51
|
Hansen TR, Sinedino LDP, Spencer TE. Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 2017; 154:F45-F59. [DOI: 10.1530/rep-17-0315] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
This review focuses on the paracrine and endocrine actions of interferon tau (IFNT) during pregnancy recognition and establishment in ruminants. Pregnancy recognition involves the suppression of the endometrial luteolytic mechanism by the conceptus to maintain progesterone production by the corpus luteum (CL). The paracrine antiluteolytic effects of conceptus-derived IFNT inhibit upregulation of oxytocin receptors in the endometrial epithelia of the uterus, thereby preventing the production of luteolytic prostaglandin F2 alpha (PGF2α) pulses. In the endometrium, IFNT induces or upregulates a large number of classical IFN-stimulated genes (ISGs) and regulates expression of many other genes in a cell-specific manner that are likely important for conceptus elongation, implantation and establishment of pregnancy. Further, IFNT has endocrine effects on extrauterine cells and tissues. In sheep, IFNT induces luteal resistance to PGF2α, thereby ensuring survival of the CL for maintenance of pregnancy. The ISGs induced in circulating peripheral blood mononuclear cells by IFNT may also be useful as an indicator of pregnancy status in cattle. An increased knowledge of IFNT and ISGs is important to improve the reproductive efficiency in ruminants.
Collapse
|
52
|
Toji N, Shigeno S, Kizaki K, Koshi K, Matsuda H, Hashiyada Y, Imai K, Takahashi T, Ishiguro-Oonuma T, Hashizume K. Evaluation of interferon-stimulated genes in peripheral blood granulocytes as sensitive responders to bovine early conceptus signals. Vet J 2017; 229:37-44. [PMID: 29183572 DOI: 10.1016/j.tvjl.2017.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/28/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
Early detection of gestation is important in the bovine industry. New methods have been developed to detect gene expression in leucocytes induced by interferon-tau (IFNT) as gestation biomarkers. However, it is debatable which blood cell is suitable for detecting gene expression. This study was aimed at confirming whether granulocytes respond to IFNT specifically. Granulocytes and mononuclear cells (MNCs) from cows, and several types of bovine cultured cells, were treated with recombinant (r) IFNT and gene expression was analysed by quantitative real-time reverse transcriptase (RT)-PCR and microarray analysis. Expression levels of IFN receptors (R1 and R2) were approximately 30- to 900-fold higher in granulocytes than in other cultured cells, and 1.5- to 2.5-fold higher in MNCs than in granulocytes. Microarray analysis following a 2h recombinant IFNT (rIFNT) treatment revealed expression changes for 900 genes in granulocytes. Genes with expression changes included known IFN-stimulated genes (ISGs; ISG15, OAS1, MX1, and MX2). Eighteen genes were selected following granulocyte microarray analysis and their expression changes were confirmed in early gestation, which revealed that nine genes had significantly higher expression levels in pregnant than in non-pregnant animals. In conclusion, granulocytes specifically responded to rIFNT treatment and the resulting gene expression changes correlated with those in vivo. Microarray analysis indicated that various genes showed expression changes in rIFNT-treated granulocytes, which may result in the identification of alternate candidate genes for the early detection of gestation. These results strongly indicate that gene expression in granulocytes is a suitable tool to determine pregnancy status.
Collapse
Affiliation(s)
- N Toji
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu 501-1112, Japan
| | - S Shigeno
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - K Kizaki
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu 501-1112, Japan
| | - K Koshi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - H Matsuda
- National Livestock Breeding Centre, 1 Odakurahara, Nishigo, Fukushima 961-8511, Japan
| | - Y Hashiyada
- National Livestock Breeding Centre, 1 Odakurahara, Nishigo, Fukushima 961-8511, Japan
| | - K Imai
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - T Takahashi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu 501-1112, Japan
| | - T Ishiguro-Oonuma
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu 501-1112, Japan
| | - K Hashizume
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
53
|
Tanikawa N, Ohtsu A, Kawahara-Miki R, Kimura K, Matsuyama S, Iwata H, Kuwayama T, Shirasuna K. Age-associated mRNA expression changes in bovine endometrial cells in vitro. Reprod Biol Endocrinol 2017; 15:63. [PMID: 28806906 PMCID: PMC5556672 DOI: 10.1186/s12958-017-0284-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Endometrial cells secrete various cytokines and the dysfunction of endometrial cells may directly lead to infertility. Interferon tau (IFNT) secreted by trophoblast cells, a well-known pregnancy recognition signal in ruminants, acts on the uterus to prepare for pregnancy. Aging causes cellular and organ dysfunction, and advanced maternal age is associated with reduced fertility. However, few studies have investigated age-dependent changes in the uterus. METHODS Using next generation sequencing and real-time PCR, we examined mRNA expression in bovine endometrial cells in vitro obtained from young (mean 45.2 months) and aged (mean 173.5 months) animals and the effects of IFNT depending on the age. RESULTS We showed that inflammation-related (predicted molecules are IL1A, C1Qs, DDX58, NFKB, and CCL5) and interferon-signaling (predicted molecules are IRFs, IFITs, STATs, and IFNs) pathways were activated in endometrial cells obtained from aged compared to young cows. Also, the activation of "DNA damage checkpoint regulation" and the inhibition of "mitotic mechanisms" in endometrial cells obtained from aged cows were evident. Moreover, we showed lower cell viability levels in endometrial cells obtained from aged compared to young cows. Although treatment with IFNT upregulated various types of interferon stimulated genes both in endometrial cells obtained from young and aged cows, the rate of increase by IFNT stimulus was obviously lower in endometrial cells obtained from aged compared to young cows. CONCLUSIONS Endometrial cells obtained from aged cows exhibited higher levels of inflammatory- and IFN-signaling, and dysfunction of cell division compared with young cows. In addition, a high basal level of IFN-related genes in endometrial cells of aged cows is suggested a concept of "inflammaging".
Collapse
Affiliation(s)
- Nao Tanikawa
- grid.410772.7Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034 Japan
| | - Ayaka Ohtsu
- grid.410772.7Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034 Japan
| | - Ryouka Kawahara-Miki
- grid.410772.7NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502 Japan
| | - Koji Kimura
- 0000 0001 1302 4472grid.261356.5Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Tsushima, Okayama, Japan
| | - Shuichi Matsuyama
- 0000 0000 9191 6962grid.419600.aAnimal Feeding and Management Research Division, National Institute of Livestock and Grassland Science, Nasushiobara, Tochigi, Japan
| | - Hisataka Iwata
- grid.410772.7Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034 Japan
| | - Takehito Kuwayama
- grid.410772.7Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034 Japan
| | - Koumei Shirasuna
- grid.410772.7Laboratory of Animal Reproduction, Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034 Japan
| |
Collapse
|
54
|
Vitorino Carvalho A, Eozenou C, Healey GD, Forde N, Reinaud P, Chebrout M, Gall L, Rodde N, Padilla AL, Delville CG, Leveugle M, Richard C, Sheldon IM, Lonergan P, Jolivet G, Sandra O. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium. Reprod Fertil Dev 2017; 28:459-74. [PMID: 25116692 DOI: 10.1071/rd14034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/12/2014] [Indexed: 01/24/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Eozenou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - G D Healey
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - P Reinaud
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Chebrout
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - L Gall
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - N Rodde
- INRA, UPR1258 Centre National des Ressources Génomiques Végétales, F-31326 Castanet Tolosan, France
| | - A Lesage Padilla
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Giraud Delville
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Leveugle
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - I M Sheldon
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - G Jolivet
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - O Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
55
|
Sakumoto R, Hayashi KG, Fujii S, Kanahara H, Hosoe M, Furusawa T, Kizaki K. Possible Roles of CC- and CXC-Chemokines in Regulating Bovine Endometrial Function during Early Pregnancy. Int J Mol Sci 2017; 18:ijms18040742. [PMID: 28362325 PMCID: PMC5412327 DOI: 10.3390/ijms18040742] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to determine the possible roles of chemokines in regulating bovine endometrial function during early pregnancy. The expression of six chemokines, including CCL2, CCL8, CCL11, CCL14, CCL16, and CXCL10, was higher in the endometrium at 15 and 18 days of pregnancy than at the same days in non-pregnant animals. Immunohistochemical staining showed that chemokine receptors (CCR1, CCR2, CCR3, and CXCR3) were expressed in the epithelial cells and glandular epithelial cells of the bovine endometrium as well as in the fetal trophoblast obtained from a cow on day 18 of pregnancy. The addition of interferon-τ (IFNT) to an endometrial tissue culture system increased CCL8 and CXCL10 expression in the tissues, but did not affect CCL2, CCL11, and CCL16 expression. CCL14 expression by these tissues was inhibited by IFNT. CCL16, but not other chemokines, clearly stimulated interferon-stimulated gene 15 (ISG15) and myxovirus-resistance gene 1 (MX1) expression in these tissues. Cyclooxygenase 2 (COX2) expression decreased after stimulation with CCL8 and CCL14, and oxytocin receptor (OTR) expression was decreased by CCL2, CCL8, CCL14, and CXCL10. Collectively, the expression of chemokine genes is increased in the endometrium during early pregnancy. These genes may contribute to the regulation of endometrial function by inhibiting COX2 and OTR expression, subsequently decreasing prostaglandin production and preventing luteolysis in cows.
