1α and promotes angiogenesis in GSTZ1-deficient hepatocellular carcinoma. JCI Insight 2023; 8:e164968. [PMID: 37906252 PMCID: PMC10896004 DOI: 10.1172/jci.insight.164968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti-programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.
Collapse
Affiliation(s)
- Huating Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
- Department of Geriatrics, The First Affiliated Hospital
| | - Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Fan Yang
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Rui Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital; and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bin Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Xue Lin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| |
Collapse
|
52
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
53
|
Shunxi W, Xiaoxue Y, Guanbin S, Li Y, Junyu J, Wanqian L. Serine Metabolic Reprogramming in Tumorigenesis, Tumor Immunity, and Clinical Treatment. Adv Nutr 2023; 14:1050-1066. [PMID: 37187454 PMCID: PMC10509429 DOI: 10.1016/j.advnut.2023.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Serine has been recently identified as an essential metabolite for oncogenesis, progression, and adaptive immunity. Influenced by many physiologic or tumor environmental factors, the metabolic pathways of serine synthesis, uptake, and usage are heterogeneously reprogrammed and frequently amplified in tumor or tumor-associated cells. The hyperactivation of serine metabolism promotes abnormal cellular nucleotide/protein/lipid synthesis, mitochondrial function, and epigenetic modifications, which drive malignant transformation, unlimited proliferation, metastasis, immunosuppression, and drug resistance of tumor cells. Dietary restriction of serine or phosphoglycerate dehydrogenase depletion mitigates tumor growth and extends the survival of tumor patients. Correspondingly, these findings triggered a boom in the development of novel therapeutic agents targeting serine metabolism. In this study, recent discoveries in the underlying mechanism and cellular function of serine metabolic reprogramming are summarized. The vital role of serine metabolism in oncogenesis, tumor stemness, tumor immunity, and therapeutic resistance is outlined. Finally, some potential tumor therapeutic concepts, strategies, and limitations of targeting the serine metabolic pathway are described in detail. Taken together, this review underscores the importance of serine metabolic reprogramming in tumorigenesis and progression and highlights new opportunities for dietary restriction or selective pharmacologic intervention.
Collapse
Affiliation(s)
- Wang Shunxi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yuan Xiaoxue
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Song Guanbin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Yang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Jin Junyu
- Department of Oncology, Chenjiaqiao Hospital, Shapingba, Chongqing, China.
| | - Liu Wanqian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China.
| |
Collapse
|
54
|
Ren ZY, Lyu SC, Wang HX, Wang J, Zhou L, He Q, Lang R. Protective Effects of Different Hypothermal Preservation Solutions on Structure and Function of Isolated Rat Arteries. Curr Med Sci 2023; 43:768-778. [PMID: 37480414 DOI: 10.1007/s11596-023-2766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/03/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE With the increasing application of vascular reconstruction in surgical procedures, allogeneic vessels are becoming more popular in clinical practice due to their abundant sources, precise diameter matching, improved histocompatibility, and higher long-term patency rate. This study aimed to investigate the protective effect of various preservation solutions on the function and structure of the isolated rat abdominal aorta preserved under hypothermal conditions. METHODS The study utilized a total of 150 Sprague-Dawley (SD) rats, with 144 rats allocated to the experimental groups and 6 rats allocated to the control groups. The abdominal aorta of the rats was chosen as the subject of our research. The aorta in the experimental groups were randomly assigned to 4 groups: University of Wisconsin (UW) solution group, histidine-tryptophan-ketoglutarate (HTK) solution group, normal saline (NS) group, and sodium lactate Ringer's solution (RS) group. Samples were subjected to examination after preservation periods of 1 day, 3 days, 5 days, 7 days, 14 days, 30 days, and 90 days. Evaluation of vascular physiological function involved detecting and assessing vasoconstriction ability and measuring cell viability through the MTT test. Evaluation of the vascular wall structure involved tension tolerance tests and pathological staining. RESULTS The pathogen-positive rate in the HTK group and NS group at 1 month was 16.7%. Regarding the vascular skeleton structure, both the UW group and HTK group exhibited intact structures after 2 weeks of preservation, with slightly edematous collagen and elastic fibers, which was significantly better than that of the NS group and RS group. In terms of cell activity and contractile function, all preservation groups showed similar effects within 2 weeks. However, after 2 weeks, the UW group showed the most favorable preservation effect (P<0.05). In terms of vascular tension, different groups exhibited similar effects within 1 week. However, after 2 weeks, the UW group showed the best preservation effect (P<0.05). CONCLUSION All 4 types of preservation solution had a preservation effect on the structure and function of isolated blood vessels during short-term hypothermal preservation. However, after 2-week preservation, the UW solution was found to be the most suitable solution for the preservation of blood vessels.
Collapse
Affiliation(s)
- Zhang-Yong Ren
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han-Xuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
55
|
Orešić T, Bubanović S, Ramić S, Šarčević B, Čipak Gašparović A. Nuclear localization of NRF2 in stroma of HER2 positive and triple-negative breast cancer. Pathol Res Pract 2023; 248:154662. [PMID: 37421843 DOI: 10.1016/j.prp.2023.154662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Breast cancer is one of the leading causes of cancer-related mortality in women. During tumor growth, periods of hypoxia are followed by reoxygenation due to neovascularisation leading to disturbed redox homeostasis. ROS (Reactive Oxygen Species) produced under hypoxia activate HIF1α. ROS can also activate the major antioxidant transcription factor NRF2, but also cause damage to biomolecules. Lipids are susceptible to peroxidation, as evidenced by the formation of reactive aldehydes, among which, HNE (4-hydroxynonenal) is the most studied one. Knowing that HIF1α (Hypoxia Inducing Factor 1α) is associated with breast cancer malignancy, we aimed to investigate its correlation with HNE and NRF2 (Nuclear factor erythroid 2-related factor 2). Our results show that HIF1α is activated in breast cancer, indicating an increase in ROS but not followed by HNE production. On the other hand, NRF2 was increased in all types of breast cancer suggesting that oxidative stress is present in these pathologies, but also supporting HIF1α. Interestingly, NRF2 was activated in HER2 positive and TNBC, indicating the role of stromal NRF2 in breast cancer malignancy.
Collapse
Affiliation(s)
- Tomislav Orešić
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Sanda Bubanović
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Snježana Ramić
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Božena Šarčević
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | | |
Collapse
|
56
|
Liu S, Kang L, Song Y, Miao M. Role of the HIF-1α/BNIP3 Signaling Pathway in Recurrent Hepatocellular Carcinoma and the Mechanism of Traditional Chinese Medicine. J Hepatocell Carcinoma 2023; 10:893-908. [PMID: 37313302 PMCID: PMC10259603 DOI: 10.2147/jhc.s409292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
Recurrence of hepatocellular carcinoma (HCC) negatively affects the quality of life of patients and leads to death. Studies have shown that recurrent hepatocellular carcinoma (RHCC) is closely related to tissue hypoxia and autophagy. It has been shown that hypoxia-inducible factor-1α (HIF-1α) and its downstream factor BCL-2 19 kDa-interacting protein 3 (BNIP3) promote cellular autophagy under hypoxic conditions, resulting in metastasis and RHCC. In this article, the molecular structures of HIF-1α and BNIP3 are described, and the significance of the HIF-1α/BNIP3 signaling pathway in RHCC is explained. Moreover, the role and mechanism of traditional Chinese medicine (TCM) in treating RHCC by modulating the HIF-1α/BNIP3 signaling pathway is discussed. Studies have shown that the HIF-1α/BNIP3 signaling pathway is a potential target of TCM in the treatment of RHCC. The mechanism of the HIF-1α/BNIP3 signaling pathway in RHCC and the progress achieved in TCM research on targeting and regulating this pathway are also reviewed in this article. The objective was to provide a theoretical basis for the prevention and treatment of RHCC, as well as further drug development.
Collapse
Affiliation(s)
- Sizhe Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| | - Le Kang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| | - Yagang Song
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, People’s Republic of China
| |
Collapse
|
57
|
Jie YK, Ma HL, Jiang JJ, Cheng CH, Deng YQ, Liu GX, Fan SG, Guo ZX. Glutaredoxin 2 in the mud crab Scylla paramamosain: Identification and functional characterization under hypoxia and pathogen challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104676. [PMID: 36889371 DOI: 10.1016/j.dci.2023.104676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Glutaredoxin (Grx) is a glutathione-dependent oxidoreductase that plays a key role in antioxidant defense. In this study, a novel Grx2 gene (SpGrx2) was identified from the mud crab Scylla paramamosain, which consists of a 196 bp 5' untranslated region, a 357 bp open reading frame, and a 964 bp 3' untranslated region. The putative SpGrx2 protein has a typical single Grx domain with the active center sequence C-P-Y-C. The expression analysis revealed that the SpGrx2 mRNA was most abundant in the gill, followed by the stomach and hemocytes. Both mud crab dicistrovirus-1 and Vibrioparahaemolyticus infection as well as hypoxia could differentially induce the expression of SpGrx2. Furthermore, silencing SpGrx2 in vivo affected the expression of a series of antioxidant-related genes after hypoxia treatment. Additionally, SpGrx2 overexpression significantly increased the total antioxidant capacity of Drosophila Schneider 2 cells after hypoxia, resulting in a reduction of reactive oxygen species and malondialdehyde content. The subcellular localization results indicated that SpGrx2 was localized in both the cytoplasm and the nucleus of Drosophila Schneider 2 cells. These results indicate that SpGrx2 plays a crucial role as an antioxidant enzyme in the defense system of mud crabs against hypoxia and pathogen challenge.
