51
|
Abstract
Recent research has filled many gaps about Caenorhabditis natural history, simultaneously exposing how much remains to be discovered. This awareness now provides means of connecting ecological and evolutionary theory with diverse biological patterns within and among species in terms of adaptation, sexual selection, breeding systems, speciation, and other phenomena. Moreover, the heralded laboratory tractability of C. elegans, and Caenorhabditis species generally, provides a powerful case study for experimental hypothesis testing about evolutionary and ecological processes to levels of detail unparalleled by most study systems. Here, I synthesize pertinent theory with what we know and suspect about Caenorhabditis natural history for salient features of biodiversity, phenotypes, population dynamics, and interactions within and between species. I identify topics of pressing concern to advance Caenorhabditis biology and to study general evolutionary processes, including the key opportunities to tackle problems in dispersal dynamics, competition, and the dimensionality of niche space.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
52
|
Phillips WS, Coleman-Hulbert AL, Weiss ES, Howe DK, Ping S, Wernick RI, Estes S, Denver DR. Selfish Mitochondrial DNA Proliferates and Diversifies in Small, but not Large, Experimental Populations of Caenorhabditis briggsae. Genome Biol Evol 2015; 7:2023-37. [PMID: 26108490 PMCID: PMC4524483 DOI: 10.1093/gbe/evv116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolutionary interactions across levels of biological organization contribute to a variety of fundamental processes including genome evolution, reproductive mode transitions, species diversification, and extinction. Evolutionary theory predicts that so-called “selfish” genetic elements will proliferate when the host effective population size (Ne) is small, but direct tests of this prediction remain few. We analyzed the evolutionary dynamics of deletion-containing mitochondrial DNA (ΔmtDNA) molecules, previously characterized as selfish elements, in six different natural strains of the nematode Caenorhabditis briggsae allowed to undergo experimental evolution in a range of population sizes (N = 1, 10, 100, and 1,000) for a maximum of 50 generations. Mitochondrial DNA (mtDNA) was analyzed for replicate lineages at each five-generation time point. Ten different ΔmtDNA molecule types were observed and characterized across generations in the experimental populations. Consistent with predictions from evolutionary theory, lab lines evolved in small-population sizes (e.g., nematode N = 1) were more susceptible to accumulation of high levels of preexisting ΔmtDNA compared with those evolved in larger populations. New ΔmtDNA elements were observed to increase in frequency and persist across time points, but almost exclusively at small population sizes. In some cases, ΔmtDNA levels decreased across generations when population size was large (nematode N = 1,000). Different natural strains of C. briggsae varied in their susceptibilities to ΔmtDNA accumulation, owing in part to preexisting compensatory mtDNA alleles in some strains that prevent deletion formation. This analysis directly demonstrates that the evolutionary trajectories of ΔmtDNA elements depend upon the population-genetic environments and molecular-genetic features of their hosts.
Collapse
Affiliation(s)
| | | | - Emily S Weiss
- Department of Integrative Biology, Oregon State University
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University
| | - Sita Ping
- Department of Integrative Biology, Oregon State University
| | | | | | - Dee R Denver
- Department of Integrative Biology, Oregon State University
| |
Collapse
|
53
|
Abstract
The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology.
Collapse
Affiliation(s)
- Lise Frézal
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| | - Marie-Anne Félix
- Institute of Biology of Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
54
|
Thomas CG, Wang W, Jovelin R, Ghosh R, Lomasko T, Trinh Q, Kruglyak L, Stein LD, Cutter AD. Full-genome evolutionary histories of selfing, splitting, and selection in Caenorhabditis. Genome Res 2015; 25:667-78. [PMID: 25783854 PMCID: PMC4417115 DOI: 10.1101/gr.187237.114] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
The nematode Caenorhabditis briggsae is a model for comparative developmental evolution with C. elegans. Worldwide collections of C. briggsae have implicated an intriguing history of divergence among genetic groups separated by latitude, or by restricted geography, that is being exploited to dissect the genetic basis to adaptive evolution and reproductive incompatibility; yet, the genomic scope and timing of population divergence is unclear. We performed high-coverage whole-genome sequencing of 37 wild isolates of the nematode C. briggsae and applied a pairwise sequentially Markovian coalescent (PSMC) model to 703 combinations of genomic haplotypes to draw inferences about population history, the genomic scope of natural selection, and to compare with 40 wild isolates of C. elegans. We estimate that a diaspora of at least six distinct C. briggsae lineages separated from one another approximately 200,000 generations ago, including the “Temperate” and “Tropical” phylogeographic groups that dominate most samples worldwide. Moreover, an ancient population split in its history approximately 2 million generations ago, coupled with only rare gene flow among lineage groups, validates this system as a model for incipient speciation. Low versus high recombination regions of the genome give distinct signatures of population size change through time, indicative of widespread effects of selection on highly linked portions of the genome owing to extreme inbreeding by self-fertilization. Analysis of functional mutations indicates that genomic context, owing to selection that acts on long linkage blocks, is a more important driver of population variation than are the functional attributes of the individually encoded genes.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Wei Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| | - Rajarshi Ghosh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tatiana Lomasko
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3
| | - Quang Trinh
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA; Departments of Human Genetics and Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA; Howard Hughes Medical Institute, UCLA, Los Angeles, California 90095, USA
| | - Lincoln D Stein
- Informatics and Bio-Computing, Ontario Institute for Cancer Research, Toronto, Ontario, Canada, M5G 0A3; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, M5S 3B2; Bioinformatics and Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2; Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
55
|
Li R, Ren X, Bi Y, Zhao Z. Mitochondrial genome of Caenorhabditis nigoni (Rhabditida: Rhabditidae). Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3107-8. [PMID: 25740213 DOI: 10.3109/19401736.2015.1007287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To facilitate comparative genomic study in the Caenorhabditis species, the mitochondrial genome (mitogenome) of a nematode species Caenorhabditis nigoni (previous name: Caenorhabditis sp. 9) was generated using next-generation sequencing. The mitogenome length is 13,413 bp, containing 12 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs) and 2 non-coding regions (NCR). The genome organization and nucleotide composition is very similar to that of the mitogenome of C. elegans and C. briggsae. Mitogenome of C. nigoni shows higher sequence similarity to C. briggsae than to C. elegans, which is consistent with the fact that C. nigoni is a sister species of C. briggsae. However, as in C. elegans, two NCRs present in the mitogenome of C. briggsae are missing in C. nigoni. The mitogenome sequence of C. nigoni plays an important role in further studies of phylogenetics, population genetics and evolutionary genetics in nematode species.