Collapse
MESH Headings
- Animals
- Cattle
- Cells, Cultured
- Chemokines, CC/genetics
- Chemokines, CC/metabolism
- Chemokines, CC/physiology
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Embryo Implantation/genetics
- Embryo Implantation/physiology
- Endometrium/cytology
- Endometrium/metabolism
- Endometrium/physiology
- Epithelial Cells/metabolism
- Female
- Gene Expression Profiling/methods
- Immunohistochemistry
- Pregnancy
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Tissue Culture Techniques
- Trophoblasts/metabolism
Collapse
Affiliation(s)
- Ryosuke Sakumoto
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Ken-Go Hayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Shiori Fujii
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Hiroko Kanahara
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0901, Japan.
| | - Misa Hosoe
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.
| | - Tadashi Furusawa
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8602, Japan.
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Iwate University, Iwate 020-8550, Japan.
| |
Collapse
|
56
|
Abstract
Galectins is a family of non-classically secreted, beta-galactoside-binding proteins that has recently received considerable attention in the spatio-temporal regulation of surface 'signal lattice' organization, membrane dynamics, cell-adhesion and disease therapeutics. Galectin-9 is a unique member of this family, with two non-homologous carbohydrate recognition domains joined by a linker peptide sequence of variable lengths, generating isoforms with distinct properties and functions in both physiological and pathological settings, such as during development, immune reaction, neoplastic transformations and metastasis. In this review, we summarize the latest knowledge on the structure, receptors, cellular targets, trafficking pathways and functional properties of galectin-9 and discuss how galectin-9-mediated signalling cascades can be exploited in cancers and immunotherapies.
Collapse
Affiliation(s)
- Sebastian John
- Department of Neurobiology and Genetics, Division of Disease Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695014, India
| | | |
Collapse
|
57
|
Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 2017; 155:1-10. [DOI: 10.1016/j.jprot.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 01/06/2023]
|
58
|
Boruszewska D, Kowalczyk-Zieba I, Sinderewicz E, Grycmacher K, Staszkiewicz J, Woclawek-Potocka I. The effect of lysophosphatidic acid together with interferon tau on the global transcriptomic profile in bovine endometrial cells. Theriogenology 2017; 92:111-120. [PMID: 28237325 DOI: 10.1016/j.theriogenology.2017.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
In cows, lysophosphatidic acid (LPA), which acts in an auto/paracrine manner, serves as a luteotropic factor during early pregnancy by stimulating progesterone and prostaglandin E2 secretion, thus protecting the bovine corpus luteum and early embryo development. Our hypothesis was that LPA exerted some local effects on the bovine endometrium prior to early embryo-maternal interactions and that interferon tau (IFNτ), the pregnancy recognition signal, modulated this action. In the present study, we applied an in vitro model involving whole-transcriptomic profiling to examine the effects of LPA on gene expression in bovine endometrial cells. Microarray analyses revealed 36, 269 and 284 differentially expressed transcripts in bovine endometrial cells in the control vs. LPA, control vs. LPA + IFNτ and LPA vs. LPA + IFNτ groups, respectively. The expression of matrix metalloproteinase 13 (MMP13) and radical S-adenosyl methionine domain containing 2 (RSAD2) was increased in the LPA-treated endometrial cells. Among the transcripts differentially regulated by LPA together with IFNτ, many of the genes were classical- or novel-type I IFN-stimulated genes (ISGs). The results indicated that 10 of the 16 analyzed genes showed a positive correlation with their corresponding microarray data upon real-time PCR validation, indicating a considerable consistency between both techniques. In summary, these transcriptional profiling studies identified a number of genes that were regulated by LPA alone and LPA together with IFNτ in endometrial cells from the bovine uterus. Available studies support the idea that LPA, which acts in an auto/paracrine manner on the endometrium, alters the expression of genes that are probably important for uterine receptivity, maternal immune tolerance to the embryo and conceptus growth and development during early pregnancy. Moreover, the differentially expressed genes (DEGs) that increased in the LPA + IFNτ-treated endometrial cells are largely in response to IFNτ actions and are possibly associated with crucial biological processes during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Emilia Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Katarzyna Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Joanna Staszkiewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| |
Collapse
|
59
|
Spencer TE, Forde N, Lonergan P. Insights into conceptus elongation and establishment of pregnancy in ruminants. Reprod Fertil Dev 2017; 29:84-100. [DOI: 10.1071/rd16359] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This review integrates established and new information on the factors and pathways regulating conceptus–endometrial interactions, conceptus elongation and establishment of pregnancy in sheep and cattle. Establishment of pregnancy in domestic ruminants begins at the conceptus stage (embryo or fetus and associated extra-embryonic membranes) and includes pregnancy recognition signalling, implantation and the onset of placentation. Survival and growth of the preimplantation blastocyst and elongating conceptus require embryotrophic factors (amino acids, carbohydrates, proteins, lipids and other substances) provided by the uterus. The coordinated and interactive actions of ovarian progesterone and conceptus-derived factors (interferon-τ and prostaglandins) regulate expression of elongation- and implantation-related genes in the endometrial epithelia that alter the uterine luminal milieu and affect trophectoderm proliferation, migration, attachment, differentiation and function. A comparison of sheep and cattle finds both conserved and non-conserved embryotrophic factors in the uterus; however, the overall biological pathways governing conceptus elongation and establishment of pregnancy are likely conserved. Given that most pregnancy losses in ruminants occur during the first month of pregnancy, increased knowledge is necessary to understand why and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency.
Collapse
|
60
|
Oliveira ML, D'Alexandri FL, Pugliesi G, Van Hoeck V, Mesquita FS, Membrive CMB, Negrão JA, Wheelock CE, Binelli M. Peri-ovulatory endocrine regulation of the prostanoid pathways in the bovine uterus at early dioestrus. Reprod Fertil Dev 2017; 29:544-556. [DOI: 10.1071/rd15269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/16/2015] [Indexed: 11/23/2022] Open
Abstract
We hypothesised that different endocrine profiles associated with pre-ovulatory follicle (POF) size would impact on uterine prostanoid pathways and thereby modulate the histotroph composition. Beef cows (n = 15 per group) were hormonally manipulated to have small (SF-SCL group) or large (LF-LCL group) pre-ovulatory follicles (POF) and corpora lutea (CL). Seven days after induction of ovulation, animals were slaughtered and uterine tissues and flushings were collected for quantification of prostanoids. The POF and CL size and the circulating progesterone concentrations at Day 7 were greater (P < 0.05) in the LF-LCL cows than in the SF-SCL group, as expected. The abundance of 5 out of 19 genes involved in prostanoid regulation was different between groups. Transcript abundance of prostaglandin F2α, E2 and I2 synthases was upregulated (P < 0.05) and phospholipase A2 was downregulated (P < 0.05) in endometrium of the LF-LCL group. No difference (P > 0.1) in prostanoid concentrations in the endometrium or in uterine flushings was detected between groups. However, prostaglandin F2α and E2 concentrations in the uterine flushings were positively correlated with the abundance of transcripts for prostaglandin endoperoxide synthase 2 (0.779 and 0.865, respectively; P < 0.002). We conclude that endometrial gene expression related to prostanoid synthesis is modulated by the peri-ovulatory endocrine profile associated with POF size, but at early dioestrus differences in transcript abundance were not reflected in changes in prostanoid concentrations in the uterine tissue and fluid.
Collapse
|
61
|
Scolari SC, Pugliesi G, Strefezzi RDF, Andrade SC, Coutinho LL, Binelli M. Dynamic remodeling of endometrial extracellular matrix regulates embryo receptivity in cattle. Reproduction 2016; 153:REP-16-0237. [PMID: 27754873 DOI: 10.1530/rep-16-0237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
Abstract
We aimed to evaluate in the bovine endometrium whether (1) key genes involved in endometrial extracellular matrix (ECM) remodeling are regulated by the endocrine peri-ovulatory milieu; and (2) specific endometrial ECM-related transcriptome can be linked to pregnancy outcome. In Experiment 1, pre-ovulatory follicle growth of cows was manipulated to obtain two groups with specific endocrine peri-ovulatory profiles: the Large Follicle-Large CL group (LF-LCL) served as a paradigm for greater receptivity and fertility and showed greater plasma pre-ovulatory estradiol and post-ovulatory progesterone concentrations when compared to the Small Follicle-Small CL group (SF-SCL). Endometrium was collected on days 4 and 7 of the estrous cycle. Histology revealed a greater abundance of total collagen content in SF-SCL on day 4 endometrium. In Experiment 2, cows were artificially inseminated and, six days later, endometrial biopsies were collected. Cows were retrospectively divided into pregnant and non-pregnant (P vs. NP) groups after diagnosis on day 30. In both experiments, expression of genes related to ECM remodeling in the endometrium was studied by RNAseq and qPCR. Gene ontology analysis showed an inhibition in the expression of ECM-related genes in the high receptivity groups (LF-LCL and P). Specifically, there was down-regulation of TGFB2, ADAMTS2, 5 and 14, TIMP3 and COL1A2, COL3A1, COL7A1 and COL3A3 in the LF-LCL and P groups. In summary, the overlapping set of genes differently expressed in both fertility models: (1) suggests that disregulation of ECM remodeling can impair receptivity and (2) can be used as markers to predict pregnancy outcome in cattle.