Collapse
Affiliation(s)
- Yu-Kun Jie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China.
| |
Collapse
|
58
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
59
|
Dianat-Moghadam H, Abbasspour-Ravasjani S, Hamishehkar H, Rahbarghazi R, Nouri M. LXR inhibitor SR9243-loaded immunoliposomes modulate lipid metabolism and stemness in colorectal cancer cells. Med Oncol 2023; 40:156. [PMID: 37093287 DOI: 10.1007/s12032-023-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Reprogrammed metabolism and active stemness contribute to cancer stem cells' (CSCs) survival and tumorigenesis. LXR signaling regulates the metabolism of different cancers. A selective LXR inhibitor, SR9243 (SR), can target and eradicate non-CSC tumor cells. CD133 is a stem marker in solid tumors-associated CSCs within the active lipogenesis, and anti-CD133 mAb targeting liposomal drug delivery systems expected to increase drug internalization and improve the therapeutic efficacy of poor-in water solubility drugs, e, g., SR. In this study, anti-CD133 mAbs-targeted Immunoliposomes (ILipo) were developed for specific delivery of SR into MACS-enriched CD133 + CSCs and induce their functional effects. Results have shown that ILipo having an average size of 64.79 nm can encapsulate SR in maximum proportion, and cell association studies have shown cationic ILipo and targeting CD133 provide the CSCs binding. Also, FCM analysis of RhoB has demonstrated that the ILipo uptake was higher in CD133 + CSCs than in the non-targeted liposomes. ILipo-SR was significantly more toxic in CD133 + CSCs compared to the free SR and non-targeted ones. More efficient than Lipo-SR, ILipo-SR improved the reduction of clonogenicity, stemness, and lipogenesis in CD133 + CSCs in vitro, boosted ROS generation, and induced apoptosis. Our study revealed the dual targeting of CD133 and LXR appears to be a promising strategy for targeting CD133 + CSCs-presenting dynamic metabolism and self-renewal potentials.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
60
|
Rühle J, Ginzel M, Dietz S, Schwarz J, Lajqi T, Beer-Hammer S, Poets CF, Gille C, Köstlin-Gille N. Depletion of Ly6G-Expressing Neutrophilic Cells Leads to Altered Peripheral T-Cell Homeostasis and Thymic Development in Neonatal Mice. Int J Mol Sci 2023; 24:7763. [PMID: 37175470 PMCID: PMC10178674 DOI: 10.3390/ijms24097763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Newborns and especially preterm infants are much more susceptible to infections than adults. Due to immature adaptive immunity, especially innate immune cells play an important role in a newborn's infection defense. Neonatal neutrophils exhibit profound differences in their functionality compared to neutrophils of adults. In particular, neonates possess a relevant population of suppressive neutrophils, which not only inhibit but also specifically modulate the function of T-cells. In this study, we investigated whether neonatal neutrophils are already involved in T-cell development in the thymus. For this purpose, we used a newly developed model of antibody-mediated immune cell depletion in which we administered a depleting antibody to pregnant and then lactating dams. Using this method, we were able to sufficiently deplete Ly6G-positive neutrophils in offspring. We demonstrated that the depletion of neutrophils in newborn mice resulted in altered peripheral T-cell homeostasis with a decreased CD4+/CD8+ T-cell ratio and decreased expression of CD62L. Neutrophil depletion even affected T-cell development in the thymus, with increased double positive thymocytes and a decreased CD4+/CD8+ single positive thymocyte ratio. Altogether, we demonstrated a previously unknown mechanism mediating neutrophils' immunomodulatory effects in newborns.
Collapse
Affiliation(s)
- Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Marco Ginzel
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, A-5020 Salzburg, Austria;
| | - Stefanie Dietz
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Julian Schwarz
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic and ICePhA, University of Tübingen, D-72074 Tübingen, Germany;
| | - Christian F. Poets
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| | - Natascha Köstlin-Gille
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany; (J.R.); (S.D.); (J.S.); (C.F.P.)
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (C.G.)
| |
Collapse
|
61
|
Rao Malla R, Bhamidipati P, Adem M. Insights into the potential of Sanguinarine as a promising therapeutic option for breast cancer. Biochem Pharmacol 2023; 212:115565. [PMID: 37086811 DOI: 10.1016/j.bcp.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Breast cancer (BC) is one of the leading causes of cancer-related deaths in women worldwide. The tumor microenvironment (TME) plays a crucial role in the progression and metastasis of BC. A significant proportion of BC is characterized by a hypoxic TME, which contributes to the development of drug resistance and cancer recurrence. Sanguinarine (SAN), an isoquinoline alkaloid found in Papaver plants, has shown promise as an anticancer agent. The present review focuses on exploring the molecular mechanisms of hypoxic TME in BC and the potential of SAN as a therapeutic option. The review presents the current understanding of the hypoxic TME, its signaling pathways, and its impact on the progression of BC. Additionally, the review elaborates on the mechanisms of action of SAN in BC, including its effects on vital cellular processes such as proliferation, migration, drug resistance, and tumor-induced immune suppression. The review highlights the importance of addressing hypoxic TME in treating BC and the potential of SAN as a promising therapeutic option.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Meghapriya Adem
- Department of Biotechnology, Sri Padmavathi Mahila Visva vidhyalayam, Tirupati-517502, Andhra Pradesh, India
| |
Collapse
|
62
|
Zhang Y, Ma S, Zhang J, Lou L, Liu W, Gao C, Miao L, Sun F, Chen W, Cao X, Wei J. MicroRNA-142-3p promotes renal cell carcinoma progression by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways. Sci Rep 2023; 13:5935. [PMID: 37045834 PMCID: PMC10097650 DOI: 10.1038/s41598-022-21447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/27/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs play a critical regulatory role in different cancers, but their functions in renal cell carcinoma (RCC) have not been elucidated. Reportedly, miR-142-3p is involved in the tumorigenesis and the development of RCC in vitro and is clinically correlated with the poor prognosis of RCC patients. However, the molecular target of miR-142-3p and the underlying mechanism are unclear. In this study, we found that miR-142-3p was upregulated in RCC tumor tissues and downregulated in exosomes compared to normal tissues. The expression of miR-142-3p was inversely associated with the survival of patients with kidney renal clear cell carcinoma (KIRC). RhoBTB3 was reduced in RCC, and miR-142-3p plays an inverse function with RhoBTB3 in KIRC. The direct interaction between RhoBTB3 and miR-142-3p was demonstrated by a dual luciferase reporter assay. miR-142-3p promoted metastasis in the xenograft model, and the suppression of miR-142-3p upregulated RhoBTB3 protein expression and inhibited the mRNAs and proteins of HIF1A, VEGFA, and GGT1. Also, the miR-142-3p overexpression upregulated the mRNA of HIF1A, VEGFA, and GGT1. In conclusion, miR-142-3p functions as an oncogene in RCC, especially in KIRC, by targeting RhoBTB3 to regulate HIF-1 signaling and GGT/GSH pathways, which needs further exploration.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Sha Ma
- Department of Hematopathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Department of Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, China
| | - Lu Lou
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wanqi Liu
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Chao Gao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Long Miao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Fanghao Sun
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Wei Chen
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China
| | - Xiliang Cao
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| | - Jin Wei
- Department of Urology, China University of Mining and Technology, Xuzhou No.1 People's Hospital, Xuzhou, China.
| |
Collapse
|
63
|
Shi J, Sha R, Yang X. Role of the human solute carrier family 14 member 1 gene in hypoxia-induced renal cell carcinoma occurrence and its enlightenment to cancer nursing. BMC Mol Cell Biol 2023; 24:10. [PMID: 36934247 PMCID: PMC10024409 DOI: 10.1186/s12860-023-00473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Hypoxia is considered a critical contributor to renal cell carcinoma progression, including invasion and metastasis. However, the potential mechanisms by which it promotes invasion and metastasis have not yet been clarified. The purpose of this study was to investigate the role and mechanism of hypoxia-induced renal cell carcinoma and provide evidence-based medical proof for improvements to postoperative nursing of renal cell carcinoma patients. A total of 64 patients with renal cell carcinoma were divided into the observation group (nursing based on oxygen administration) and the control group (conventional nursing). Renal function indexes, serum inflammatory factors, and tumor markers were evaluated. The human renal cell carcinoma cell line A498 under hypoxia/normoxia was used as an experimental model in vitro and the biological characteristics and mitochondrial function of the cells were assessed. RESULTS Nursing based on oxygen administration decreased the value of renal function indexes, serum inflammatory factors, and tumor markers in renal cell carcinoma patients. Hypoxia was found to induce A498 cell invasion, migration, and the release of inflammatory cytokines, while repressing human solute carrier family 14 member 1 gene expression. Elevated levels of solute carrier family 14 member 1 expression induced mitochondrial reactive oxygen species accumulation, diminished the intracellular adenosine triphosphate level, and destroyed both mitochondrial membrane potential integrity and mitochondrial morphology. Overexpression of the solute carrier family 14 member 1 gene could abolish hypoxia-induced invasion, reduce the migration of A498 cells, inhibit the hypoxia-induced release of inflammatory cytokines, and arrest the cell cycle at the G1/S checkpoint. CONCLUSIONS These data reveal that nursing based on oxygen administration can improve the clinical efficacy of renal cell carcinoma therapies, being safe and effective. The results elucidate a mechanism wherein the solute carrier family 14 member 1 gene participates in the occurrence and development of hypoxia-induced renal cell carcinoma in a mitochondria-dependent manner.