Collapse
Affiliation(s)
- Runsheng Li
- a Department of Biology , Hong Kong Baptist University , Hong Kong , China and
| | - Xiaoliang Ren
- a Department of Biology , Hong Kong Baptist University , Hong Kong , China and
| | - Yu Bi
- a Department of Biology , Hong Kong Baptist University , Hong Kong , China and
| | - Zhongying Zhao
- a Department of Biology , Hong Kong Baptist University , Hong Kong , China and.,b State Key Laboratory of Environmental and Biological Analysis , Hong Kong Baptist University , Hong Kong , China
| |
Collapse
|
56
|
A Genome-wide hybrid incompatibility landscape between Caenorhabditis briggsae and C. nigoni. PLoS Genet 2015; 11:e1004993. [PMID: 25692300 PMCID: PMC4334894 DOI: 10.1371/journal.pgen.1004993] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
Systematic characterization of ẖybrid incompatibility (HI) between related species remains the key to understanding speciation. The genetic basis of HI has been intensively studied in Drosophila species, but remains largely unknown in other species, including nematodes, which is mainly due to the lack of a sister species with which C. elegans can mate and produce viable progeny. The recent discovery of a C. briggsae sister species, C. nigoni, has opened up the possibility of dissecting the genetic basis of HI in nematode species. However, the paucity of dominant and visible marker prevents the efficient mapping of HI loci between the two species. To elucidate the genetic basis of speciation in nematode species, we first generated 96 chromosomally integrated GFP markers in the C. briggsae genome and mapped them into the defined locations by PCR and Next-Generation Sequencing (NGS). Aided by the marker, we backcrossed the GFP-associated C. briggsae genomic fragments into C. nigoni for at least 15 generations and produced 111 independent introgressions. The introgression fragments cover most of the C. briggsae genome. We finally dissected the patterns of HI by scoring the embryonic lethality, larval arrest, sex ratio and male sterility for each introgression line, through which we identified pervasive HI loci and produced a genome-wide landscape of HI between the two nematode species, the first of its type for any non-Drosophila species. The HI data not only provided insights into the genetic basis of speciation, but also established a framework for the possible cloning of HI loci between the two nematode species. Furthermore, the data on hybrids confirmed Haldane’s rule and suggested the presence of a large X effect in terms of fertility between the two species. Importantly, this work opens a new avenue for studying speciation genetics between nematode species and allows parallel comparison of the HI with that in Drosophila and other species. Hybrid incompatibility (HI) has been intensively studied among Drosophila species, but remains largely unknown in other species. Model organism is a species of choice for the HI study because these species provide sophisticated molecular and genetic tools for illustrating mechanism underlying a given HI. C. elegans as a model organism contributed little to the field due to the lack of a sister species with which it can mate and produce viable progeny. The recent discovery of a C. briggsae sister species, C. nigoni, has made it possible to study the HI between nematode species. However, the paucity of molecular and genetic tools in both species inhibits their use in such studies. To empower the use of this species pair in HI studies, we first created a collection of fluorescent markers over the C. briggsae genome to facilitate the directional introduction of the marker-associated C. briggsae genomic fragments into the C. nigoni background. We next mapped the marker insertion sites and introduced the markers into C. nigoni by repeated crossings. Finally, we generated a genome-wide HI landscape between the two species by scoring the HI phenotypes of their hybrid progeny. The study not only provides an invaluable resource for the molecular cloning of HI loci between C. briggsae and C. nigoni, but also permits comparative analysis of speciation genetics between nematode and other species.
Collapse
|
57
|
Co-option of alternate sperm activation programs in the evolution of self-fertile nematodes. Nat Commun 2014; 5:5888. [PMID: 25523309 DOI: 10.1038/ncomms6888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022] Open
Abstract
Self-fertility evolved independently in three species of Caenorhabditis, yet the underlying genetic changes remain unclear. This transition required that XX animals acquire the ability to produce sperm and then signal those sperm to activate and fertilise oocytes. Here, we show that all genes that regulate sperm activation in C. elegans are conserved throughout the genus, even in male/female species. By using gene editing, we show that C. elegans and C. briggsae hermaphrodites use the SPE-8 tyrosine kinase pathway to activate sperm, whereas C. tropicalis hermaphrodites use a TRY-5 serine protease pathway. Finally, our analysis of double mutants shows that these pathways were redundant in ancestral males. Thus, newly evolving hermaphrodites became self-fertile by co-opting either of the two redundant male programs. The existence of these alternatives helps explain the frequent origin of self-fertility in nematode lineages. This work also demonstrates that the new genome-editing techniques allow unprecedented power and precision in evolutionary studies.