Collapse
Affiliation(s)
| | - Guilherme Pugliesi
- G Pugliesi, Department of Animal Reproduction, University of São Paulo, Pirassununga, Brazil
| | | | - Sónia Cristina Andrade
- S Andrade, Department of Animal Science, ESALQ-USP, University of São Paulo, Pirassununga, Brazil
| | - Luiz Lehmann Coutinho
- L Coutinho, Department of Animal Science, ESALQ-USP, University of São Paulo, Pirassununga, Brazil
| | - Mario Binelli
- M Binelli, Animal Reproduction, University of São Paulo, Pirassununga, 13635-900, Brazil
| |
Collapse
|
62
|
Forde N, Maillo V, O'Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D, Lonergan P. Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol Reprod 2016; 95:92. [PMID: 27488033 PMCID: PMC5333939 DOI: 10.1095/biolreprod.116.139857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Peadar O'Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
63
|
Spencer TE, Forde N, Lonergan P. The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J Dairy Sci 2016; 99:5941-5950. [DOI: 10.3168/jds.2015-10070] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
|
64
|
Campanile G, Neglia G, D'Occhio MJ. Embryonic and fetal mortality in river buffalo (Bubalus bubalis). Theriogenology 2016; 86:207-13. [DOI: 10.1016/j.theriogenology.2016.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022]
|
65
|
Barnwell CV, Farin PW, Ashwell CM, Farmer WT, Galphin SP, Farin CE. Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation. Mol Reprod Dev 2016; 83:424-41. [PMID: 27013032 DOI: 10.1002/mrd.22640] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/16/2016] [Indexed: 01/22/2023]
Abstract
The majority of pregnancy loss in cattle occurs between Days 8 and 16 of gestation, coincident with the initiation of conceptus elongation and the onset of maternal recognition of pregnancy. Differences in conceptus length on the same day of gestation may be related to an inherent lack of developmental competency or may simply be a consequence of asynchrony with the maternal environment. The objective of this work was to characterize differential patterns of mRNA expression between short and long bovine conceptuses recovered on Day 15 of gestation. Embryos were produced from super-ovulated Holstein donor cows, and groups of Grade-1 and Grade-3 compact morulas were transferred into recipient heifers at Day 6.5 of their cycle. Conceptuses were recovered at Day 15 of gestation, and measured to assess overall length and area. Total RNA was extracted and analyzed on individual GeneChip Bovine Genome Arrays (Affymetrix, Santa Clara, CA). Gene expression was compared between conceptuses derived from the transfer of Grade-1 versus Grade-3 embryos; no differences were identified in the profiles of Day-15 conceptuses of these different embryo grades. When gene expression was compared between conceptuses classified as either short (mean length of 4.2 ± 0.1 mm [standard error]) or long (24.7 ± 1.9 mm) upon recovery at Day 15 of gestation, a total of 348 genes were differentially expressed. Of these, 221 genes were up-regulated and 127 were down-regulated in long compared to short conceptuses. In summary, differences in gene expression were identified between conceptuses recovered on Day 15 of gestation, based on their length. These data may be used to identify genes and cellular pathways involved in enhanced conceptus elongation that could serve as markers of successful pregnancy. Mol. Reprod. Dev. 83: 424-441, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Callie V Barnwell
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Peter W Farin
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Christopher M Ashwell
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - William T Farmer
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Samuel P Galphin
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| | - Charlotte E Farin
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
66
|
The bovine placenta in vivo and in vitro. Theriogenology 2016; 86:306-12. [PMID: 27155733 DOI: 10.1016/j.theriogenology.2016.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/04/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023]
Abstract
The gross anatomic features (cotyledonary type) and histologic classification (synepitheliochorial) of the bovine placenta have been known for many years. Thorough ultrastructural analysis as well as a variety of descriptive studies dealing with the localization of cytoskeletal filaments, extracellular matrix, growth factor systems, steroid hormone receptors, and major histocompatibility complex have contributed further significant knowledge. However, this knowledge was not sufficient to solve clinical placenta-based problems, such as retained fetal membranes. Owing to the complexity of the fetomaternal interface in vitro, culture systems have been developed. As trophoblast giant cells (TGC) are thought to be key players in the cattle placenta, most cell culture models attempt to overcome the pitfall of losing the entire TGC population in vitro. Nevertheless, distinct cell line-based in vitro systems such as cell monolayers or 3-dimensional (co-culture) spheroids were generated for the fetal (trophoblast) and maternal (uterine epithelium) placental compartments. Monolayers have been used to study for example, growth factor or hormonal signaling and TGC formation, whereas spheroids served as models for, for example, trophoblast attachment, uterine epithelium depolarization, and also TGC formation. In the future, the use of more improved culture models might lead to better treatments of retained fetal membranes and increased prevention of embryonic loss. In addition, the in vitro models could shed more light on the mechanisms of the differentiation of uninucleate trophoblast into TGC.
Collapse
|
67
|
Soleilhavoup C, Riou C, Tsikis G, Labas V, Harichaux G, Kohnke P, Reynaud K, de Graaf SP, Gerard N, Druart X. Proteomes of the Female Genital Tract During the Oestrous Cycle. Mol Cell Proteomics 2016; 15:93-108. [PMID: 26518761 PMCID: PMC4762522 DOI: 10.1074/mcp.m115.052332] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2015] [Indexed: 01/01/2023] Open
Abstract
The female genital tract includes several anatomical regions whose luminal fluids successively interact with gametes and embryos and are involved in the fertilisation and development processes. The luminal fluids from the inner cervix, the uterus and the oviduct were collected along the oestrous cycle at oestrus (Day 0 of the cycle) and during the luteal phase (Day 10) from adult cyclic ewes. The proteomes were assessed by GeLC-MS/MS and quantified by spectral counting. A set of 940 proteins were identified including 291 proteins differentially present along the cycle in one or several regions. The global analysis of the fluid proteomes revealed a general pattern of endocrine regulation of the tract, with the cervix and the oviduct showing an increased differential proteins abundance mainly at oestrus while the uterus showed an increased abundance mainly during the luteal phase. The proteins more abundant at oestrus included several families such as the heat shock proteins (HSP), the mucins, the complement cascade proteins and several redox enzymes. Other proteins known for their interaction with gametes such as oviductin (OVGP), osteopontin, HSPA8, and the spermadhesin AWN were also overexpressed at oestrus. The proteins more abundant during the luteal phase were associated with the immune system such as ceruloplasmin, lactoferrin, DMBT1, or PIGR, and also with tissue remodeling such as galectin 3 binding protein, alkaline phosphatase, CD9, or fibulin. Several proteins differentially abundant between estrus and the luteal phase, such as myosin 9 and fibronectin, were also validated by immunohistochemistry. The potential roles in sperm transit and uterine receptivity of the proteins differentially regulated along the cycle in the female genital tract are discussed.
Collapse
Affiliation(s)
- Clement Soleilhavoup
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Cindy Riou
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Guillaume Tsikis
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Valerie Labas
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Gregoire Harichaux
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; **INRA, Plate-forme d'Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Philippa Kohnke
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Karine Reynaud
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France; ‡‡Alfort Veterinary School, 94700 Maisons Alfort, France
| | - Simon P de Graaf
- §§Faculty of Veterinary Science, The University of Sydney NSW 2006, Australia
| | - Nadine Gerard
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Xavier Druart
- From the ‡INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; §CNRS, UMR7247, F-37380 Nouzilly, France; ¶Université François Rabelais de Tours, F-37000 Tours, France; ‖IFCE, Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France;
| |
Collapse
|
68
|
Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene 2015; 571:212-20. [PMID: 26117173 DOI: 10.1016/j.gene.2015.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm biopsies were obtained from morphologically high quality blastocysts resulting in live birth and three biopsies were obtained from non-implanting blastocysts of a comparable morphology. Total RNA was extracted from all samples followed by complete transcriptome sequencing. Using a set of filtering criteria, we obtained a list of 181 genes that were differentially expressed between trophectoderm biopsies from embryos resulting in either live birth or no implantation (negative hCG), respectively. We found that 37 of the 181 genes displayed significantly differential expression (p<0.05), e.g. EFNB1, CYTL1 and TEX26 and TESK1, MSL1 and EVI5 in trophectoderm biopsies associated with live birth and non-implanting, respectively. Out of the 181 genes, almost 80% (145 genes) were up-regulated in biopsies from un-implanted embryos, whereas only 20% (36 genes) showed an up-regulation in the samples from embryos resulting in live birth. Our findings suggest the presence of molecular differences visually undetectable between implanted and non-implanted embryos, and represent a proof of principle study.