Collapse
Affiliation(s)
- Jing Shi
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Qinhuai District, 68 Changle Road, Nanjing, 210012, China
| | - Ruili Sha
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Qinhuai District, 68 Changle Road, Nanjing, 210012, China
| | - Xilan Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Qinhuai District, 68 Changle Road, Nanjing, 210012, China.
| |
Collapse
|
64
|
Bobiński R, Dutka M, Pizon M, Waksmańska W, Pielesz A. Ferroptosis, Acyl Starvation, and Breast Cancer. Mol Pharmacol 2023; 103:132-144. [PMID: 36750321 DOI: 10.1124/molpharm.122.000607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/31/2022] [Indexed: 12/14/2022] Open
Abstract
To maintain their growth rate, cancer cells must secure a supply of fatty acids, which are necessary for building cell membranes and maintaining energy processes. This is one of the reasons why tissues with intensive fatty acid metabolism, such as the mammary gland, are more likely to develop tumors. One natural or induced defense process against cancer is ferroptosis, which interferes with normal fatty acid metabolism. This leads to the oxidation of polyunsaturated fatty acids, which causes a rearrangement of the metabolism and damages cell membranes. As a consequence of this oxidation, there is a shortage of normal polyunsaturated fatty acids, which disturbs the complicated metabolism of fatty acids. This imbalance in metabolism, resulting from the deficiency of properly structured fatty acids, is called, by these authors, "acyl starvation." When cancer cells are exposed to alternating hypoxia and reoxygenation, they often develop resistance to neoadjuvant therapies. Blocking the stearoyl-CoA desaturase - fatty acid-binding protein 4 - fatty acid translocase axis appears to be a promising pathway in the treatment of breast cancer. On the one hand, the inhibition of desaturase leads to the formation of toxic phospholipid hydroperoxides in ferroptosis, whereas on the other hand, the inhibition of fatty acid-binding protein 4 and translocase leads to a reduced uptake of fatty acids and disruption of the cellular transport of fatty acids, resulting in intracellular acyl starvation. The disruption in the metabolism of fatty acids in cancer cells may augment the effectiveness of neoadjuvant therapy. SIGNIFICANCE STATEMENT: Regulation of the metabolism of fatty acids in cancer cells seems to be a promising therapeutic direction. Studies show that the induction of ferroptosis in cancer cells, combined with use of neoadjuvant therapies, effectively inhibits the proliferation of these cells. We link the process of ferroptosis with apoptosis and SCD1-FABP4-CD36 axis and propose the term "acyl starvation" for the processes leading to FA deficiency, dysregulation of FA metabolism in cancer cells, and, most importantly, the appearance of incorrect proportions FAs.
Collapse
Affiliation(s)
- Rafał Bobiński
- Department of Biochemistry and Molecular Biology (R.B., M.D., W.W.) and Department of Microbiology and Environmental Technology, Institute of Engineering and Environmental Protection (A.P.), University of Bielsko-Biala, Bielsko-Biala, Poland; and Department of Research and Development, Transfusion Center Bayreuth, Bayreuth, Germany (M.P.)
| | - Mieczysław Dutka
- Department of Biochemistry and Molecular Biology (R.B., M.D., W.W.) and Department of Microbiology and Environmental Technology, Institute of Engineering and Environmental Protection (A.P.), University of Bielsko-Biala, Bielsko-Biala, Poland; and Department of Research and Development, Transfusion Center Bayreuth, Bayreuth, Germany (M.P.)
| | - Monika Pizon
- Department of Biochemistry and Molecular Biology (R.B., M.D., W.W.) and Department of Microbiology and Environmental Technology, Institute of Engineering and Environmental Protection (A.P.), University of Bielsko-Biala, Bielsko-Biala, Poland; and Department of Research and Development, Transfusion Center Bayreuth, Bayreuth, Germany (M.P.)
| | - Wioletta Waksmańska
- Department of Biochemistry and Molecular Biology (R.B., M.D., W.W.) and Department of Microbiology and Environmental Technology, Institute of Engineering and Environmental Protection (A.P.), University of Bielsko-Biala, Bielsko-Biala, Poland; and Department of Research and Development, Transfusion Center Bayreuth, Bayreuth, Germany (M.P.)
| | - Anna Pielesz
- Department of Biochemistry and Molecular Biology (R.B., M.D., W.W.) and Department of Microbiology and Environmental Technology, Institute of Engineering and Environmental Protection (A.P.), University of Bielsko-Biala, Bielsko-Biala, Poland; and Department of Research and Development, Transfusion Center Bayreuth, Bayreuth, Germany (M.P.)
| |
Collapse
|
65
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 424] [Impact Index Per Article: 212.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
66
|
Hypoxia promotes conversion to a stem cell phenotype in prostate cancer cells by activating HIF-1α/Notch1 signaling pathway. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03093-w. [PMID: 36757381 DOI: 10.1007/s12094-023-03093-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
PURPOSE The hypoxic tumor microenvironment and the maintenance of stem cells are relevant to the malignancy of prostate cancer (PCa). However, whether HIF-1α in the hypoxic microenvironment mediates the transformation of prostate cancer to a stem cell phenotype and the mechanism have not been elucidated. MATERIALS AND METHODS Prostate cancer stem cells (PCSCs) from PC-3 cell lines were examined for the expression of CD44, CD133, ALDH1, HIF-1α, Notch1, and HES1. We observed the effect of knockdown HIF-1α in vitro and mice models and evaluated the impact of HIF-1α on the Notch1 pathway as well as stem cell dedifferentiation. The effects on sphere formation, cell proliferation, apoptosis, cell cycle, and invasive metastasis were evaluated. RESULTS In our study, hypoxia upregulated HIF-1α expression and induced a stem cell phenotype through activation of the Notch1 pathway, leading to enhanced proliferation, invasion, and migration of PCa PC-3 cells. The knockdown of HIF-1α significantly inhibited cell dedifferentiation and the ability to proliferate, invade and metastasize. However, the inhibitory effect of knocking down HIF-1α was reversed by Jagged1, an activator of the Notch1 pathway. These findings were further confirmed in vivo, where hypoxia could enhance the tumorigenicity of xenograft tumors by upregulating the expression of HIF-1α to activate the Notch1 pathway. In addition, the expression of HIF-1α and Notch1 was significantly increased in human PCa tissues, and high expression of HIF-1α correlated with the malignancy of PCa. CONCLUSION In a hypoxic environment, HIF-1α promotes PCa cell dedifferentiation to stem-like cell phenotypes by activating the Notch1 pathway and enhancing the proliferation and invasive capacity of PC-3 cells.
Collapse
|
67
|
Kenney RM, Lee MC, Boyce MW, Sitte ZR, Lockett MR. Cellular Invasion Assay for the Real-Time Tracking of Individual Cells in Spheroid or Tumor-like Mimics. Anal Chem 2023; 95:3054-3061. [PMID: 36701161 PMCID: PMC10007898 DOI: 10.1021/acs.analchem.2c05201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cellular invasion is the gateway to metastasis, with cells moving from a primary tumor into neighboring regions of healthy tissue. Invasion assays provide a tractable experimental platform to quantitatively assess cellular movement in the presence of potential chemokines or inhibitors. Many such assays involve cellular movement from high cell densities to cell-free regions. To improve the physiological relevance of such assays, we developed an assay format to track cellular movement throughout a uniform density of cells. This assay format imparts diffusion-dominated environments along the channel, resulting in oxygen and nutrient gradients found in spheroids or poorly vascularized tumors. By incorporating oxygen- and pH-sensing films, we quantified spatial and temporal changes in the extracellular environment while simultaneously tracking the movement of a subset of cells engineered to express fluorescent proteins constitutively. Our results show the successful invasion into neighboring tissues likely arises from a small population with a highly invasive phenotype. These highly invasive cells continued to move throughout the 48 h experiment, suggesting they have stem-like or persister properties. Surprisingly, the distance these persister cells invaded was unaffected by the density of cells in the channel or the presence or absence of an oxygen gradient. While these datasets cannot determine if the invasive cells are inherent to the population or if diffusion-dominated environments promote them, they highlight the need for further study.