Collapse
|
58
|
Theologidis I, Chelo IM, Goy C, Teotónio H. Reproductive assurance drives transitions to self-fertilization in experimental Caenorhabditis elegans. BMC Biol 2014; 12:93. [PMID: 25369737 PMCID: PMC4234830 DOI: 10.1186/s12915-014-0093-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of 'reproductive assurance' suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans. RESULTS We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance. CONCLUSIONS Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
Collapse
|
59
|
Dey A, Jin Q, Chen YC, Cutter AD. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes. Evol Dev 2014; 16:362-72. [PMID: 25196892 DOI: 10.1111/ede.12097] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis.
Collapse
Affiliation(s)
- Alivia Dey
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada, M5S 3B2
| | | | | | | |
Collapse
|
60
|
Ellis RE, Lin SY. The evolutionary origins and consequences of self-fertility in nematodes. F1000PRIME REPORTS 2014; 6:62. [PMID: 25165561 PMCID: PMC4126538 DOI: 10.12703/p6-62] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Self-fertile hermaphrodites have evolved from male/female ancestors in many nematode species, and this transition occurred on three independent occasions in the genus Caenorhabditis. Genetic analyses in Caenorhabditis show that the origin of hermaphrodites required two types of changes: alterations to the sex-determination pathway that allowed otherwise female animals to make sperm during larval development, and the production of signals from the gonad that caused these sperm to activate and fertilize oocytes. Comparisons of C. elegans and C. briggsae hermaphrodites show that the ancestral sex-determination pathway has been altered in multiple unique ways. Some of these changes must have precipitated the production of sperm in XX animals, and others were modifying mutations that increased the efficiency of hermaphroditic reproduction. Reverse genetic experiments show that XX animals acquired the ability to activate sperm by co-opting one of the two redundant pathways that normally work in males. Finally, the adoption of a hermaphroditic lifestyle had profound effects on ecological and sexual interactions and genomic organization. Thus, nematode mating systems are ideal for elucidating the origin of novel traits, and studying the influence of developmental processes on evolutionary change.
Collapse
|
61
|
Ting JJ, Woodruff GC, Leung G, Shin NR, Cutter AD, Haag ES. Intense sperm-mediated sexual conflict promotes reproductive isolation in Caenorhabditis nematodes. PLoS Biol 2014; 12:e1001915. [PMID: 25072732 PMCID: PMC4114750 DOI: 10.1371/journal.pbio.1001915] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/19/2014] [Indexed: 01/08/2023] Open
Abstract
Sperm from other species invade female tissues to cause sterility and death, helping to keep nematode species boundaries intact. Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and sometimes breaching the gonad to infiltrate other tissues. This sperm-mediated harm is pervasive across species, but idiosyncrasies in its magnitude implicate both independent histories of sexually antagonistic coevolution within species and differences in reproductive mode (self-fertilizing hermaphrodites versus females) in determining its severity. Consistent with this conclusion, in androdioecious species the hermaphrodites are more vulnerable, the males more benign, or both. Patterns of assortative mating and a low incidence of invasive sperm occurring with conspecific mating are indicative of ongoing intra-specific sexual conflict that results in inter-species reproductive incompatibility. The sexes have divergent reproductive interests, and conflict arising from this disparity can drive the rapid evolution of reproductive traits and promote speciation. Here we describe a unique reproductive barrier in Caenorhabditis nematodes that is induced by sperm. We found that mating between species can sterilize maternal worms and even cause premature death, and we were able to attribute this phenomenon directly to the sperm themselves. Sperm from other species can displace sperm from the same species and, in some cases, can invade inappropriate parts of the maternal reproductive system and even their non-reproductive tissues. We find that mating to males of another species harms females far more than does within-species mating. Overall, our observations are consistent with ongoing sexual conflict between the sexes within species, arising as a byproduct of sperm competition among the gametes of different males. Finally, patterns of assortative mating indicate that mating behaviours that reduce the likelihood of costly inter-species mating have evolved in this group of animals. These findings support an important role of sexual selection and gametic interactions contributing to reproductive boundaries between species, as predicted by evolutionary theory.
Collapse
Affiliation(s)
- Janice J. Ting
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin C. Woodruff
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Gemma Leung
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Na-Ra Shin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (ADC); (ESH)
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (ADC); (ESH)
| |
Collapse
|
62
|
Chen X, Shen Y, Ellis RE. Dependence of the sperm/oocyte decision on the nucleosome remodeling factor complex was acquired during recent Caenorhabditis briggsae evolution. Mol Biol Evol 2014; 31:2573-85. [PMID: 24987105 PMCID: PMC4166919 DOI: 10.1093/molbev/msu198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT-polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Molecular Biology, Rowan University-SOM Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey
| | - Yongquan Shen
- Department of Molecular Biology, Rowan University-SOM
| | | |
Collapse
|
63
|
Abstract
Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males), as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions.
Collapse
Affiliation(s)
- Ronald E. Ellis
- Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
64
|
Barrière A, Ruvinsky I. Pervasive divergence of transcriptional gene regulation in Caenorhabditis nematodes. PLoS Genet 2014; 10:e1004435. [PMID: 24968346 PMCID: PMC4072541 DOI: 10.1371/journal.pgen.1004435] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Because there is considerable variation in gene expression even between closely related species, it is clear that gene regulatory mechanisms evolve relatively rapidly. Because primary sequence conservation is an unreliable proxy for functional conservation of cis-regulatory elements, their assessment must be carried out in vivo. We conducted a survey of cis-regulatory conservation between C. elegans and closely related species C. briggsae, C. remanei, C. brenneri, and C. japonica. We tested enhancers of eight genes from these species by introducing them into C. elegans and analyzing the expression patterns they drove. Our results support several notable conclusions. Most exogenous cis elements direct expression in the same cells as their C. elegans orthologs, confirming gross conservation of regulatory mechanisms. However, the majority of exogenous elements, when placed in C. elegans, also directed expression in cells outside endogenous patterns, suggesting functional divergence. Recurrent ectopic expression of different promoters in the same C. elegans cells may reflect biases in the directions in which expression patterns can evolve due to shared regulatory logic of coexpressed genes. The fact that, despite differences between individual genes, several patterns repeatedly emerged from our survey, encourages us to think that general rules governing regulatory evolution may exist and be discoverable.