Collapse
Affiliation(s)
- Kirstine Kirkegaard
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark.
| | - Palle Villesen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Jacob Malte Jensen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Johnny Juhl Hindkjær
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, DK-7100 Vejle, Denmark; Institute of Regional Health Services Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hans Jakob Ingerslev
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
69
|
López-Úbeda R, García-Vázquez FA, Romar R, Gadea J, Muñoz M, Hunter RHF, Coy P. Oviductal Transcriptome Is Modified after Insemination during Spontaneous Ovulation in the Sow. PLoS One 2015; 10:e0130128. [PMID: 26098421 PMCID: PMC4476686 DOI: 10.1371/journal.pone.0130128] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Gene Expression Microarray technology was used to compare oviduct transcriptome between inseminated and non-inseminated pigs during spontaneous oestrus. We used an in vivo model approaching the study from a physiological point of view in which no hormonal treatment (animals were in natural oestrus) and no artificial sperm selection (selection was performed within the female genital) were imposed. It is therefore emphasised that no surgical introduction of spermatozoa and no insemination at a site other than the physiological one were used. This approach revealed 17 genes that were two-fold or more up-regulated in oviducts exposed to spermatozoa and/or developing embryos and 9 genes that were two-fold or more down-regulated. Functional analysis of the genes revealed that the top canonical pathways affected by insemination were related to the inflammatory response and immune system (Network 1) to molecular transport, protein trafficking and developmental disorder (Network 2) and to cell-to-cell signalling and interaction (Network 3). Some of the genes in network 1 had been previously detected in the oviduct of human and animals, where they were over-expressed in the presence of spermatozoa or pre-implantation embryos (C3, IGHG1, ITIH4, TNF and SERPINE1) whereas others were not previously reported (SAA2, ALOX12, CD1D and SPP1). Genes in Network 2 included RAB1B and TOR3A, the latter being described for the first time in the oviduct and clearly expressed in the epithelial cells of the mucosa layer. Network 3 integrated the genes with the highest down-regulation level (CYP51, PTH1R and TMOD3). Data in the present study indicate a change in gene expression during gamete encounter at the site of fertilization after a natural sperm selection within the female genital tract. These changes would indicate a modification of the environment preparing the oviduct for a successful fertilization and for an adequate embryo early development.
Collapse
Affiliation(s)
- Rebeca López-Úbeda
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Francisco A. García-Vázquez
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Raquel Romar
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
| | - Marta Muñoz
- Centro de Biotecnología Animal—SERIDA, Deva, Gijón, Asturias, Spain
| | | | - Pilar Coy
- Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
- International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
- IMIB-Arrixaca (Institute for Biomedical Research of Murcia), Murcia, Spain
- * E-mail:
| |
Collapse
|
70
|
Forde N, Bazer FW, Spencer TE, Lonergan P. 'Conceptualizing' the Endometrium: Identification of Conceptus-Derived Proteins During Early Pregnancy in Cattle. Biol Reprod 2015; 92:156. [PMID: 25947061 DOI: 10.1095/biolreprod.115.129296] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/05/2015] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to identify conceptus-derived proteins, in addition to IFNT, that may facilitate pregnancy recognition in cattle. Analysis of the protein content of the uterine luminal fluid (ULF) from cyclic heifers on Day 16 by nano liquid chromatography tandem mass spectrometry identified 334 proteins. Comparison of these data with 299 proteins identified in the ULF of pregnant heifers on Day 16 identified 85 proteins only present in the ULF of pregnant heifers. Analysis of Day 16 conceptus-conditioned culture medium revealed the presence of 1005 proteins of which 30 proteins were unique to ULF from Day 16 pregnant heifers. Of these 30 proteins, 12 had mRNA expression values at least 2-fold higher in abundance (P < 0.05) in the conceptus compared to the endometrium (ARPC5L, CAPG, CKMT1, CSTB, HSPA8, HSPE1, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, TKT) as determined by RNA sequencing. In addition, genes that have a significant biological interaction with the proteins (ACO2, CKMT1, CSTB, EEF2, GDI1, GLB1, GPLD1, HNRNPA1, HNRNPA2B1, HNRNPF, HSPA8, HSPE1, IDH2, KRT75, LGALS3, MSN, NUTF2, P4HB, PRKAR2A, PSMA4, PSMB5, PSMC4, SERPINA3, TKT) were differentially expressed in the endometrium of pregnant compared to cyclic heifers during the pregnancy recognition period (Days 16-18). These results indicate that 30 proteins unique to ULF from pregnant heifers and produced by short-term in vitro cultured Day 16 conceptuses could potentially be involved in facilitating the interactions between the conceptus and the endometrium during the pregnancy recognition period.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Ireland
| |
Collapse
|
71
|
Zhao H, Sui L, Miao K, An L, Wang D, Hou Z, Wang R, Guo M, Wang Z, Xu J, Wu Z, Tian J. Comparative analysis between endometrial proteomes of pregnant and non-pregnant ewes during the peri-implantation period. J Anim Sci Biotechnol 2015; 6:18. [PMID: 26023329 PMCID: PMC4447021 DOI: 10.1186/s40104-015-0017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(s) remains unclear. Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy. Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss. RESULT In this study, using well-managed recipient ewes that received embryo transfer as model, we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period. After embryo transfer, recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy. By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes, we identified 94 and 257 differentially expressed proteins (DEPs) in the endometrial caruncular and intercaruncular areas, respectively. Functional analysis showed that the DEPs were mainly associated with immune response, nutrient transport and utilization, as well as proteasome-mediated proteolysis. CONCLUSION These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss. In addition, many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes. These proteins, as potential candidates, may contribute to early pregnancy loss.
Collapse
Affiliation(s)
- Haichao Zhao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Linlin Sui
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China.,Department of Biochemistry and Molecular, Dalian Medical University, Dalian, 116044 China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193 China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| | - Rui Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Min Guo
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Zhilong Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Jiqiang Xu
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000 People's Republic of China
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| |
Collapse
|
72
|
Binelli M, Scolari SC, Pugliesi G, Van Hoeck V, Gonella-Diaza AM, Andrade SCS, Gasparin GR, Coutinho LL. The transcriptome signature of the receptive bovine uterus determined at early gestation. PLoS One 2015; 10:e0122874. [PMID: 25849079 PMCID: PMC4388694 DOI: 10.1371/journal.pone.0122874] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
Pregnancy success is critical to the profitability of cattle operations. However, the molecular events driving the uterine tissue towards embryo receptivity are poorly understood. This study aimed to characterize the uterine transcriptome profiles of pregnant (P) versus non-pregnant (NP) cows during early pregnancy and attempted to define a potential set of marker genes that can be valuable for predicting pregnancy outcome. Therefore, beef cows were synchronized (n=51) and artificially inseminated (n=36) at detected estrus. Six days after AI (D6), jugular blood samples and a biopsy from the uterine horn contralateral to the ovary containing the corpus luteum were collected. Based on pregnancy outcome on D30, samples were retrospectively allocated to the following groups: P (n=6) and NP (n=5). Both groups had similar plasma progesterone concentrations on D6. Uterine biopsies were submitted to RNA-Seq analysis in a Illumina platform. The 272,685,768 million filtered reads were mapped to the Bos Taurus reference genome and 14,654 genes were analyzed for differential expression between groups. Transcriptome data showed that 216 genes are differently expressed when comparing NP versus P uterine tissue (Padj ≤ 0.1). More specifically, 36 genes were up-regulated in P cows and 180 are up-regulated in NP cows. Functional enrichment and pathway analyses revealed enriched expression of genes associated with extracellular matrix remodeling in the NP cows and nucleotide binding, microsome and vesicular fraction in the P cows. From the 40 top-ranked genes, the transcript levels of nine genes were re-evaluated using qRT-PCR. In conclusion, this study characterized a unique set of genes, expressed in the uterus 6 days after insemination, that indicate a receptive state leading to pregnancy success. Furthermore, expression of such genes can be used as potential markers to efficiently predict pregnancy success.
Collapse
Affiliation(s)
- Mario Binelli
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
- * E-mail:
| | - Saara C. Scolari
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Guilherme Pugliesi
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Veerle Van Hoeck
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Angela M. Gonella-Diaza
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Sónia C. S. Andrade
- Laboratório de Fisiologia e Endocrinologia Molecular, Department of Animal Reproduction, FMVZ-USP, Pirassununga, Sao Paulo, Brazil
| | - Gustavo R. Gasparin
- Laboratório de Genética Animal, Departamento de Zootecnia, ESALQ-USP, Pirassununga, Sao Paulo, Brazil
| | - Luiz L. Coutinho
- Laboratório de Genética Animal, Departamento de Zootecnia, ESALQ-USP, Pirassununga, Sao Paulo, Brazil
| |
Collapse
|
73
|
Sandra O, Constant F, Vitorino Carvalho A, Eozénou C, Valour D, Mauffré V, Hue I, Charpigny G. Maternal organism and embryo biosensoring: insights from ruminants. J Reprod Immunol 2015; 108:105-13. [PMID: 25617112 DOI: 10.1016/j.jri.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/01/2022]
Abstract
In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France.