Collapse
Affiliation(s)
- Rachael M. Kenney
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Maggie C. Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Matthew W. Boyce
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Zachary R. Sitte
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
| | - Matthew R. Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599-7295
| |
Collapse
|
68
|
Luo G, Wosinski P, Salazar-Noratto GE, Bensidhoum M, Bizios R, Marashi SA, Potier E, Sheng P, Petite H. Glucose Metabolism: Optimizing Regenerative Functionalities of Mesenchymal Stromal Cells Postimplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:47-61. [PMID: 35754335 DOI: 10.1089/ten.teb.2022.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mesenchymal stromal cells (MSCs) are considered promising candidates for regenerative medicine applications. Their clinical performance postimplantation, however, has been disappointing. This lack of therapeutic efficacy is most likely due to suboptimal formulations of MSC-containing material constructs. Tissue engineers, therefore, have developed strategies addressing/incorporating optimized cell, microenvironmental, biochemical, and biophysical cues/stimuli to enhance MSC-containing construct performance. Such approaches have had limited success because they overlooked that maintenance of MSC viability after implantation for a sufficient time is necessary for MSCs to develop their regenerative functionalities fully. Following a brief overview of glucose metabolism and regulation in MSCs, the present literature review includes recent pertinent findings that challenge old paradigms and notions. We hereby report that glucose is the primary energy substrate for MSCs, provides precursors for biomass generation, and regulates MSC functions, including proliferation and immunosuppressive properties. More importantly, glucose metabolism is central in controlling in vitro MSC expansion, in vivo MSC viability, and MSC-mediated angiogenesis postimplantation when addressing MSC-based therapies. Meanwhile, in silico models are highlighted for predicting the glucose needs of MSCs in specific regenerative medicine settings, which will eventually enable tissue engineers to design viable and potent tissue constructs. This new knowledge should be incorporated into developing novel effective MSC-based therapies. Impact statement The clinical use of mesenchymal stromal cells (MSCs) has been unsatisfactory due to the inability of MSCs to survive and be functional after implantation for sufficient periods to mediate directly or indirectly a successful regenerative tissue response. The present review summarizes the endeavors in the past, but, most importantly, reports the latest findings that elucidate underlying mechanisms and identify glucose metabolism as the crucial parameter in MSC survival and the subsequent functions pertinent to new tissue formation of importance in tissue regeneration applications. These latest findings justify further basic research and the impetus for developing new strategies to improve the modalities and efficacy of MSC-based therapies.
Collapse
Affiliation(s)
- Guotian Luo
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Pauline Wosinski
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Giuliana E Salazar-Noratto
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Morad Bensidhoum
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Esther Potier
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hervé Petite
- Université Paris Cité, CNRS, INSERM, B3OA, Paris, France.,École Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| |
Collapse
|
69
|
Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. HDAC4 in cancer: A multitasking platform to drive not only epigenetic modifications. Front Mol Biosci 2023; 10:1116660. [PMID: 36762207 PMCID: PMC9902726 DOI: 10.3389/fmolb.2023.1116660] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Controlling access to genomic information and maintaining its stability are key aspects of cell life. Histone acetylation is a reversible epigenetic modification that allows access to DNA and the assembly of protein complexes that regulate mainly transcription but also other activities. Enzymes known as histone deacetylases (HDACs) are involved in the removal of the acetyl-group or in some cases of small hydrophobic moieties from histones but also from the non-histone substrate. The main achievement of HDACs on histones is to repress transcription and promote the formation of more compact chromatin. There are 18 different HDACs encoded in the human genome. Here we will discuss HDAC4, a member of the class IIa family, and its possible contribution to cancer development.
Collapse
Affiliation(s)
- Emma Cuttini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Camilla Goi
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Ester Pellarin
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Riccardo Vida
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy,Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy,*Correspondence: Claudio Brancolini,
| |
Collapse
|
70
|
Zhang S, Xu H, Li W, Ji J, Jin Q, Chen L, Gan Q, Tao Q, Chai Y. MDM2 promotes cancer cell survival through regulating the expression of HIF-1α and pVHL in retinoblastoma. Pathol Oncol Res 2023; 29:1610801. [PMID: 36741966 PMCID: PMC9892057 DOI: 10.3389/pore.2023.1610801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Hypoxia is an important tumor feature and hypoxia-inducible factor 1 (HIF-1) is a master regulator of cell response to hypoxia. Mouse double minute 2 homolog (MDM2) promotes cancer cell survival in retinoblastoma (RB), with the underlying mechanism remaining elusive. In this study, we investigated the role of MDM2 and its relation to HIF-1α in RB. Expression analysis on primary human RB samples showed that MDM2 expression was positively correlated with that of HIF-1α while negatively correlated with von Hippel-Lindau protein (pVHL), the regulator of HIF-1α. In agreement, RB cells with MDM2 overexpression showed increased expression of HIF-1α and decreased expression of pVHL, while cells with MDM2 siRNA knockdown or MDM2-specific inhibitor showed the opposite effect under hypoxia. Further immuno-precipitation analysis revealed that MDM2 could directly interact with pVHL and promotes its ubiquitination and degradation, which consequently led to the increase of HIF-1α. Inhibition of MDM2 and/or HIF-1α with specific inhibitors induced RB cell death and decreased the stem cell properties of primary RB cells. Taken together, our study has shown that MDM2 promotes RB survival through regulating the expression of pVHL and HIF-1α, and targeting MDM2 and/or HIF-1α represents a potential effective approach for RB treatment.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Hongyan Xu
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Weiming Li
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Jianfeng Ji
- Department of Ultrasound, Joint Support Forces of the Chinese People’s Liberation Army 908 Hospital, Nanchang, Jiangxi, China
| | - Qifang Jin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Gan
- Department of Ophthalmology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Qiang Tao
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China,*Correspondence: Qiang Tao, ; Yong Chai,
| | - Yong Chai
- Department of Ophthalmology, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China,*Correspondence: Qiang Tao, ; Yong Chai,
| |
Collapse
|
71
|
Zakaria S, Elsebaey S, Allam S, Abdo W, El-Sisi A. Siah2 inhibitor and the metabolic antagonist Oxamate retard colon cancer progression and downregulate PD1 expression. Recent Pat Anticancer Drug Discov 2023; 19:PRA-EPUB-128869. [PMID: 36650629 DOI: 10.2174/1574892818666230116142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Solid tumors such as colon cancer are characterized by rapid and sustained cell proliferation, which ultimately results in hypoxia, induction of hypoxia-inducible factor-1α (HIF-1α), and activation of glycolysis to promote tumor survival and immune evasion. We hypothesized that a combinatorial approach of menadione (MEN) as an indirect HIF-1α inhibitor and sodium oxamate (OX) as a glycolysis inhibitor may be a promising treatment strategy for colon cancer. OBJECTIVES We investigated the potential efficacy of this combination for promoting an antitumor immune response and suppressing tumor growth in a rat model of colon cancer. METHODS Colon cancer was induced by once-weekly subcutaneous injection of 20 mg/kg dimethylhydrazine (DMH) for 16 weeks. Control rats received the vehicle and then no further treatment (negative control) or MEN plus OX for 4 weeks (drug control). Dimethylhydrazine-treated rats were then randomly allocated to four groups: DMH alone group and other groups treated with MEN, OX, and a combination of (MEN and OX) for 4 weeks. Serum samples were assayed for the tumor marker carbohydrate antigen (CA19.9), while expression levels of HIF-1α, caspase-3, PHD3, LDH, and PD1 were evaluated in colon tissue samples by immunoassay and qRT-PCR. Additionally, Ki-67 and Siah2 expression levels were examined by immunohistochemistry. RESULTS The combination of MEN plus OX demonstrated a greater inhibitory effect on the expression levels of HIF-1α, Siah2, LDH, Ki-67, and PD1, and greater enhancement of caspase-3 and PHD3 expression in colon cancer tissues than either drug alone. CONCLUSION Simultaneous targeting of hypoxia and glycolysis pathways by a combination of MEN and OX could be a promising therapy for inhibiting colon cancer cell growth and promoting antitumor immunity [1].