Collapse
Affiliation(s)
- Antoine Barrière
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution and Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (AB); (IR)
| |
Collapse
|
65
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
66
|
Félix MA, Braendle C, Cutter AD. A streamlined system for species diagnosis in Caenorhabditis (Nematoda: Rhabditidae) with name designations for 15 distinct biological species. PLoS One 2014; 9:e94723. [PMID: 24727800 PMCID: PMC3984244 DOI: 10.1371/journal.pone.0094723] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/14/2014] [Indexed: 12/18/2022] Open
Abstract
The rapid pace of species discovery outstrips the rate of species description in many taxa. This problem is especially acute for Caenorhabditis nematodes, where the naming of distinct species would greatly improve their visibility and usage for biological research, given the thousands of scientists studying Caenorhabditis. Species description and naming has been hampered in Caenorhabditis, in part due to the presence of morphologically cryptic species despite complete biological reproductive isolation and often enormous molecular divergence. With the aim of expediting species designations, here we propose and apply a revised framework for species diagnosis and description in this group. Our solution prioritizes reproductive isolation over traditional morphological characters as the key feature in delineating and diagnosing new species, reflecting both practical considerations and conceptual justifications. DNA sequence divergence criteria help prioritize crosses for establishing patterns of reproductive isolation among the many species of Caenorhabditis known to science, such as with the ribosomal internal transcribed spacer-2 (ITS2) DNA barcode. By adopting this approach, we provide new species name designations for 15 distinct biological species, thus increasing the number of named Caenorhabditis species in laboratory culture by nearly 3-fold. We anticipate that the improved accessibility of these species to the research community will expand the opportunities for study and accelerate our understanding of diverse biological phenomena.
Collapse
Affiliation(s)
- Marie-Anne Félix
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Paris, France
- CNRS UMR 8197, Paris, France
- Inserm U1024, Paris, France
| | - Christian Braendle
- Institut de Biologie Valrose, CNRS UMR7277, Parc Valrose, Nice, France
- INSERM U1091, Nice, France
- Université Nice Sophia Antipolis, UFR Sciences, Nice, France
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
67
|
Gray JC, Cutter AD. Mainstreaming Caenorhabditis elegans in experimental evolution. Proc Biol Sci 2014; 281:20133055. [PMID: 24430852 DOI: 10.1098/rspb.2013.3055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.
Collapse
Affiliation(s)
- Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, , 25 Willcocks Street, Toronto, Ontario, Canada , M5S 3B2
| | | |
Collapse
|
68
|
Signor S, Seher T, Kopp A. Genomic resources for multiple species in the Drosophila ananassae species group. Fly (Austin) 2013; 7:47-57. [PMID: 23639891 DOI: 10.4161/fly.22353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA.
| | | | | |
Collapse
|
69
|
Kanzaki N, Ragsdale EJ, Herrmann M, Röseler W, Sommer RJ. Two new species of Pristionchus (Nematoda: Diplogastridae) support the biogeographic importance of Japan for the evolution of the genus Pristionchus and the model system P. pacificus. Zoolog Sci 2013; 30:680-92. [PMID: 23915163 DOI: 10.2108/zsj.30.680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pristionchus pacificus Sommer, Carta, Kim, and Sternberg, 1996 is an important model organism in evolutionary biology that integrates developmental biology with ecology and population genetics. This species is part of a sub-complex of the genus Pristionchus that is considered to have originated in East Asia. Here, we describe two new species of Pristionchus, P. maxplancki and P. quartusdecimus, which were isolated from beetles in Japan, supporting the hypothesis that a region including Japan is the origin of diversification of the P. pacificus species complex. Phytogeny inferred from a partial small subunit rRNA gene and 25 ribosomal protein genes shows P. maxplancki to be the closest known outgroup to a triad of sibling species, including P. pacificus. Pristionchus quartusdecimus is a putative outgroup to the P. pacificus species complex, supporting a more ancient origin of Pristionchus species in the region. Species diagnoses are based on morphological and molecular characters, in addition to reproductive isolation for P. maxplancki. Members of the P. pacificus species complex as well as P. quartusdecimus are distinguished by stegostomatal structures, male genital papilla arrangement, and gubernaculum shape. The discovery of a new member of the P. pacificus species complex allows greater precision in polarizing and reconstructing ancestral states in the comparative model system centering on P. pacificus. Together with previous reports, these findings support an important biogeographic role of Japan in the evolution of the genus Pristionchus and the P. pacificus species complex, especially the associated phenotypic evolution of mouth morphology.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, Tsukuba, lbaraki, Japan
| | | | | | | | | |
Collapse
|
70
|
Jovelin R. Pleiotropic constraints, expression level, and the evolution of miRNA sequences. J Mol Evol 2013; 77:206-20. [PMID: 24100521 DOI: 10.1007/s00239-013-9588-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) plays critical roles during development by modulating gene expression and conferring robustness to stochastic errors. Phylogenetic analyses suggest that miRNA acquisition could play a role in phenotypic innovation. Moreover, miRNA-induced regulation strongly impacts genome evolution, increasing selective constraints on 3'UTRs, protein sequences, and expression level divergence. Thus, it is essential to understand the factors governing sequence evolution for this important class of regulatory molecules. Investigation of the patterns of molecular evolution at miRNA loci have been limited in Caenorhabditis elegans because of the lack of a close outgroup. Instead, I used Caenorhabditis briggsae as the focus point of this study because of its close relationship to Caenorhabditis sp. 9. I also corroborated the patterns of sequence evolution in Caenorhabditis using published orthologous relationships among miRNAs in Drosophila. In nematodes and in flies, miRNA sequence divergence is not influenced by the genomic neighborhood (i.e., intronic or intergenic) but is nevertheless affected by the genomic context because X-linked miRNAs evolve faster than autosomal miRNAs. However, this effect of chromosomal linkage can be explained by differential expression levels rather than a fast-X effect. The results presented here support a universal negative relationship between rates of molecular evolution and expression level, and suggest that mutations in highly expressed miRNAs are more likely to be deleterious because they potentially affect a larger number of target genes. Finally, I show that many single family member miRNAs evolve faster than miRNAs from multigene families and have limited functional scope, suggesting that they are not strongly integrated in gene regulatory networks.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada,