| | - Fabienne Constant
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Anais Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Caroline Eozénou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Damien Valour
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Vincent Mauffré
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Isabelle Hue
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Gilles Charpigny
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| |
Collapse
|
74
|
Valour D, Michot P, Eozenou C, Lefebvre R, Bonnet A, Capitan A, Uzbekova S, Sellem E, Ponsart C, Schibler L. Dairy cattle reproduction is a tightly regulated genetic process: Highlights on genes, pathways, and biological processes. Anim Front 2015. [DOI: 10.2527/af.2015-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- D. Valour
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy en Josas, France
| | - P. Michot
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- UMR INRA 85-CNRS 7247-Université de Tours, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C. Eozenou
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy en Josas, France
| | - R. Lefebvre
- UMR INRA 85-CNRS 7247-Université de Tours, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - A. Bonnet
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
| | - A. Capitan
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- UMR INRA 85-CNRS 7247-Université de Tours, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - S. Uzbekova
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78352 Jouy en Josas, France
| | - E. Sellem
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy en Josas, France
| | - C. Ponsart
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
| | - L. Schibler
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
| |
Collapse
|
75
|
Shen J, Zhou C, Zhu S, Shi W, Hu M, Fu X, Wang C, Wang Y, Zhang Q, Yu Y. Comparative transcriptome analysis reveals early pregnancy-specific genes expressed in peripheral blood of pregnant sows. PLoS One 2014; 9:e114036. [PMID: 25479131 PMCID: PMC4257664 DOI: 10.1371/journal.pone.0114036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 11/03/2014] [Indexed: 01/11/2023] Open
Abstract
Early and accurate diagnosis of pregnancy is important for effective management of an economical pig farm. Besides the currently available methods used in early diagnosis of sows, circulating nucleic acids in peripheral blood may contain some early pregnancy-specific molecular markers. For the first time, microarray analysis of peripheral blood from pregnant sows versus non-pregnant sows identified 127 up-regulated and 56 down-regulated genes at day 14 post-insemination. Gene Ontology annotation grouped the total differently expressed genes into 3 significantly enriched terms, cell surface receptor linked signal transduction, G-protein coupled receptor protein signaling pathway and regulation of vesicle-mediated transport. Signaling pathway analysis revealed the only one significantly changed pathway was arachidonic acid metabolism. Of the differently expressed genes, nine (including LPAR3, RXFP4, GALP, CBR1, CBR2, GPX6, USP18, LHB and NR5A1) were found to exert function related to early pregnancy processes. This study provides a clue that differentially abundant RNAs in maternal peripheral blood can help to identify the molecular markers of early pregnancy in pigs.
Collapse
Affiliation(s)
- Junye Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Chuanli Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Shien Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Wenqing Shi
- Animal Husbandry and Veterinary Station of Beijing, Beijing, P.R. China
| | - Maishun Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Xiangwei Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agricultural, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
76
|
Brooks K, Burns G, Spencer TE. Conceptus elongation in ruminants: roles of progesterone, prostaglandin, interferon tau and cortisol. J Anim Sci Biotechnol 2014; 5:53. [PMID: 25810904 PMCID: PMC4373033 DOI: 10.1186/2049-1891-5-53] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
The majority of pregnancy loss in ruminants occurs during the first three weeks after conception, particularly during the period of conceptus elongation that occurs prior to pregnancy recognition and implantation. This review integrates established and new information on the biological role of ovarian progesterone (P4), prostaglandins (PGs), interferon tau (IFNT) and cortisol in endometrial function and conceptus elongation. Progesterone is secreted by the ovarian corpus luteum (CL) and is the unequivocal hormone of pregnancy. Prostaglandins (PGs) and cortisol are produced by both the epithelial cells of the endometrium and the trophectoderm of the elongating conceptus. In contrast, IFNT is produced solely by the conceptus trophectoderm and is the maternal recognition of pregnancy signal that inhibits production of luteolytic pulses of PGF2α by the endometrium to maintain the CL and thus production of P4. Available results in sheep support the idea that the individual, interactive, and coordinated actions of P4, PGs, IFNT and cortisol regulate conceptus elongation and implantation by controlling expression of genes in the endometrium and/or trophectoderm. An increased knowledge of conceptus-endometrial interactions during early pregnancy in ruminants is necessary to understand and elucidate the causes of infertility and recurrent early pregnancy loss and provide new strategies to improve fertility and thus reproductive efficiency.
Collapse
Affiliation(s)
- Kelsey Brooks
- Department of Animal Science and Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| | - Greg Burns
- Department of Animal Science and Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| | - Thomas E Spencer
- Department of Animal Science and Center for Reproductive Biology, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
77
|
Effects of differentn-6:n-3 fatty acid ratios and of enterolactone on gene expression and PG secretion in bovine endometrial cells. Br J Nutr 2014; 113:56-71. [DOI: 10.1017/s0007114514003304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Feeding flaxseed to dairy cows can modulate gene expression and PG synthesis in the uterus at the time of peri-implantation. The objectives of the present study were to determine which flaxseed components are responsible for these effects and how different endometrial cell types are affected. We evaluated the effects of six different linoleic acid (n-6):α-linolenic acid (n-3) ratios and three concentrations of the lignan enterolactone (ENL) on endometrial stromal cells (SC) and epithelial cells (EC). The mRNA abundance of genes with known or suspected roles in embryo survival or PG synthesis was evaluated, along with PGE2and PGF2αconcentrations in culture media. The mRNA abundance of several genes was modulated by different fatty acid (FA) ratios and/or ENL, and this modulation differed between cell types. The FA4 (FA at ann-6:n-3 ratio of 4) treatment (rich inn-3 FA) increased the mRNA abundance of genes that have positive effects on uterine receptivity and implantation when compared with the FA25 (FA at ann-6:n-3 ratio of 25) treatment (rich inn-6 FA). ENL decreased PGE2and PGF2αconcentrations in both cell types, and this reduction was associated with lower mRNA abundance of the PG synthase genesAKR1B1andPTGESin SC. The combination of ENL with FA (FA4 treatment) resulted in the greatest reduction in PGF2αconcentrations when compared with the addition of FA (FA4) or ENL alone. Because of the known luteolytic properties of PGF2α, a reduction in endometrial PGF2αsecretion would favour the establishment and maintenance of pregnancy.
Collapse
|
78
|
Schmaltz-Panneau B, Cordova A, Dhorne-Pollet S, Hennequet-Antier C, Uzbekova S, Martinot E, Doret S, Martin P, Mermillod P, Locatelli Y. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim Reprod Sci 2014; 149:103-16. [DOI: 10.1016/j.anireprosci.2014.06.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/26/2014] [Accepted: 06/19/2014] [Indexed: 01/12/2023]
|
79
|
Bauersachs S, Wolf E. Uterine responses to the preattachment embryo in domestic ungulates: recognition of pregnancy and preparation for implantation. Annu Rev Anim Biosci 2014; 3:489-511. [PMID: 25387113 DOI: 10.1146/annurev-animal-022114-110639] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endometrium is a tissue newly evolved with the development of mammalian species. Its main function is the support of embryonic growth and development and the nutrition of the fetus. The species-specific differences in establishment and maintenance of pregnancy make the study of this tissue in various mammalian organisms particularly interesting. With the application of omics technologies to various mammalian species, many systematic studies of endometrial gene expression changes during the phase of establishment of pregnancy have been performed to obtain a global view of regulatory events associated with this biological process. This review summarizes the results of trancriptome studies of bovine, porcine, and equine endometrium. Furthermore, the results are compared between these species and to humans. Because an increasing number of studies suggest an important role of small regulatory RNAs (i.e., microRNAs), recent findings related to the regulation of endometrial functions and the development of the conceptus are presented.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland;
| | | |
Collapse
|
80
|
Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 2014; 97:138-47. [PMID: 24150517 DOI: 10.1097/tp.0b013e3182a95cbc] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Among other mismatches between human and pig, incompatibilities in the blood coagulation systems hamper the xenotransplantation of vascularized organs. The provision of the porcine endothelium with human thrombomodulin (hTM) is hypothesized to overcome the impaired activation of protein C by a heterodimer consisting of human thrombin and porcine TM. METHODS We evaluated regulatory regions of the THBD gene, optimized vectors for transgene expression, and generated hTM expressing pigs by somatic cell nuclear transfer. Genetically modified pigs were characterized at the molecular, cellular, histological, and physiological levels. RESULTS A 7.6-kb fragment containing the entire upstream region of the porcine THBD gene was found to drive a high expression in a porcine endothelial cell line and was therefore used to control hTM expression in transgenic pigs. The abundance of hTM was restricted to the endothelium, according to the predicted pattern, and the transgene expression of hTM was stably inherited to the offspring. When endothelial cells from pigs carrying the hTM transgene--either alone or in combination with an aGalTKO and a transgene encoding the human CD46-were tested in a coagulation assay with human whole blood, the clotting time was increased three- to four-fold (P<0.001) compared to wild-type and aGalTKO/CD46 transgenic endothelial cells. This, for the first time, demonstrated the anticoagulant properties of hTM on porcine endothelial cells in a human whole blood assay. CONCLUSIONS The biological efficacy of hTM suggests that the (multi-)transgenic donor pigs described here have the potential to overcome coagulation incompatibilities in pig-to-primate xenotransplantation.