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
| | - Samar Elsebaey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kaferelsheikh University, 33516, Kaferelsheikh, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, 32511, Menoufia, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kaferelsheikh, Egypt
| | - Alaa El-Sisi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, 31512, Tanta, Egypt
| |
Collapse
|
72
|
Wang P, Liang T, Zhan H, Zhu M, Wu M, Qian L, Zhou Y, Ni F. Unique metabolism and protein expression signature in human decidual NK cells. Front Immunol 2023; 14:1136652. [PMID: 36936959 PMCID: PMC10020942 DOI: 10.3389/fimmu.2023.1136652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Human decidual natural killer (dNK) cells are a unique type of tissue-resident NK cells at the maternal-fetal interface. dNK cells are likely to have pivotal roles during pregnancy, including in maternal-fetal immune tolerance, trophoblast invasion, and fetal development. However, detailed insights into these cells are still lacking. In this study, we performed metabolomic and proteomic analyses on human NK cells derived from decidua and peripheral blood. We found that 77 metabolites were significantly changed in dNK cells. Notably, compared to peripheral blood NK (pNK) cells, 29 metabolites involved in glycerophospholipid and glutathione metabolism were significantly decreased in dNK cells. Moreover, we found that 394 proteins were differentially expressed in dNK cells. Pathway analyses and network enrichment analyses identified 110 differentially expressed proteins involved in focal adhesion, cytoskeleton remodeling, oxidoreductase activity, and fatty acid metabolism in dNK cells. The integrated proteomic and metabolomic analyses revealed significant downregulation in glutathione metabolism in dNK cells compared to pNK cells. Our data indicate that human dNK cells have unique metabolism and protein-expression features, likely regulating their function in pregnancy and immunity.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Heqin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingming Zhu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Mingming Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Fang Ni,
| |
Collapse
|
73
|
Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta Pharm Sin B 2023; 13:113-127. [PMID: 36815040 PMCID: PMC9939318 DOI: 10.1016/j.apsb.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) is a potential intervention known to protect the heart against ischemia/reperfusion injury, but its role in the no-reflow phenomenon that follows reperfusion is unclear. Dihydrotanshinone I (DT) is a natural compound and this study illustrates its role in cardiac ischemic injury from the aspect of IPC. Pretreatment with DT induced modest ROS production and protected cardiomyocytes against oxygen and glucose deprivation (OGD), but the protection was prevented by a ROS scavenger. In addition, DT administration protected the heart against isoprenaline challenge. Mechanistically, PKM2 reacted to transient ROS via oxidization at Cys423/Cys424, leading to glutathionylation and nuclear translocation in dimer form. In the nucleus, PKM2 served as a co-factor to promote HIF-1α-dependent gene induction, contributing to adaptive responses. In mice subjected to permanent coronary ligation, cardiac-specific knockdown of Pkm2 blocked DT-mediated preconditioning protection, which was rescued by overexpression of wild-type Pkm2, rather than Cys423/424-mutated Pkm2. In conclusion, PKM2 is sensitive to oxidation, and subsequent glutathionylation promotes its nuclear translocation. Although IPC has been viewed as a protective means against reperfusion injury, our study reveals its potential role in protection of the heart from no-reflow ischemia.
Collapse
|
74
|
Song W, Hoppe G, Hanna D, DeSilva TM, Sears JE. Hyperoxia Induced Hypomyelination. Biomedicines 2022; 11:37. [PMID: 36672545 PMCID: PMC9855863 DOI: 10.3390/biomedicines11010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
We asked whether hyperoxia might induce hypomyelination of the corpus callosum, clinically described as periventricular leukomalacia (PVL) of the severely preterm infant. Mouse pups and their nursing dams were placed in 80% oxygen from P4-P8, then removed to room air until P11. Corpus callosal sections were probed myelin immunofluorescence, tested for myelin basic protein concentration by Western blot, and both glial fibrillary acidic protein levels and apoptosis quantified. Density of corpus callosal capillaries were measured after lectin staining and hypoxia measured by Hypoxyprobe. Numbers of oligodendrocytes were quantified by immunohistochemistry. We next used hypoxiamimesis as a surrogate to hypoxia by comparing cerebral hypoxia inducible factor (HIF) stabilization to hepatic HIF stabilization. Hyperoxia induced hypomyelination and a reduction of corpus callosal capillaries. Hyperoxia decreased numbers of oligodendrocytes with an increase in corpus callosal fibrosis and apoptosis. Cerebral hypoxiamimesis induced hypomyelination whereas hepatic hypoxiamimesis alone increased myelination, oligodendrocyte numbers, and corpus callosal capillary density. Hepatic HIF-1 dependence on myelination was confirmed using the cre/lox hepatic HIF-1 knockout. These findings suggest that hyperoxia can induce hypomyelination through vasoobliteration and subsequent ischemia, adding a potential oxygen induced mechanism to the diverse causes of periventricular leukomalacia of the severely preterm infant. Targeting hepatic HIF-1 alone led to increased myelination.
Collapse
Affiliation(s)
- Weilin Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - George Hoppe
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Demiana Hanna
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Tara M. DeSilva
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jonathan E. Sears
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
75
|
D'Aiuto N, Hochmann J, Millán M, Di Paolo A, Bologna-Molina R, Sotelo Silveira J, Arocena M. Hypoxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source. Sci Rep 2022; 12:21699. [PMID: 36522457 PMCID: PMC9755289 DOI: 10.1038/s41598-022-26205-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidification and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the effects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidification in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidification in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidification and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment.
Collapse
Affiliation(s)
- Natali D'Aiuto
- Cátedra de Bioquímica y Biofísica, Facultad de Odontología, Universidad de la República, Montevideo, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Jimena Hochmann
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Magdalena Millán
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Andrés Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ronell Bologna-Molina
- Departamento de Patología Molecular, Facultad de Odontología, Universidad de la República, Montevideo, Uruguay
| | - José Sotelo Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Miguel Arocena
- Cátedra de Bioquímica y Biofísica, Facultad de Odontología, Universidad de la República, Montevideo, Uruguay.
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
76
|
Nie Y, Wang L, You X, Wang X, Wu J, Zheng Z. Low dimensional nanomaterials for treating acute kidney injury. J Nanobiotechnology 2022; 20:505. [PMID: 36456976 PMCID: PMC9714216 DOI: 10.1186/s12951-022-01712-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common severe complications among hospitalized patients. In the absence of specific drugs to treat AKI, hemodialysis remains the primary clinical treatment for AKI patients. AKI treatment has received significant attention recently due to the excellent drug delivery capabilities of low-dimensional nanomaterials (LDNs) and their unique therapeutic effects. Diverse LDNs have been proposed to treat AKI, with promising results and the potential for future clinical application. This article aims to provide an overview of the pathogenesis of AKI and the recent advances in the treatment of AKI using different types of LDNs. In addition, it is intended to provide theoretical support for the design of LDNs and implications for AKI treatment.
Collapse
Affiliation(s)
- Yuanpeng Nie
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liying Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaohua Wang
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
77
|
Ying M, Hu X. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Semin Cancer Biol 2022; 87:32-47. [PMID: 36374644 DOI: 10.1016/j.semcancer.2022.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells are characterized by sustained proliferation, which requires a huge demand of fuels to support energy production and biosynthesis. Energy is produced by the oxidation of the fuels during catabolism, and biosynthesis is achieved by the reduction of smaller units or precursors. Therefore, the oxidation-reduction (redox) reactions in cancer cells are more active compared to those in the normal counterparts. The higher activity of redox metabolism also induces a more severe oxidative stress, raising the question of how cancer cells maintain the redox balance. In this review, we overview the redox metabolism of cancer cells in an electron-tracing view. The electrons are derived from the nutrients in the tumor microenvironment and released during catabolism. Most of the electrons are transferred to NAD(P) system and then directed to four destinations: energy production, ROS generation, reductive biosynthesis and antioxidant system. The appropriate distribution of these electrons achieved by the function of redox regulation network is essential to maintain redox homeostasis in cancer cells. Interfering with the electron distribution and disrupting redox balance by targeting the redox regulation network may provide therapeutic implications for cancer treatment.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| |
Collapse
|
78
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
79
|
Wang C, Zhang Y, Wang Z, Yu W, Tong M, Yan Z. Stabilization of hypoxia-inducible factor-1α alleviates osteoarthritis via interacting with Per2 and resetting the circadian clock. Tissue Cell 2022; 79:101942. [PMID: 36162153 DOI: 10.1016/j.tice.2022.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The study aimed to establish whether HIF1α entrains the core clock in chondrocytes and how the HIF1α affects the circadian rhythm. METHODS We subjected primary chondrocytes to chronic circadian desynchrony (CCD) and subsequently treated with oxygen rhythm and dimethyloxalylglycine (DMOG). Circadian oscillations were analyzed with a real-time monitoring system of Per2 promoter activity and qPCR. Chondrocytes were assayed core clock genes expression patterns and extracellular matrix metabolism. HIF1α siRNA was used to knock down HIF1α. ChIP-qPCR and dual-luciferase reporter assay were used to validate that Per2 was the target gene of HIF1α. The surgical model of osteoarthritis was induced by destabilization of the medial meniscus (DMM). The chronic jet lag model was established light/dark cycle advance shift. Joint degeneration was measured using histological staining, immunological assays, and micro-CT scanning. RESULTS We report that different patterns of clock genes expression between healthy and osteoarthritic cartilage tissues and oxygen rhythms and DMOG reset the molecular clockwork which was dampened after CCD culture in a HIF1α-dependent manner. HIF1α increased the amplitude of oscillation by directly binding to the HRE-like and E-box-like elements located on the Per2 promoter. The rhythmic circadian clock significantly enhanced extracellular matrix production. Our study also demonstrates that DMOG ameliorated the increased OA severity caused by jet lag in the DMM model. CONCLUSIONS This study shows that circadian clock resetting caused by DMOG is at least partially mediated by the HIF1α through interaction with the Per2 promoter and proposes DMOG as supportive therapy for OA.