| |
Collapse
|
71
|
Gimond C, Jovelin R, Han S, Ferrari C, Cutter AD, Braendle C. OUTBREEDING DEPRESSION WITH LOW GENETIC VARIATION IN SELFINGCAENORHABDITISNEMATODES. Evolution 2013; 67:3087-101. [DOI: 10.1111/evo.12203] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Clotilde Gimond
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Shery Han
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Céline Ferrari
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology; University of Toronto; Toronto Ontario M5S 3B2 Canada
| | - Christian Braendle
- Institut de Biologie Valrose; CNRS UMR7277 Parc Valrose 06108 Nice cedex 02 France
- INSERM U1091; 06108 Nice cedex 02 France
- Université Nice Sophia Antipolis; UFR Sciences; 06108 Nice cedex 02 France
| |
Collapse
|
72
|
Molecular hyperdiversity defines populations of the nematode Caenorhabditis brenneri. Proc Natl Acad Sci U S A 2013; 110:11056-60. [PMID: 23776215 DOI: 10.1073/pnas.1303057110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The biology of Sydney Brenner's eponymous species of nematode, Caenorhabditis brenneri, is little known to science, despite its famous sibling Caenorhabditis elegans. Here we demonstrate that C. brenneri harbors the most molecular diversity of any eukaryote, with its 14.1% of polymorphic synonymous sites between individuals being 150-fold greater than humans and most comparable to hyperdiverse bacteria. This diversity is not an artifact of cryptic species divergence but reflects an enormous pan-tropical population, confirmed by fully viable genetic crosses between continents, extensive intralocus recombination, selection on codon use, and only weak geographic genetic structure. These findings in an animal galvanize tests of theory about the evolution of complexity in genomes and phenotypes and enable molecular population genetics methods to finely resolve uncharacterized functional noncoding elements.
Collapse
|
73
|
Markert M, García LR. Virgin Caenorhabditis remanei females are attracted to a coital pheromone released by con-specific copulating males. WORM 2013; 2:e24448. [PMID: 24058874 PMCID: PMC3704448 DOI: 10.4161/worm.24448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022]
Abstract
The gonochoristic soil nematode Caenorhabditis remanei strictly requires copulation for species propagation. Males of this species are sexually promiscuous with females of other species; therefore, we asked in this study whether virgin C. remanei females display evidence of mate choice. We digitally recorded and measured the locomotor behaviors of one or more virgin females in the presence of a single male on a 5 mm diameter mating lawn. We observed that initially only the male modifies his locomotor trajectory to another animal on the mating lawn; the virgin females showed no locomotor bias toward the mate-searching male. However, once a male started to copulate, females in the vicinity altered their movement trajectories toward the copulating couple. Newly inseminated females are refractive to the coital signal, but partially regain their attraction to copulating males after 24 h. We found only copulating males with an intact gonad can attract females, and that the coital signal can be broadcasted at least 1.5 mm through the air. Unlike males, which are also attracted to hetero-specific females, virgin C. remanei females will only crawl toward a copulating con-specific male. We suggest that Caenorhabditis females use the coital signal as a pheromone to identify a vigorous male of their own species.
Collapse
Affiliation(s)
- Mathew Markert
- Department of Biology; Texas A&M University; College Station, TX USA
| | | |
Collapse
|
74
|
Baird SE, Seibert SR. Reproductive isolation in the Elegans-Group of Caenorhabditis. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ns.2013.54a004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
75
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
76
|
Yan C, Bi Y, Yin D, Zhao Z. A method for rapid and simultaneous mapping of genetic loci and introgression sizes in nematode species. PLoS One 2012; 7:e43770. [PMID: 22952761 PMCID: PMC3432054 DOI: 10.1371/journal.pone.0043770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/24/2022] Open
Abstract
Caenorhabditis briggsae is emerging as an attractive model organism not only in studying comparative biology against C. elegans, but also in developing novel experimentation avenues. In particular, recent identification of a new Caenorhabditis species, C. sp.9 with which it can mate and produce viable progeny provides an opportunity for studying the genetics of hybrid incompatibilities (HI) between the two. Mapping of a specific HI locus demands repeated backcrossing to get hold of the specific genomic region underlying an observed phenotype. To facilitate mapping of HI loci between C. briggsae and C. sp.9, an efficient mapping method and a genetic map ideally consisting of dominant markers are required for systematic introgression of genomic fragments between the two species. We developed a fast and cost-effective method for high throughput mapping of dominant loci with resolution up to 1 million bps in C. briggsae. The method takes advantage of the introgression between C. briggsae and C. sp.9 followed by PCR genotyping using C. briggsae specific primers. Importantly, the mapping results can not only serve as an effective way for estimating the chromosomal position of a genetic locus in C. briggsae, but also provides size information for the introgression fragment in an otherwise C. sp.9 background. In addition, it also helps generate introgression line as a side-product that is invaluable for the subsequent mapping of HI loci. The method will greatly facilitate the construction of a genetic map consisting of dominant markers and pave the way for systematic isolation of HI loci between C. briggsae and C. sp.9 which has so far not been attempted between nematode species. The method is designed for mapping of a dominant allele, but can be easily adapted for mapping of any other type of alleles in any other species if introgression between a sister species pair is feasible.