Collapse
|
81
|
Bridges GA, Day ML, Geary TW, Cruppe LH. Triennial Reproduction Symposium: deficiencies in the uterine environment and failure to support embryonic development. J Anim Sci 2014; 91:3002-13. [PMID: 23798511 DOI: 10.2527/jas.2013-5882] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. The focus of this review is on cattle and factors affecting and mechanisms related to uterine insufficiency for pregnancy. A variety of factors contribute to embryonic loss and it may be exacerbated in certain animals, such as high-producing lactating dairy cows, and in some cattle in which estrous synchronization and timed AI was performed, due to reduced concentrations of reproductive steroids. Recent research in beef cattle induced to ovulate immature follicles and in lactating dairy cows indicates that deficient uterine function is a major factor responsible for infertility in these animals. Failure to provide adequate concentrations of estradiol before ovulation results in prolonged effects on expression and localization of uterine genes and proteins that participate in regulating uterine functions during early gestation. Furthermore, progesterone concentrations during early gestation affect embryonic growth, interferon-tau production, and uterine function. Therefore, an inadequate uterine environment induced by insufficient steroid concentrations before and after ovulation could cause early embryonic death either by failing to provide an adequate uterine environment for recognition of embryo signaling, adhesion, and implantation or by failing to support appropriate embryonic growth, which could lead to decreased conceptus size and failed maternal recognition of pregnancy.
Collapse
Affiliation(s)
- G A Bridges
- North Central Research and Outreach Center, University of Minnesota, Grand Rapids, MN 55744, USA.
| | | | | | | |
Collapse
|
82
|
Maternal-embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 2014; 8 Suppl 1:64-9. [DOI: 10.1017/s1751731114000470] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
83
|
Samborski A, Graf A, Krebs S, Kessler B, Reichenbach M, Reichenbach HD, Ulbrich SE, Bauersachs S. Transcriptome changes in the porcine endometrium during the preattachment phase. Biol Reprod 2013; 89:134. [PMID: 24174570 DOI: 10.1095/biolreprod.113.112177] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The porcine conceptus undergoes rapid differentiation and expansion of its trophoblastic membranes between Days 11 and 12 of gestation. Concomitant with trophoblast elongation, production of conceptus estrogen, the porcine embryonic pregnancy recognition signal, increases. Conceptus attachment to the uterine surface epithelium starts after Day 13, initiating epitheliochorial placentation. To analyze the transcriptome changes in the endometrium in the course of maternal recognition of pregnancy, deep sequencing of endometrial RNA samples of Day 12 pregnant animals (n = 4) and corresponding nonpregnant controls (n = 4) was performed using RNA sequencing (RNA-Seq). Between 30 000 000 and 35 000 000 sequence reads per sample were produced and mapped to the porcine genome (Sscrofa10.2). Analysis of read counts revealed 2593 differentially expressed genes (DEGs). Expression of selected genes was validated by the use of quantitative real-time RT-PCR. Bioinformatics analysis identified several functional terms specifically overrepresented for up-regulated or down-regulated genes. Comparison of the RNA-Seq data from Days 12 and 14 of pregnancy was performed at the level of all expressed genes, the level of the DEG, and the level of functional categories. This revealed specific gene expression patterns reflecting the different functions of the endometrium during these stages (i.e., recognition of pregnancy and preparation for conceptus attachment). Genes related to mitosis, immune response, epithelial cell differentiation and development, proteolysis, and prostaglandin signaling and metabolism are discussed in detail. This study identified comprehensive transcriptome changes in porcine endometrium associated with establishment of pregnancy and could be a resource for targeted studies of genes and pathways potentially involved in regulation of this process.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Oliveira LJ, Mansourri-Attia N, Fahey AG, Browne J, Forde N, Roche JF, Lonergan P, Fair T. Characterization of the Th profile of the bovine endometrium during the oestrous cycle and early pregnancy. PLoS One 2013; 8:e75571. [PMID: 24204576 PMCID: PMC3808391 DOI: 10.1371/journal.pone.0075571] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/14/2013] [Indexed: 11/19/2022] Open
Abstract
Despite extensive research in the area of cow fertility, the extent to which the maternal immune system is modulated during pregnancy in cattle remains unclear. Therefore, the objective of the current study was to characterize the presence and response profile of B, T-helper (LTh), T- cytotoxic (LTc), gamma delta-T (γδT) and natural killer (NK) lymphocytes in terms of cell number, distribution and cytokine expression in bovine endometrial tissue to pregnancy. Endometrial tissue samples were collected from beef heifers on Days 5, 7, 13 and 16 of the estrous cycle or pregnancy. Samples were analysed by immunofluorescence to identify the presence and abundance of B-B7 (B-cells), CD4 (LTh), CD8 (LTc), γδT cell receptor (TCR) and CD335/NKp46 (NK cells) -positive immune cells. Quantitative real time PCR (QPCR) was carried out to analyse mRNA relative abundance of FOXP3 (a marker of regulatory T (Treg) cells) and a panel of immune factors, including MHC-I, LIF, Interleukins 1, 2, 6, 8, 10, 11,12A, IFNa and IFNG. Results indicate that B-B7+ cells are quite populous in bovine endometrial tissue, CD4+ and CD8+ -cells are present in moderate numbers and γδTCR+ and CD335+ cells are present in low numbers. Pregnancy affected the total number and distribution pattern of the NK cell population, with the most significant variation observed on Day 16 of pregnancy. Neither B lymphocytes nor T lymphocyte subsets were regulated temporally during the oestrous cycle or by pregnancy prior to implantation. mRNA transcript abundance of the immune factors LIF, IL1b, IL8 and IL12A, IFNa and IFNG, expression was regulated temporally during the estrous cycle and LIF, IL1b, IL-10, IL11, IL12A were also temporally regulated during pregnancy. In conclusion, the endometrial immune profile of the oestrous cycle favours a Th2 environment in anticipation of pregnancy and the presence of an embryo acts to fine tune this environment.
Collapse
Affiliation(s)
- Lilian J. Oliveira
- Faculty of Food Engineering and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Alan G. Fahey
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John Browne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - James F. Roche
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
85
|
Wang Y, Wang C, Hou Z, Miao K, Zhao H, Wang R, Guo M, Wu Z, Tian J, An L. Comparative analysis of proteomic profiles between endometrial caruncular and intercaruncular areas in ewes during the peri-implantation period. J Anim Sci Biotechnol 2013; 4:39. [PMID: 24093944 PMCID: PMC3892124 DOI: 10.1186/2049-1891-4-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
The endometrium of sheep consists of plenty of raised aglandular areas called caruncular (C), and intensely glandular intercaruncular areas (IC). In order to better understand the endometrium involved mechanisms of implantation, we used LC-MS/MS technique to profile the proteome of ovine endometrial C areas and IC areas separately during the peri-implantation period, and then compared the proteomic profiles between these two areas. We successfully detected 1740 and 1813 proteins in C areas and IC areas respectively. By comparing the proteome of these two areas, we found 170 differentially expressed proteins (DEPs) (P < 0.05), functional bioinformatics analysis showed these DEPs were mainly involved in growth and remodeling of endometrial tissue, cell adhesion and protein transport, and so on. Our study, for the first time, provided a proteomic reference for elucidating the differences between C and IC areas, as an integrated function unit respectively, during the peri-implantation period. The results could help us to better understand the implantation in the ewes. In addition, we established a relatively detailed protein database of ovine endometrium, which provide a unique reference for further studies.
Collapse
Affiliation(s)
- Yang Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Haichao Zhao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Rui Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Min Guo
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing 100193, China
| |
Collapse
|
86
|
Bauersachs S, Wolf E. Immune aspects of embryo-maternal cross-talk in the bovine uterus. J Reprod Immunol 2013; 97:20-6. [PMID: 23432868 DOI: 10.1016/j.jri.2012.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/14/2012] [Accepted: 11/26/2012] [Indexed: 12/13/2022]
Abstract
This mini-review summarizes the results of recent transcriptome studies of bovine endometrium during the estrous cycle and during the pre-implantation phase, with a focus on immune response genes. Gene expression changes in the bovine endometrium during the estrous cycle were compared to a similar study in equine endometrium. The results indicate species-specific expression patterns, particularly for genes with immune functions. These are presumably the consequence of adaptations to differences in the physiology of reproduction in each species, including development of the conceptus, hormone profiles during the estrous cycle, and insemination. The results from a number of transcriptome studies during the pre-implantation phase, as well as comparison to the effects of human interferon alpha on bovine endometrial gene expression, suggest that during pregnancy there is no general suppression of the maternal immune system, but rather a fine-tuned regulation of immune cells. This presumably facilitates tolerance to the immunologically 'foreign' conceptus and at the same time activation of the immune system to defend against microbial and viral infections. Furthermore, comparison of differentially expressed genes in bovine endometrium to similar studies in human endometrial samples reveals a number of similar changes, indicating the existence of shared mechanisms in preparation for embryo implantation.