Collapse
Affiliation(s)
- Chenzhong Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Yueqi Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Zhe Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Wei Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Minji Tong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Zuoqin Yan
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
80
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
81
|
Luo S, Jiang Y, Anfu Zheng, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Chen M, Li W, Li X, Gu L, Sun Y, Xiao Z, Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front Pharmacol 2022; 13:1064661. [PMID: 36532768 PMCID: PMC9751339 DOI: 10.3389/fphar.2022.1064661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/15/2023] Open
Abstract
Hypoxia-inducible factors (HIFs), central regulators for cells to adapt to low cellular oxygen levels, are often overexpressed and activated in breast cancer. HIFs modulate the primary transcriptional response of downstream pathways and target genes in response to hypoxia, including glycolysis, angiogenesis and metastasis. They can promote the development of breast cancer and are associated with poor prognosis of breast cancer patients by regulating cancer processes closely related to tumor invasion, metastasis and drug resistance. Thus, specific targeting of HIFs may improve the efficiency of cancer therapy. In this review, we summarize the advances in HIF-related molecular mechanisms and clinical and preclinical studies of drugs targeting HIFs in breast cancer. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for HIF targeting are increasingly being developed. Therefore, we highlight the HIF related DDS, including liposomes, polymers, metal-based or carbon-based nanoparticles.
Collapse
Affiliation(s)
- Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacy, The Second People’s Hospital of Jiangyou, Mianyang, China
| | - Yu Jiang
- Department of Pharmacy, The People’s Hospital of Wusheng, Guang’an, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zhangang Xiao
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
82
|
Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, Koklesova L, Kudela E, Kubatka P. Genetic Heterogeneity, Tumor Microenvironment and Immunotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232314937. [PMID: 36499265 PMCID: PMC9735793 DOI: 10.3390/ijms232314937] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Heterogeneity of triple-negative breast cancer is well known at clinical, histopathological, and molecular levels. Genomic instability and greater mutation rates, which may result in the creation of neoantigens and enhanced immunogenicity, are additional characteristics of this breast cancer type. Clinical outcome is poor due to early age of onset, high metastatic potential, and increased likelihood of distant recurrence. Consequently, efforts to elucidate molecular mechanisms of breast cancer development, progression, and metastatic spread have been initiated to improve treatment options and improve outcomes for these patients. The extremely complex and heterogeneous tumor immune microenvironment is made up of several cell types and commonly possesses disorganized gene expression. Altered signaling pathways are mainly associated with mutated genes including p53, PIK3CA, and MAPK, and which are positively correlated with genes regulating immune response. Of note, particular immunity-associated genes could be used in prognostic indexes to assess the most effective management. Recent findings highlight the fact that long non-coding RNAs also play an important role in shaping tumor microenvironment formation, and can mediate tumor immune evasion. Identification of molecular signatures, through the use of multi-omics approaches, and effector pathways that drive early stages of the carcinogenic process are important steps in developing new strategies for targeted cancer treatment and prevention. Advances in immunotherapy by remodeling the host immune system to eradicate tumor cells have great promise to lead to novel therapeutic strategies. Current research is focused on combining immune checkpoint inhibition with chemotherapy, PARP inhibitors, cancer vaccines, or natural killer cell therapy. Targeted therapies may improve therapeutic response, eliminate therapeutic resistance, and improve overall patient survival. In the future, these evolving advancements should be implemented for personalized medicine and state-of-art management of cancer patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Smolar
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence:
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
83
|
Chen J, Guo B, Liu X, Zhang J, Zhang J, Fang Y, Zhu S, Wei B, Cao Y, Zhan L. Roles of N6-methyladenosine (m6A) modifications in gynecologic cancers: mechanisms and therapeutic targeting. Exp Hematol Oncol 2022; 11:98. [DOI: 10.1186/s40164-022-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractUterine and ovarian cancers are the most common gynecologic cancers. N6−methyladenosine (m6A), an important internal RNA modification in higher eukaryotes, has recently become a hot topic in epigenetic studies. Numerous studies have revealed that the m6A-related regulatory factors regulate the occurrence and metastasis of tumors and drug resistance through various mechanisms. The m6A-related regulatory factors can also be used as therapeutic targets and biomarkers for the early diagnosis of cancers, including gynecologic cancers. This review discusses the role of m6A in gynecologic cancers and summarizes the recent advancements in m6A modification in gynecologic cancers to improve the understanding of the occurrence, diagnosis, treatment, and prognosis of gynecologic cancers.
Collapse
|
84
|
Pouysségur J, Marchiq I, Parks SK, Durivault J, Ždralević M, Vucetic M. 'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86:334-346. [PMID: 35820598 DOI: 10.1016/j.semcancer.2022.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
The evolutionary pressure for life transitioning from extended periods of hypoxia to an increasingly oxygenated atmosphere initiated drastic selections for a variety of biochemical pathways supporting the robust life currently present on the planet. First, we discuss how fermentative glycolysis, a primitive metabolic pathway present at the emergence of life, is instrumental for the rapid growth of cancer, regenerating tissues, immune cells but also bacteria and viruses during infections. The 'Warburg effect', activated via Myc and HIF-1 in response to growth factors and hypoxia, is an essential metabolic and energetic pathway which satisfies nutritional and energetic demands required for rapid genome replication. Second, we present the key role of lactic acid, the end-product of fermentative glycolysis able to move across cell membranes in both directions via monocarboxylate transporting proteins (i.e., MCT1/4) contributing to cell-pH homeostasis but also to the complex immune response via acidosis of the tumor microenvironment. Importantly lactate is recycled in multiple organs as a major metabolic precursor of gluconeogenesis and energy source protecting cells and animals from harsh nutritional or oxygen restrictions. Third, we revisit the Warburg effect via CRISPR-Cas9 disruption of glucose-6-phosphate isomerase (GPI-KO) or lactate dehydrogenases (LDHA/B-DKO) in two aggressive tumors (melanoma B16-F10, human adenocarcinoma LS174T). Full suppression of lactic acid production reduces but does not suppress tumor growth due to reactivation of OXPHOS. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Finally, we briefly discuss the current clinical developments of an MCT1 specific drug AZ3965, and the recent progress for a specific in vivo MCT4 inhibitor, two drugs of very high potential for future cancer clinical applications.
Collapse
Affiliation(s)
- J Pouysségur
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France; Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco.
| | - I Marchiq
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France.
| | - S K Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco.
| | - J Durivault
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - M Ždralević
- University Côte d'Azur, (IRCAN), CNRS, INSERM, Centre A, Lacassagne, 06189 Nice, France.
| | - M Vucetic
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| |
Collapse
|
85
|
Zhou Y, Jiang H, Wei H, Liu L, Zhou C, Ji X. Venous stroke–a stroke subtype that should not be ignored. Front Neurol 2022; 13:1019671. [PMID: 36277910 PMCID: PMC9582250 DOI: 10.3389/fneur.2022.1019671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the etiology, stroke can be classified into ischemic or hemorrhagic subtypes, which ranks second among the leading causes of death. Stroke is caused not only by arterial thrombosis but also by cerebral venous thrombosis. Arterial stroke is currently the main subtype of stroke, and research on this type has gradually improved. Venous thrombosis, the particular type, accounts for 0.5–1% of all strokes. Due to the lack of a full understanding of venous thrombosis, as well as its diverse clinical manifestations and neuroimaging features, there are often delays in admission for it, and it is easy to misdiagnose. The purpose of this study was to review the pathophysiology mechanisms and clinical features of arterial and venous thrombosis and to provide guidance for further research on the pathophysiological mechanism, clinical diagnosis, and treatment of venous thrombosis. This review summarizes the pathophysiological mechanisms, etiology, epidemiology, symptomatology, diagnosis, and treatment heterogeneity of venous thrombosis and compares it with arterial stroke. The aim is to provide a reference for a comprehensive understanding of venous thrombosis and a scientific understanding of various pathophysiological mechanisms and clinical features related to venous thrombosis, which will contribute to understanding the pathogenesis of intravenous stroke and provide insight into diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Wei
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Chen Zhou
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xunming Ji
| |
Collapse
|
86
|
Yan S, Li Q, Li S, Ai Z, Yuan D. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep 2022; 49:9877-9891. [PMID: 35553342 DOI: 10.1007/s11033-022-07513-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Since generally confronting with the hypoxic and stressful microenvironment, cancer cells alter their glucose metabolism pattern to glycolysis to sustain the continuous proliferation and vigorous biological activities. Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isoform 3 (PFKFB3) functions as an effectively modulator of glycolysis and also participates in regulating angiogenesis, cell death and cell stemness. Meanwhile, PFKFB3 is highly expressed in a variety of cancer cells, and can be activated by several regulatory factors, such as hypoxia, inflammation and cellular signals. In colorectal cancer (CRC) cells, PFKFB3 not only has the property of high expression, but also probably relate to inflammation-cancer transformation. Recent studies indicate that PFKFB3 is involved in chemoradiotherapy resistance as well, such as breast cancer, endometrial cancer and CRC. Cancer stem cells (CSCs) are self-renewable cell types that contribute to oncogenesis, metastasis and relapse. Several studies indicate that CSCs utilize glycolysis to fulfill their energetic and biosynthetic demands in order to maintain rapid proliferation and adapt to the tumor microenvironment changes. In addition, elevated PFKFB3 has been reported to correlate with self-renewal and metastatic outgrowth in numerous kinds of CSCs. This review summarizes our current understanding of PFKFB3 roles in modulating cancer metabolism to maintain cell proliferation and stemness, and discusses its feasibility as a potential target for the discovery of antineoplastic agents, especially in CRC.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China.