Collapse
Affiliation(s)
| | | | | | - Zhongying Zhao
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
- * E-mail:
| |
Collapse
|
77
|
Kanzaki N, Ragsdale EJ, Herrmann M, Mayer WE, Sommer RJ. Description of three Pristionchus species (Nematoda: Diplogastridae) from Japan that form a cryptic species complex with the model organism P. pacificus. Zoolog Sci 2012; 29:403-17. [PMID: 22639812 DOI: 10.2108/zsj.29.403] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three new species of Pristionchus (P. exspectatus, P. arcanus, and P. japonicus) are described from Japan. They are morphologically similar, with P. exspectatus and P. arcanus being almost indistinguishable from the model organism P. pacificus. Reproductive isolation, namely the inability to produce interfertile F1 hybrids, separates all species pairs in the species complex. Additionally, all three new species are distinguished from P. pacificus Sommer, Carta, Kim, and Sternberg, 1996 by having a gonochoristic instead of hermaphroditic mode of reproduction. In addition to its reproductive isolation, P. japonicus is distinct from other Pristionchus species by its arrangement of genital papillae. All species in the complex are separated from each other by molecular sequence divergence, as indicated by analysis of 27 nuclear protein-coding genes and unique sequences of the small subunit ribosomal RNA gene. The identification of a species complex that includes P. pacificus is invaluable for studies of population genetics, speciation, and macroevolution, particularly the evolution of hermaphroditism in the genus.
Collapse
Affiliation(s)
- Natsumi Kanzaki
- Forest Pathology Laboratory, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | | | | | | | | |
Collapse
|
78
|
Global population genetic structure of Caenorhabditis remanei reveals incipient speciation. Genetics 2012; 191:1257-69. [PMID: 22649079 DOI: 10.1534/genetics.112.140418] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus-multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system.
Collapse
|
79
|
Thomas CG, Woodruff GC, Haag ES. Causes and consequences of the evolution of reproductive mode in Caenorhabditis nematodes. Trends Genet 2012; 28:213-20. [PMID: 22480920 DOI: 10.1016/j.tig.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022]
Abstract
Reproduction is directly connected to the suite of developmental and physiological mechanisms that enable it, but how it occurs also has consequences for the genetics, ecology and longer term evolutionary potential of a lineage. In the nematode Caenorhabditis elegans, anatomically female XX worms can self-fertilize their eggs. This ability evolved recently and in multiple Caenorhabditis lineages from male-female ancestors, providing a model for examining both the developmental causes and longer term consequences of a novel, convergently evolved reproductive mode. Here, we review recent work that implicates translation control in the evolution of XX spermatogenesis, with different selfing lineages possessing both reproducible and idiosyncratic features. We also discuss the consequences of selfing, which leads to a rapid loss of variation and relaxation of natural and sexual selection on mating-related traits, and may ultimately put selfing lineages at a higher risk of extinction.
Collapse
Affiliation(s)
- Cristel G Thomas
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
80
|
Liu Q, Stumpf C, Thomas C, Wickens M, Haag ES. Context-dependent function of a conserved translational regulatory module. Development 2012; 139:1509-21. [PMID: 22399679 DOI: 10.1242/dev.070128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modification of transcriptional regulation is a well-documented evolutionary mechanism in both plants and animals, but post-transcriptional controls have received less attention. The derived hermaphrodite of C. elegans has regulated spermatogenesis in an otherwise female body. The PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1. Here, we examine the function of PUF homologs from other Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex determination role. Surprisingly, this is to promote, rather than limit, hermaphrodite spermatogenesis. We provide genetic, molecular and biochemical evidence that Cbr-puf-2 and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts to limit, rather than promote, XX spermatogenesis. As with gld-1, no sex determination function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis. These results indicate that PUF family genes were co-opted for sex determination in each hermaphrodite via their long-standing association with gld-1, and that their precise sex-determining roles depend on the species-specific context in which they act. Finally, we document non-redundant roles for Cbr-puf-2 in embryonic and early larval development, the latter role being essential. Thus, recently duplicated PUF paralogs have already acquired distinct functions.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | |
Collapse
|
81
|
Kozlowska JL, Ahmad AR, Jahesh E, Cutter AD. Genetic variation for postzygotic reproductive isolation between Caenorhabditis briggsae and Caenorhabditis sp. 9. Evolution 2011; 66:1180-95. [PMID: 22486697 DOI: 10.1111/j.1558-5646.2011.01514.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The process of speciation is key to the origins of biodiversity, and yet the Caenorhabditis nematode model system has contributed little to this topic. Genetic studies of speciation in the genus are now feasible, owing to crosses between the recently discovered Caenorhabditis sp. 9 and the well-known C. briggsae producing fertile F(1) hybrid females. We dissected patterns of postzygotic reproductive isolation between these species by crossing eight isogenic strains of C. briggsae reciprocally with six strains of C. sp. 9. We determined that overall patterns of reproductive isolation are robust across these genetic backgrounds. However, we also quantified significant heritable variation within each species for interspecific hybrid incompatibilities for total adult progeny, egg-to-adult viability, and the percentage of male progeny. This demonstrates that intraspecific variation for interspecific hybrid incompatibility occurs despite extensive, albeit incomplete, reproductive isolation. Therefore, this emerging general phenomenon of variable reproductive isolation is not restricted to highly interfertile, early-stage incipient species, but also applies to species in the latest stages of the speciation process. Furthermore, we confirm Haldane's rule and demonstrate strongly asymmetric parent-of-origin effects (Darwin's corollary) that consistently manifest more extremely when hermaphroditic C. briggsae serves as maternal parent. These findings highlight Caenorhabditis as an emerging system for understanding the genetics of general patterns of reproductive isolation.