Collapse
Affiliation(s)
- Stefan Bauersachs
- Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
| | | |
Collapse
|
87
|
Spencer TE, Forde N, Dorniak P, Hansen TR, Romero JJ, Lonergan P. Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 2013; 146:377-87. [PMID: 23966582 DOI: 10.1530/rep-13-0165] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In cattle, the blastocyst hatches from the zona pellucida on days 8-9 and then forms a conceptus that grows and elongates into an ovoid and then filamentous shape between days 9 and 16. The growing conceptus synthesizes and secretes prostaglandins (PGs) and interferon τ (IFNT). Our hypothesis was that the ovoid conceptus exerts a local effect on the endometrium prior to maternal recognition of pregnancy on day 16 in cattle. In study one, synchronized cyclic heifers received no blastocysts or 20 in vitro-produced blastocysts on day 7 and their uteri were collected on day 13. IFNT was not detected by RIA in the uterine flushing samples of pregnant heifers containing multiple ovoid conceptuses; however, total PG levels were higher in the uterine lumen of pregnant heifers than in that of cyclic heifers. Microarray analysis revealed that the expression of 44 genes was increased in the endometria of day 13 pregnant heifers when compared with that in the endometria of cyclic heifers, and many of these genes were classical Type I IFN-stimulated genes (ISGs). In studies two and three, the effects of infusing PGs at the levels produced by the elongating day 14 conceptus into the uterine lumen of cyclic ewes on ISG expression in the endometrium were determined. Results indicated that the infusion of PGs increased the abundance of several ISGs in the endometrium. These studies support the hypothesis that the day 13 conceptus secretes PGs that act locally in a paracrine manner to alter gene expression in the endometrium prior to pregnancy recognition in cattle.
Collapse
Affiliation(s)
- Thomas E Spencer
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Minten MA, Bilby TR, Bruno RGS, Allen CC, Madsen CA, Wang Z, Sawyer JE, Tibary A, Neibergs HL, Geary TW, Bauersachs S, Spencer TE. Effects of fertility on gene expression and function of the bovine endometrium. PLoS One 2013; 8:e69444. [PMID: 23940519 PMCID: PMC3734181 DOI: 10.1371/journal.pone.0069444] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/08/2013] [Indexed: 12/03/2022] Open
Abstract
Infertility and subfertility are important and pervasive reproductive problems in both domestic animals and humans. The majority of embryonic loss occurs during the first three weeks of pregnancy in cattle and women due, in part, to inadequate endometrial receptivity for support of embryo implantation. To identify heifers of contrasting fertility, serial rounds of artificial insemination (AI) were conducted in 201 synchronized crossbred beef heifers. The heifers were then fertility classified based on number of pregnancies detected on day 35 in four AI opportunities. Heifers, classified as having high fertility, subfertility or infertility, were selected for further study. The fertility-classified heifers were superovulated and flushed, and the recovered embryos were graded and then transferred to synchronized recipients. Quantity of embryos recovered per flush, embryo quality, and subsequent recipient pregnancy rates did not differ by fertility classification. Two in vivo-produced bovine embryos (stage 4 or 5, grade 1 or 2) were then transferred into each heifer on day 7 post-estrus. Pregnancy rates were greater in high fertility than lower fertility heifers when heifers were used as embryo recipients. The reproductive tracts of the classified heifers were obtained on day 14 of the estrous cycle. No obvious morphological differences in reproductive tract structures and histology of the uterus were observed in the heifers. Microarray analysis revealed differences in the endometrial transcriptome based on fertility classification. A genome-wide association study, based on SNP genotyping, detected 7 moderate associations with fertility across 6 different chromosomes. Collectively, these studies support the idea that innate differences in uterine function underlie fertility and early pregnancy loss in ruminants. Cattle with defined early pregnancy success or loss is useful to elucidate the complex biological and genetic mechanisms governing endometrial receptivity and uterine competency for pregnancy.
Collapse
Affiliation(s)
- Megan A Minten
- Department of Animal Sciences, Washington State University, Pullman, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Balestrieri ML, Gasparrini B, Neglia G, Vecchio D, Strazzullo M, Giovane A, Servillo L, Zicarelli L, D'Occhio MJ, Campanile G. Proteomic Profiles of the Embryonic Chorioamnion and Uterine Caruncles in Buffaloes (Bubalus bubalis) with Normal and Retarded Embryonic Development1. Biol Reprod 2013; 88:119. [DOI: 10.1095/biolreprod.113.108696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
90
|
Samborski A, Graf A, Krebs S, Kessler B, Bauersachs S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol Reprod 2013; 88:84. [PMID: 23426436 DOI: 10.1095/biolreprod.113.107870] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In pigs, conceptus attachment to the uterine surface epithelium starts around Day 14 of pregnancy preceded by a pronounced vascularization at the implantation zones, initiating the epitheliochorial placentation. To characterize the complex transcriptome changes in the endometrium in the course of initial conceptus attachment, deep sequencing of endometrial RNA samples of pregnant animals (n = 4) and corresponding cyclic controls (n = 4) was performed using Illumina RNA-Seq. The obtained sequence reads were mapped to the porcine genome, and relative expression values were calculated for the analysis of differential gene expression. Statistical analysis revealed 1933 differentially expressed genes (false discovery rate 1%), 1229 with higher and 704 with lower mRNA concentration, in the samples from pregnant animals. Expression of selected genes was validated by the use of quantitative real-time RT-PCR. The RNA-Seq data were compared to results of a microarray study of bovine endometrium on Day 18 of pregnancy and additional related data sets. Bioinformatics analysis revealed for the genes with higher mRNA concentration in pregnant samples strong overrepresentation, particularly for immune-related functional terms but also for apoptosis and cell adhesion. Overrepresented terms for the genes with lower mRNA concentration in pregnant samples were related to extracellular region, ion transport, cell adhesion, and lipid and steroid metabolic process. In conclusion, RNA-Seq analysis revealed comprehensive transcriptome differences in porcine endometrium between Day 14 of pregnancy and corresponding cyclic endometrium and highlighted new processes and pathways probably involved in regulation of noninvasive implantation in the pig.
Collapse
Affiliation(s)
- Anastazia Samborski
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
91
|
Walker CG, Littlejohn MD, Meier S, Roche JR, Mitchell MD. DNA methylation is correlated with gene expression during early pregnancy in Bos taurus. Physiol Genomics 2013; 45:276-86. [DOI: 10.1152/physiolgenomics.00145.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coordinated regulation of endometrial gene expression is essential for successful pregnancy establishment. A nonreceptive uterine environment may be a key contributor to pregnancy loss, as the majority of pregnancy losses occur prior to embryo implantation. DNA methylation has been highlighted as a potential contributor in regulating early pregnancy events in the uterus. It was hypothesized that DNA methylation regulates expression of key genes in the uterus during pregnancy. The correlation between DNA methylation and gene expression was tested. Endometrial samples from fertile and subfertile dairy cow strains were obtained at day 17 of pregnancy or the reproductive cycle. Microarrays were used to characterize genome-wide DNA methylation profiles and data compared with previously published transcription profiles. 39% of DNA methylation probes assayed mapped to RefSeq genes with transcription measurements. Correlations among gene expression and DNA methylation were assessed, and the 1,000 most significant correlations used for subsequent analysis. Of these, 52% percent were negatively correlated with gene expression. When this gene list was compared with previously reported gene expression studies on the same tissues, 42% were differentially expressed when pregnant and cycling animals were compared, and 11% were differentially expressed when pregnant fertile and subfertile animals were compared. DNA methylation status was correlated with gene expression in several pathways implicated in early pregnancy events. Although these data do not provide direct evidence of a causative association between DNA methylation and gene expression, this study provides critical support for an effect of DNA methylation in early pregnancy events and highlights candidate genes for future studies.
Collapse
Affiliation(s)
- Caroline G. Walker
- DairyNZ Limited, Hamilton, New Zealand
- Liggins Institute, The University of Auckland, Grafton, New Zealand; and
| | | | | | | | - Murray D. Mitchell
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
92
|
Mayer J, Beck J, Soller JT, Wemheuer W, Schütz E, Brenig B. Analysis of circulating DNA distribution in pregnant and nonpregnant dairy cows. Biol Reprod 2013; 88:29. [PMID: 23255334 DOI: 10.1095/biolreprod.112.103168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Circulating nucleic acids (CNAs) are free-floating, cell-free DNA and RNA molecules in the circulation of healthy and diseased humans and animals. The aim of this study was to identify differences in CNA distribution in serum samples from multiparous pregnant (n = 24) and nonpregnant (n = 16) dairy cows at different days of gestation (Days 0, 20, and 40). A modified serial analysis of gene expression procedure was used to generate concatemerized short sequence tags from isolated serum DNA. A total of 6.1 × 10(6) tags were recovered from analyzed samples (n = 40). Significant differences between the pregnant and nonpregnant groups were detected in chromosomal regions, protein-coding sequences, and single genes (P < 0.05). Approximately 23% (1.4 × 10(6) tags) of the total sequence pool were present exclusively in the analyzed serum samples of pregnant cows. Of these tag sequences, seven originated from genomic regions and 13 from repetitive elements. Comparative BLAST analysis identified the repetitive tags as BovB (non-long terminal repeat retrotransposons/long interspersed nuclear elements), Art2A, BovA2, and Bov-tA2 (short interspersed nuclear elements). To our knowledge, this is the first study to comprehensively characterize the circulating, cell-free DNA profile in sera from pregnant and nonpregnant cows across early gestation.