| | - Qianqian Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Shi Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Zhiying Ai
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Dongdong Yuan
- Shandong Academy of Pharmaceutical Sciences, Ji'nan, 250101, China
| |
Collapse
|
87
|
Xiao W, Ahluwalia P, Wang L, Howard J, Kolhe R, Rojiani AM, Rojiani MV. TIMP-1 Dependent Modulation of Metabolic Profiles Impacts Chemoresistance in NSCLC. Cells 2022; 11:cells11193036. [PMID: 36230997 PMCID: PMC9562647 DOI: 10.3390/cells11193036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
The development of chemoresistance remains a significant barrier to treating NSCLC. Alteration of cancer cell metabolism is an important mechanism for chemoresistance. This study explored the role of aberrant metabolism in TIMP-1-mediated chemoresistance. Bioinformatics analysis identified an association of high TIMP-1 with altered energy metabolism. We have defined the role of depolarized mitochondria through a reduction in lactate secretion, higher ROS levels in TIMP-1 KD cells and reduced GSH levels. TIMP-1 modulates the metabolic profile via acetylation of mitochondrial STAT3 and its interaction with CD44. Intriguingly, monomers of acetylated STAT3 were critical for altered metabolism, whereas STAT3 dimers abrogated this function. Further, the mitochondrial metabolic profile was also altered in a cisplatin-resistant clone of A549 cells. We also correlated the immunoexpression of CD44, STAT3 and TIMP-1 in patient samples. This study provided evidence that TIMP-1 alters the metabolic profile by modulating mitochondrial metabolism via the CD44-STAT3 axis through its effects on STAT3 acetylation. It also lent further support to the critical role of TIMP-1 in chemoresistance. Interrogation of the TCGA-LUAD dataset revealed perturbations in the critical modulator that can alter metabolic states in cancer cells. Higher expression of a five-gene signature, including TIMP-1, correlated with immunosuppressive cells and was found to be associated with overall survival. This study identified several metabolic mechanisms that could influence therapeutic options and prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lan Wang
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John Howard
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amyn M. Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Room T3409, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Mumtaz V. Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Room T3409, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-0003 (ext. 322422)
| |
Collapse
|
88
|
Lodi A, Pandey R, Chiou J, Bhattacharya A, Huang S, Pan X, Burgman B, Yi SS, Tiziani S, Brenner AJ. Circulating metabolites associated with tumor hypoxia and early response to treatment in bevacizumab-refractory glioblastoma after combined bevacizumab and evofosfamide. Front Oncol 2022; 12:900082. [PMID: 36226069 PMCID: PMC9549210 DOI: 10.3389/fonc.2022.900082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive form of primary malignant brain tumor in the adult population, and, despite modern therapies, patients often develop recurrent disease, and the disease remains incurable with median survival below 2 years. Resistance to bevacizumab is driven by hypoxia in the tumor and evofosfamide is a hypoxia-activated prodrug, which we tested in a phase 2, dual center (University of Texas Health Science Center in San Antonio and Dana Farber Cancer Institute) clinical trial after bevacizumab failure. Tumor hypoxic volume was quantified by 18F-misonidazole PET. To identify circulating metabolic biomarkers of tumor hypoxia in patients, we used a high-resolution liquid chromatography-mass spectrometry-based approach to profile blood metabolites and their specific enantiomeric forms using untargeted approaches. Moreover, to evaluate early response to treatment, we characterized changes in circulating metabolite levels during treatment with combined bevacizumab and evofosfamide in recurrent GBM after bevacizumab failure. Gamma aminobutyric acid, and glutamic acid as well as its enantiomeric form D-glutamic acid all inversely correlated with tumor hypoxia. Intermediates of the serine synthesis pathway, which is known to be modulated by hypoxia, also correlated with tumor hypoxia (phosphoserine and serine). Moreover, following treatment, lactic acid was modulated by treatment, likely in response to a hypoxia mediated modulation of oxidative vs glycolytic metabolism. In summary, although our results require further validation in larger patients’ cohorts, we have identified candidate metabolic biomarkers that could evaluate the extent of tumor hypoxia and predict the benefit of combined bevacizumab and evofosfamide treatment in GBM following bevacizumab failure.
Collapse
Affiliation(s)
- Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Alessia Lodi, ; Andrew J. Brenner,
| | - Renu Pandey
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Jennifer Chiou
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ayon Bhattacharya
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Shiliang Huang
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Xingxin Pan
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Brandon Burgman
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
| | - S. Stephen Yi
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Institute for Cellular and Molecular Biology (ICMB), College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Andrew J. Brenner
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Alessia Lodi, ; Andrew J. Brenner,
| |
Collapse
|
89
|
Lu Y, Zhang X. Radiochemotherapy-induced DNA repair promotes the biogenesis of gastric cancer stem cells. Stem Cell Res Ther 2022; 13:481. [PMID: 36153608 PMCID: PMC9509583 DOI: 10.1186/s13287-022-03165-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Clinically, metastasis and recurrence occurred after routine radiochemotherapy in dozens of cases of gastric cancer, mainly attributed to the role of cancer stem cells (CSCs). Actually, radiochemotherapy could induce DNA damages, leading to activation of DNA repair which might be associated with acquisition of stem cell phenotype. Hitherto, the contribution made by active DNA repair to stemness induction has not been extensively explored. METHODS Cisplatin/doxorubicin treatment and X-ray exposure were conducted in gastric cancer cell lines and gastric cancer cells derived from solid tumors to model clinical therapy. Quantitative real-time PCR, Western blot, and tumorsphere/tumor formation assay were further used to characterize CSCs and assess activation of DNA repair. RNA-seq was performed to identify which DNA repair genes were crucial for CSC traits induction, followed by the investigation of underlying mechanism and functional significance via in vitro and in vivo experiments. RESULTS Here, we report a mechanism through which gastric cancer cells in response to radiochemotherapy were reprogrammed into gastric cancer stem cell-like cells. In this mechanism, radiochemotherapy triggers DNA damage response accompanied by elevated levels of EID3, a typical DNA repair gene, which interacts with NAMPT to promote stemness via upregulating Wnt signaling pathway, manifested by enhanced tumorsphere/tumor formation in gastric cancer. In addition to involvement of EID3 in stemness acquisition, it also shows impacts on proliferation, cell cycle, apoptosis and therapy resistance to maintain the characteristics of CSC populations. CONCLUSION Our study indicates that gastric cancer cells can be endowed with stemness traits via EID3-NAMPT-Wnt/β-catenin axis in response to radiochemotherapy. Blocking this axis (i.e., targeting EID3) along with radiochemotherapy might represent a potential strategy to sensitize CSCs to radiochemotherapy and further reinforce the anti-tumor effects of conventional treatments.
Collapse
Affiliation(s)
- Yu Lu
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
90
|
High Glucose and Carbonyl Stress Impair HIF-1-Regulated Responses and the Control of Mycobacterium tuberculosis in Macrophages. mBio 2022; 13:e0108622. [PMID: 36121152 PMCID: PMC9600926 DOI: 10.1128/mbio.01086-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.
Collapse
|
91
|
Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies. Mol Cancer 2022; 21:177. [PMID: 36071472 PMCID: PMC9454207 DOI: 10.1186/s12943-022-01645-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/25/2022] [Indexed: 02/08/2023] Open
Abstract
Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.
Collapse
Affiliation(s)
- Ruixue Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yunong Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Yuehui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China.
| |
Collapse
|
92
|
Han T, Jiang Y, Wang X, Deng S, Hu Y, Jin Q, Long D, Liu K. 3D matrix promotes cell dedifferentiation into colorectal cancer stem cells via integrin/cytoskeleton/glycolysis signaling. Cancer Sci 2022; 113:3826-3837. [PMID: 36052705 DOI: 10.1111/cas.15548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
The potential for tumor occurrence triggered by cancer stem cells (CSCs) has emerged as a significant challenge for human colorectal cancer therapy. However, the underlying mechanism of CSC development remains controversial. Our study provided evidence that the bulk of tumor cells could dedifferentiate to CSCs and reacquire CSCs-like phenotypes if cultured in the presence of extracellular matrix reagents, such as Matrigel and fibrin gels. In these 3D gels, CD133- colorectal cancer cells can regain tumorigenic potential and stem-like phenotypes. Mechanistically, the 3D extracellular matrix could mediate cytoskeletal F-actin bundling through biomechanical force associated receptors integrin β1 (ITGB1), contributing to the release of E3 ligase Tripartite motif protein 11 (TRIM11) from cytoskeleton and degradation of the glycolytic rate-limiting enzyme phosphofructokinase (PFK). Consequently, PFK inhibition resulted in enhanced glycolysis and upregulation of hypoxia-inducible factor 1 (HIF1α), thereby promoting the reprogramming of stem cell transcription factors and facilitating tumor progression in patients. This study provided novel insights into the role of the extracellular matrix in the regulation of CSC dedifferentiation in a cytoskeleton/glycolysis-dependent manner.