Collapse
Affiliation(s)
- Joanna L Kozlowska
- Department of Ecology & Evolutionary Biology, University of Toronto,Toronto, ON, Canada
| | | | | | | |
Collapse
|
82
|
Kiontke KC, Félix MA, Ailion M, Rockman MV, Braendle C, Pénigault JB, Fitch DHA. A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 2011; 11:339. [PMID: 22103856 PMCID: PMC3277298 DOI: 10.1186/1471-2148-11-339] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 11/21/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The nematode Caenorhabditis elegans is a major laboratory model in biology. Only ten Caenorhabditis species were available in culture at the onset of this study. Many of them, like C. elegans, were mostly isolated from artificial compost heaps, and their more natural habitat was unknown. RESULTS Caenorhabditis nematodes were found to be proliferating in rotten fruits, flowers and stems. By collecting a large worldwide set of such samples, 16 new Caenorhabditis species were discovered. We performed mating tests to establish biological species status and found some instances of semi-fertile or sterile hybrid progeny. We established barcodes for all species using ITS2 rDNA sequences. By obtaining sequence data for two rRNA and nine protein-coding genes, we determined the likely phylogenetic relationships among the 26 species in culture. The new species are part of two well-resolved sister clades that we call the Elegans super-group and the Drosophilae super-group. We further scored phenotypic characters such as reproductive mode, mating behavior and male tail morphology, and discuss their congruence with the phylogeny. A small space between rays 2 and 3 evolved once in the stem species of the Elegans super-group; a narrow fan and spiral copulation evolved once in the stem species of C. angaria, C. sp. 8 and C. sp. 12. Several other character changes occurred convergently. For example, hermaphroditism evolved three times independently in C. elegans, C. briggsae and C. sp. 11. Several species can co-occur in the same location or even the same fruit. At the global level, some species have a cosmopolitan distribution: C. briggsae is particularly widespread, while C. elegans and C. remanei are found mostly or exclusively in temperate regions, and C. brenneri and C. sp. 11 exclusively in tropical zones. Other species have limited distributions, for example C. sp. 5 appears to be restricted to China, C. sp. 7 to West Africa and C. sp. 8 to the Eastern United States. CONCLUSIONS Caenorhabditis are "fruit worms", not soil nematodes. The 16 new species provide a resource and their phylogeny offers a framework for further studies into the evolution of genomic and phenotypic characters.
Collapse
Affiliation(s)
- Karin C Kiontke
- Department of Biology, New York University, 100 Washington Square East New York, New York 10003, USA
| | - Marie-Anne Félix
- CNRS-Institut Jacques Monod, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | - Michael Ailion
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Matthew V Rockman
- Department of Biology, New York University, 100 Washington Square East New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, USA
| | - Christian Braendle
- Institute of Developmental Biology and Cancer, CNRS-University of Nice, Sophia-Antipolis, Parc Valrose, 06108 NICE cedex 2, France
| | | | - David HA Fitch
- Department of Biology, New York University, 100 Washington Square East New York, New York 10003, USA
| |
Collapse
|
83
|
Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proc Natl Acad Sci U S A 2011; 108:19672-7. [PMID: 22106259 DOI: 10.1073/pnas.1108068108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pleiotropic developmental regulators have been repeatedly linked to the evolution of anatomical novelties. Known mechanisms include cis-regulatory DNA changes that alter regulator transcription patterns or modify target-gene linkages. Here, we examine the role of another form of regulation, translational control, in the repeated evolution of self-fertile hermaphroditism in Caenorhabditis nematodes. Caenorhabditis elegans hermaphrodites initiate spermatogenesis in an otherwise female body through translational repression of the gene tra-2. This repression is mediated by GLD-1, an RNA-binding protein also required for oocyte meiosis and differentiation. By contrast, we show that in the convergently hermaphroditic Caenorhabditis briggsae, GLD-1 acts to promote oogenesis. The opposite functions of gld-1 in these species are not gene-intrinsic, but instead result from the unique contexts for its action that evolved in each. In C. elegans, GLD-1 became essential for promoting XX spermatogenesis via changes in the tra-2 mRNA and evolution of the species-specific protein FOG-2. C. briggsae GLD-1 became an essential repressor of sperm-promoting genes, including Cbr-puf-8, and did not evolve a strong association with tra-2. Despite its variable roles in sex determination, the function of gld-1 in female meiotic progression is ancient and conserved. This conserved role may explain why gld-1 is repeatedly recruited to regulate hermaphroditism. We conclude that, as with transcription factors, spatially localized translational regulators play important roles in the evolution of anatomical novelties.