Collapse
Affiliation(s)
- Jennifer Mayer
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Comparative transcriptome analyses reveal conserved and distinct mechanisms in ovine and bovine lactation. Funct Integr Genomics 2013; 13:115-31. [DOI: 10.1007/s10142-012-0307-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/19/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022]
|
94
|
Ulbrich SE, Wolf E, Bauersachs S. Hosting the preimplantation embryo: potentials and limitations of different approaches for analysing embryo - endometrium interactions in cattle. Reprod Fertil Dev 2013; 25:62-70. [DOI: 10.1071/rd12279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ongoing detailed investigations into embryo–maternal communication before implantation reveal that during early embryonic development a plethora of events are taking place. During the sexual cycle, remodelling and differentiation processes in the endometrium are controlled by ovarian hormones, mainly progesterone, to provide a suitable environment for establishment of pregnancy. In addition, embryonic signalling molecules initiate further sequences of events; of these molecules, prostaglandins are discussed herein as specifically important. Inadequate receptivity may impede preimplantation development and implantation, leading to embryonic losses. Because there are multiple factors affecting fertility, receptivity is difficult to comprehend. This review addresses different models and methods that are currently used and discusses their respective potentials and limitations in distinguishing key messages out of molecular twitter. Transcriptome, proteome and metabolome analyses generate comprehensive information and provide starting points for hypotheses, which need to be substantiated using further confirmatory methods. Appropriate in vivo and in vitro models are needed to disentangle the effects of participating factors in the embryo–maternal dialogue and to help distinguish associations from causalities. One interesting model is the study of somatic cell nuclear transfer embryos in normal recipient heifers. A multidisciplinary approach is needed to properly assess the importance of the uterine milieu for embryonic development and to use the large number of new findings to solve long-standing issues regarding fertility.
Collapse
|
95
|
Gebhardt S, Merkl M, Herbach N, Wanke R, Handler J, Bauersachs S. Exploration of global gene expression changes during the estrous cycle in equine endometrium. Biol Reprod 2012; 87:136. [PMID: 23077167 DOI: 10.1095/biolreprod.112.103226] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The equine endometrium exhibits characteristic morphological and functional changes during the estrous cycle controlled by the interplay of progesterone and estradiol. A microarray analysis of endometrial tissue samples derived from five time points of the estrous cycle (Day [D] 0, D3, D8, D12, and D16) was performed to study the dynamics of equine endometrial gene expression. Statistical analysis revealed 4996 genes differentially expressed during the estrous cycle. Clustering of similar expression profiles was performed to find groups of coregulated genes. This revealed eight major profiles: highest mRNA concentrations on D0, from D0 to D3, on D3, from D3 to D8, on D8, from D8 to D12, from D12 to D16, and on D16. Bioinformatics analysis revealed distinct molecular functions and biological processes for the individual expression profiles characterizing the different phases of the estrous cycle (e.g., extracellular matrix and inflammatory response during the estrus phase, cell division and cell cycle during early luteal phase, and endoplasmic reticulum, protein transport, and lipid metabolism in the luteal phase). A comparison to dynamic gene expression changes in bovine endometrium identified common and species-specific gene regulations in cyclic endometrium. Analysis of expression changes during the estrous cycle for genes previously found to be differentially expressed on D12 of pregnancy provided new evidence for possible regulation of these genes. This study provides new insights regarding global changes of equine endometrial gene expression as molecular reflections of physiological changes in the cyclic equine endometrium with regard to the crucial role of this tissue for successful reproduction.
Collapse
Affiliation(s)
- Simone Gebhardt
- Laboratory for Functional Genome Analysis (LAFUGA) and Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
96
|
Ulbrich SE, Groebner AE, Bauersachs S. Transcriptional profiling to address molecular determinants of endometrial receptivity--lessons from studies in livestock species. Methods 2012. [PMID: 23178633 DOI: 10.1016/j.ymeth.2012.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of a fertilized oocyte into a differentiated multi-cellular organism is a major challenge with regard to the orchestration of the expression of the mammalian genome. Highly complex networks of genes are temporally and spatially regulated during cellular differentiation to generate specific cell types. Embryonic development is critically influenced by external impacts in the female reproductive tract. A most critical phase of pregnancy in mammals is the pre- and peri-implantation period, during which the uterine environment plays a crucial role in supporting the development of the conceptus. The analytical description of the transcriptome, proteome and metabolome of the embryo-maternal interface is a prerequisite for the understanding of the complex regulatory processes taking place during this time. This review lines out potentials and limitations of different approaches to unravel the determinants of endometrial receptivity in cattle, the pig and the horse. Suitable in vivo and in vitro models, which have been used to elucidate factors participating in the embryo-maternal dialog are discussed. Taken together, transcriptome analyses and specified selective candidate gene driven approaches contribute to the understanding of endometrial function. The endometrium as sensor and driver of fertility may indicate the qualitative and quantitative nature of signaling molecules sent by the early embryo and in turn, accordingly impact on embryonic development.
Collapse
Affiliation(s)
- Susanne E Ulbrich
- Physiology Weihenstephan, Technische Universität München, Freising, Germany.
| | | | | |
Collapse
|
97
|
Forde N, Lonergan P. Transcriptomic analysis of the bovine endometrium: What is required to establish uterine receptivity to implantation in cattle? J Reprod Dev 2012; 58:189-95. [PMID: 22738902 DOI: 10.1262/jrd.2011-021] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cattle, the majority of pregnancy loss can be attributed to early embryonic loss which occurs prior maternal recognition of pregnancy on Day 16 (Day 0 = ovulation). During this time, carefully orchestrated spatio-temporal alterations in the transcriptomic profile of the endometrium are required to drive conceptus elongation, via secretions from the endometrium (termed histotroph) and establish uterine receptivity to implantation. The two main modulators of these processed are progesterone (P4) and the pregnancy recognition signal interferon tau (IFNT). Altered concentrations of P4 in circulation mediate its effects via the endometrium and have been associated with different rates of conceptus elongation in cattle. Transcriptomic analysis of the endometrium has shown that modulation of circulating P4 alters endometrial expression of genes that can contribute to histotroph composition, which is beneficial (when P4 is supplemented) or detrimental (when P4 is reduced) to the developing conceptus. In addition, down-regulation of the progesterone receptor, required to establish uterine receptivity, is altered in the endometrium of heifers with altered P4 concentrations. IFNT, a type 1 interferon, also significantly impacts on the endometrial transcriptome. It induces the expression of a large number of classical interferon stimulated genes as early as Day 15 of pregnancy. In summary, the successful establishment of pregnancy in cattle requires a sequence of key events to ensure appropriate maternally derived secretions, establish uterine receptivity to implantation as well as an adequate endometrial response to IFNT production.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | | |
Collapse
|
98
|
Argañaraz ME, Apichela SA, Kenngott R, Vermeheren M, Rodler D, Palma GA, Miceli DC, Sinowatz F. Expression and localization of nodal in bovine oviduct and uterus during different functional stages of oestrus cycle and pregnancy. Histochem Cell Biol 2012; 139:89-97. [PMID: 23052837 DOI: 10.1007/s00418-012-1030-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2012] [Indexed: 12/29/2022]
Abstract
Members of TGF-β superfamily play a major role in the endometrial changes involved in the establishment and maintenance of pregnancy. Their deregulated expression and action could lead to absolute or partial failure of embryo implantation. Nonetheless, the precise function and mechanism of many of these cytokines remain unclear. Nodal, a transforming growth factor beta (TGF-β) superfamily member, was characterized in the human and rodent uterus and implicated in the tissue remodeling events during menstruation and embryo implantation. In order to study its possible role in the cattle reproductive process, we have analyzed Nodal expression pattern and localization in the oviduct and uterine horn during the oestrus cycle and early pregnancy (day 20). Nodal was detected both in oviduct and uterus during either the oestrus cycle or pregnancy; however, it shows a differential expression profile in the uterine horn at dioestrus and pregnancy, decreasing 1.5 and 1.4 folds in comparison with oestrus. Nodal immunostaining intensity was observed in stromal and in epithelial cells of the surface and the glandular epithelium. The staining pattern correlates with the RT-qPCR expression profile. This work is the first to evidence the presence of Nodal in the bovine reproductive tract; our data suggest that Nodal is a novel cytokine that would be involved in the remodelling occurring in the endometrium of cattle during the oestrus cycle and in the embryo implantation. The identification of new molecules that participate in endometrium cycling and/or pregnancy may be useful for predicting the ability of the uterine tissue to establish and maintain pregnancy or for detecting the infertility processes. These results highlight Nodal as a possible novel marker of the fertility process, nevertheless further studies should be done to determine its role in the reproductive system.
Collapse
Affiliation(s)
- Martin Eduardo Argañaraz
- Instituto Superior de Investigaciones Biológicas-CONICET-UNT, Chacabuco 461, 4000 Tucumán, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Foley C, Chapwanya A, Creevey CJ, Narciandi F, Morris D, Kenny EM, Cormican P, Callanan JJ, O'Farrelly C, Meade KG. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics 2012; 13:489. [PMID: 22985206 PMCID: PMC3544567 DOI: 10.1186/1471-2164-13-489] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). RESULTS mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. CONCLUSIONS The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.
Collapse
Affiliation(s)
- Cathriona Foley
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co, Meath, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Sakurai T, Bai H, Bai R, Arai M, Iwazawa M, Zhang J, Konno T, Godkin JD, Okuda K, Imakawa K. Coculture System That Mimics In Vivo Attachment Processes in Bovine Trophoblast Cells1. Biol Reprod 2012; 87:60. [DOI: 10.1095/biolreprod.112.100180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|