Collapse
Affiliation(s)
- Tong Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuhong Jiang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaobo Wang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuangya Deng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongjun Hu
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianqian Jin
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Dongju Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Kuijie Liu
- Department of General Surgery, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
93
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
94
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
95
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
96
|
Vetrik M, Kucka J, Kobera L, Konefal R, Lobaz V, Pavlova E, Bajecny M, Heizer T, Brus J, Sefc L, Pratx G, Hruby M. Fluorinated diselenide nanoparticles for radiosensitizing therapy of cancer. Free Radic Biol Med 2022; 187:132-140. [PMID: 35618181 DOI: 10.1016/j.freeradbiomed.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Radiation resistance of cancer cells represents one of the major challenges in cancer treatment. The novel self-assembled fluoralkylated diselenide nanoparticles (fluorosomes) based on seleno-l-cystine (17FSe2) possess redox-active properties that autocatalytically decompose hydrogen peroxide (H2O2) and oxidize the intracellular glutathione (GSH) that results in regulation of cellular oxidative stress. Alkylfluorinated diselenide nanoparticles showed a significant cytotoxic and radiosensitizing effect on cancer cells. The EL-4 tumor-bearing C56BL/6 mice treated with 17FSe2 followed by fractionated radiation treatment (4 × 2Gy) completely suppressed tumor growth. Our results suggest that described diselenide system behaves as a potent radiosensitizer agent targeting tumor growth and preventing tumor recurrence.
Collapse
Affiliation(s)
- Miroslav Vetrik
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic; Stanford University, Stanford School of Medicine, Stanford, CA, 94305, USA.
| | - Jan Kucka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Rafal Konefal
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Martin Bajecny
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Tomas Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, Prague 2, 120 00, Czech Republic
| | - Guillem Pratx
- Stanford University, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Martin Hruby
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq.2, 162 06, Prague 6, Czech Republic
| |
Collapse
|
97
|
Guardado Rivas MO, Stuart SD, Thach D, Dahan M, Shorr R, Zachar Z, Bingham PM. Evidence for a novel, effective approach to targeting carcinoma catabolism exploiting the first-in-class, anti-cancer mitochondrial drug, CPI-613. PLoS One 2022; 17:e0269620. [PMID: 35675354 PMCID: PMC9176802 DOI: 10.1371/journal.pone.0269620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Clinical targeting of the altered metabolism of tumor cells has long been considered an attractive hypothetical approach. However, this strategy has yet to perform well clinically. Metabolic redundancy is among the limitations on effectiveness of many approaches, engendering intrinsic single-agent resistance or efficient evolution of such resistance. We describe new studies of the multi-target, tumor-preferential inhibition of the mitochondrial tricarboxylic acid (TCA) cycle by the first-in-class drug CPI-613® (devimistat). By suppressing the TCA hub, indispensable to many metabolic pathways, CPI-613 substantially reduces the effective redundancy of tumor catabolism. This TCA cycle suppression also engenders an apparently homeostatic accelerated, inefficient consumption of nutrient stores in carcinoma cells, eroding some sources of drug resistance. Nonetheless, sufficiently abundant, cell line-specific lipid stores in carcinoma cells are among remaining sources of CPI-613 resistance in vitro and during the in vivo pharmacological drug pulse. Specifically, the fatty acid beta-oxidation step delivers electrons directly to the mitochondrial electron transport system (ETC), by-passing the TCA cycle CPI-613 target and producing drug resistance. Strikingly, tested carcinoma cell lines configure much of this fatty acid flow to initially traverse the peroxisome enroute to additional mitochondrial beta-oxidation. This feature facilitates targeting as clinically practical agents disrupting this flow are available. Two such agents significantly sensitize an otherwise fully CPI-613-resistant carcinoma xenograft in vivo. These and related results are strong empirical support for a potentially general class of strategies for enhanced clinical targeting of carcinoma catabolism.
Collapse
Affiliation(s)
- Moises O. Guardado Rivas
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States of America
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Shawn D. Stuart
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Daniel Thach
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Michael Dahan
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Robert Shorr
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Zuzana Zachar
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
98
|
Baldominos P, Barbera-Mourelle A, Barreiro O, Huang Y, Wight A, Cho JW, Zhao X, Estivill G, Adam I, Sanchez X, McCarthy S, Schaller J, Khan Z, Ruzo A, Pastorello R, Richardson ET, Dillon D, Montero-Llopis P, Barroso-Sousa R, Forman J, Shukla SA, Tolaney SM, Mittendorf EA, von Andrian UH, Wucherpfennig KW, Hemberg M, Agudo J. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 2022; 185:1694-1708.e19. [PMID: 35447074 PMCID: PMC11332067 DOI: 10.1016/j.cell.2022.03.033] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.
Collapse
Affiliation(s)
- Pilar Baldominos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alex Barbera-Mourelle
- Center for Cancer Research at Mass General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olga Barreiro
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Center for Immune Imaging, Harvard Medical School, Boston, MA 02215, USA
| | - Yu Huang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew Wight
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Jae-Won Cho
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Xi Zhao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guillem Estivill
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Isam Adam
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Xavier Sanchez
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Shannon McCarthy
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard T.H. Chan School of Public Health, Biological Sciences in Public Health PhD Program, Boston, MA 02215, USA
| | - Julien Schaller
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zara Khan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Albert Ruzo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ricardo Pastorello
- Division of Breast Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA; Breast Oncology, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Edward T Richardson
- Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | | | | | - Juliet Forman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sachet A Shukla
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Brigham and Women's Hospital, Boston, MA 02215, USA; Breast Oncology, Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Center for Immune Imaging, Harvard Medical School, Boston, MA 02215, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Boston, MA 02215, USA
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Boston, MA 02215, USA.
| |
Collapse
|
99
|
Jia C, Zhao Y, Huang H, Fan K, Xie T, Xie M. Apigenin sensitizes radiotherapy of mouse subcutaneous glioma through attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolysis. J Nutr Biochem 2022; 107:109038. [PMID: 35533901 DOI: 10.1016/j.jnutbio.2022.109038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
The radioresistance of glioma is related to the presence of glioma stem cells. Apigenin, a natural flavonoid compound present in numerous health foods and edible plants, has inhibitory effects on a variety of glioma cells. However, the effects of apigenin on glioma and radiotherapy remain unclear. Here, we used radioresistant SU3-5R stem cells-inoculated subcutaneous glioma model to investigate the effects of apigenin and potential mechanisms. The results showed that after treatment of mouse subcutaneous glioma with apigenin 20 mg/kg for 12 days, irradiation 8 Gray twice or their combination, the tumor volume and weight were significantly decreased, especially in the combined treatment group. Apigenin treatment inhibited the activities of glycolytic related enzymes and expressions of nuclear factor kappa B (NF-κB) p65, hypoxia inducible factor-lα (HIF-1α), glucose transporter (GLUT)-1/3 and pyruvate kinase isozyme type M2 (PKM2) proteins in tumor tissues. After treatment of SU3-5R cells with apigenin 7.5 μM, the fluorescence intensity of CD133 positive cells was decreased, the percentage of cells with comet tails caused by irradiation was increased, and the expressions of lipopolysaccharide-induced NF-κB p65, HIF-1α, GLUT-3 and PKM2 proteins were reduced. These results demonstrate that apigenin can sensitize the radiotherapy of subcutaneous glioma in nude mice, and its mechanisms may result from the attenuations of cell stemness and DNA damage repair by inhibiting NF-κB/HIF-1α-mediated glycolytic related enzymes and protein expressions. In conclusion, our findings suggest that apigenin and apigenin-rich health foods can be used in the radiotherapy of glioma as a radiosensitizer.
Collapse
Affiliation(s)
- Changhao Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ying Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Hui Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Ke Fan
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu Province, China.
| | - Meilin Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
100
|
Zhao YY, Wang MM, Cui JF. New progress in the mechanism of microenvironment-driven chemoradiotherapy resistance in digestive system tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:341-348. [DOI: 10.11569/wcjd.v30.i8.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment (TME) is the cornerstone of the survival of tumor cells. It generally presents unique physical and chemical characteristics such as hypoxia, immunosuppression, metabolic reprogramming, and matrix stiffening, which not only offer suitable soil to support tumorigenesis and progression, but also resist the effects of radiotherapy and chemotherapy. Here, we summarize new progress in the mechanism of hypoxia, immunosuppression, metabolic reprogramming, and matrix stiffness-driven chemoradiotherapy resistance in digestive system tumors, and discuss the new intervention strategy against matrix stiffness-driven chemoradiotherapy resistance, which underlines the contribution of physical and chemical characteristics of tumor microenvironment in drug resistance.
Collapse
Affiliation(s)
- Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mi-Mi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|