Collapse
|
84
|
Abstract
Incompatibilities in interspecific hybrids, such as sterility and lethality, are widely observed causes of reproductive isolation and thus contribute to speciation. Because hybrid incompatibilities are caused by divergence in each of the hybridizing species, they also reveal genomic changes occurring on short evolutionary time scales that have functional consequences. These changes include divergence in protein-coding gene sequence, structure, and location, as well as divergence in noncoding DNAs. The most important unresolved issue is understanding the evolutionary causes of the divergence within species that in turn leads to incompatibility between species. Surprisingly, much of this divergence does not appear to be driven by ecological adaptation but may instead result from responses to purely mutational mechanisms or to internal genetic conflicts.
Collapse
Affiliation(s)
- Shamoni Maheshwari
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
85
|
MicroRNA sequence variation potentially contributes to within-species functional divergence in the nematode Caenorhabditis briggsae. Genetics 2011; 189:967-76. [PMID: 21890738 DOI: 10.1534/genetics.111.132795] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mounting evidence points to differences in gene regulation as a major source of phenotypic variation. MicroRNA-mediated post-transcriptional regulation has emerged recently as a key factor controlling gene activity during development. MicroRNA genes are abundant in genomes, acting as managers of gene expression by directing translational repression. Thus, understanding the role of microRNA sequence variation within populations is essential for fully dissecting the origin and maintenance of phenotypic diversity in nature. In this study, we investigate allelic variation at microRNA loci in the nematode Caenorhabditis briggsae, a close relative of C. elegans. Phylogeographic structure in C. briggsae partitions most strains from around the globe into a "temperate" or a "tropical" clade, with a few strains having divergent, geographically restricted genotypes. Remarkably, strains that follow this latitudinal dichotomy also differ in temperature-associated fitness. With this phylogeographic pattern in mind, we examined polymorphisms in 18 miRNAs in a global sample of C. briggsae isolates and tested whether newly isolated strains conform to this phylogeography. Surprisingly, nucleotide diversity is relatively high in this class of gene that generally experiences strong purifying selection. In particular, we find that miRNAs in C. briggsae are substantially more polymorphic than in Arabidopsis thaliana, despite similar background levels of neutral site diversity between the two species. We find that some mutations suggest functional divergence on the basis of requirements for target site recognition and computational prediction of the effects of the polymorphisms on RNA folding. These findings demonstrate the potential for miRNA polymorphisms to contribute to phenotypic variation within a species. Sequences were deposited in GenBank under accession nos. JN251323-JN251744.
Collapse
|
86
|
Jovelin R, Phillips PC. Expression level drives the pattern of selective constraints along the insulin/Tor signal transduction pathway in Caenorhabditis. Genome Biol Evol 2011; 3:715-22. [PMID: 21849326 PMCID: PMC3157841 DOI: 10.1093/gbe/evr071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genes do not act in isolation but perform their biological functions within genetic pathways that are connected in larger networks. Investigation of nucleotide variation within genetic pathways and networks has shown that topology can affect the rate of protein evolution; however, it remains unclear whether a same pattern of nucleotide variation is expected within functionally similar networks and whether it may be due to similar or different biological mechanisms. We address these questions by investigating nucleotide variation in the context of the structure of the insulin/Tor-signaling pathway in Caenorhabditis, which is well characterized and is functionally conserved across phylogeny. In Drosophila and vertebrates, the rate of protein evolution is negatively correlated with the position of a gene within the insulin/Tor pathway. Similarly, we find that in Caenorhabditis, the rate of amino acid replacement is lower for downstream genes. However, in Caenorhabditis, the rate of synonymous substitution is also strongly affected by the position of a gene in the pathway, and we show that the distribution of selective pressure along the pathway is driven by differential expression level. A full understanding of the effect of pathway structure on selective constraints is therefore likely to require inclusion of specific biological function into more general network models.
Collapse
Affiliation(s)
- Richard Jovelin
- Department of Biology, Center for Ecology and Evolutionary Biology, University of Oregon, USA.
| | | |
Collapse
|
87
|
Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species. Mol Phylogenet Evol 2011; 61:584-92. [PMID: 21787872 DOI: 10.1016/j.ympev.2011.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/21/2022]
Abstract
The Phylum Nematoda has long been known to contain a great diversity of species that vary in reproductive mode, though our understanding of the evolutionary origins, causes and consequences of nematode reproductive mode change have only recently started to mature. Here we bring together and analyze recent progress on reproductive mode evolution throughout the phylum, resulting from the application of molecular phylogenetic approaches and newly discovered nematode species. Reproductive mode variation is reviewed in multiple free-living, animal-parasitic and plant-parasitic nematode groups. Discussion ranges from the model nematode Caenorhabditis elegans and its close relatives, to the plant-parasitic nematodes of the Meloidogyne genus where there is extreme variation in reproductive mode between and even within species, to the vertebrate-parasitic genus Strongyloides and related genera where reproductive mode varies across generations (heterogony). Multiple evolutionary transitions from dioecous (obligately outcrossing) to hermaphroditism and parthenogenesis in the phylum are discussed, along with one case of an evolutionary transition from hermaphroditism to doioecy in the Oscheius genus. We consider the roles of underlying genetic mechanisms in promoting reproductive plasticity in this phylum, as well as the potential evolutionary forces promoting transitions in reproductive mode.
Collapse
|
88
|
Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination. PLoS Genet 2011; 7:e1002174. [PMID: 21779179 PMCID: PMC3136444 DOI: 10.1371/journal.pgen.1002174] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/23/2011] [Indexed: 12/16/2022] Open
Abstract
The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.
Collapse
|
89
|
Affiliation(s)
- Marie-Anne Félix
- Institut Jacques Monod, CNRS-Université Paris-Diderot, 15 rue Hélène Brion, 75205 Paris cedex 13, France.
| | | |
Collapse
|