51
|
Badinloo M, Nguyen E, Suh W, Alzahrani F, Castellanos J, Klichko VI, Orr WC, Radyuk SN. Overexpression of antimicrobial peptides contributes to aging through cytotoxic effects in Drosophila tissues. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21464. [PMID: 29637607 PMCID: PMC6039247 DOI: 10.1002/arch.21464] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The innate immune response tends to become hyperactive and proinflammatory in older organisms. We investigated connections between activity of the immune-related genes and aging using the Drosophila model. A hallmark of Drosophila immunity is the production of antimicrobial peptides (AMP), whose expression is triggered via activation of the Toll and Imd immune pathways and regulated by NF-ĸB-like transcription factors, Dif/Dorsal and Relish. It was previously shown that overexpression of the upstream component of the immune pathways shortens lifespan via activation of the Relish-dependent immune response. Here we show that direct overexpression of the Relish target AMP genes broadly at high levels or in the fat body induced apoptosis, elicited depolarization of the mitochondria and significantly shortened lifespan. Underexpression of Relish in the fat body beginning in the second half of lifespan prevented overactivation of AMPs and extended longevity. Unlike infection-induced responses, the age-related increase in AMPs does not require the upstream recognition/transduction module of the Imd pathway. It does however require downstream elements, including Relish and Ird5, a component of the downstream IKK complex. Together, these results established causal links between high-level production of antimicrobial peptides and longevity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Svetlana N. Radyuk
- Corresponding Author Svetlana N. Radyuk, PhD, 6501 Airline Rd, Room 113, Dallas, TX 75275, Tel: +1-214-768-2892, Fax: +1-214-768-3955,
| |
Collapse
|
52
|
Richards RI, Robertson SA, Kastner DL. Neurodegenerative diseases have genetic hallmarks of autoinflammatory disease. Hum Mol Genet 2018; 27:R108-R118. [PMID: 29684205 PMCID: PMC6061832 DOI: 10.1093/hmg/ddy139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/12/2018] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
The notion that one common pathogenic pathway could account for the various clinically distinguishable, typically late-onset neurodegenerative diseases might appear unlikely given the plethora of diverse primary causes of neurodegeneration. On the contrary, an autoinflammatory pathogenic mechanism allows diverse genetic and environmental factors to converge into a common chain of causality. Inflammation has long been known to correlate with neurodegeneration. Until recently this relationship was seen as one of consequence rather than cause-with inflammatory cells and events acting to 'clean up the mess' after neurological injury. This explanation is demonstrably inadequate and it is now clear that inflammation is at the very least, rate-limiting for neurodegeneration (and more likely, a principal underlying cause in most if not all neurodegenerative diseases), protective in its initial acute phase, but pernicious in its latter chronic phase.
Collapse
Affiliation(s)
- Robert I Richards
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
53
|
Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain. Cell Host Microbe 2018; 24:57-68.e3. [PMID: 29934091 DOI: 10.1016/j.chom.2018.05.022] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 12/19/2022]
Abstract
The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beth Gordesky-Gold
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Leney-Greene
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan L Weinbren
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Tudor
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
54
|
Kounatidis I, Chtarbanova S. Role of Glial Immunity in Lifespan Determination: A Drosophila Perspective. Front Immunol 2018; 9:1362. [PMID: 29942319 PMCID: PMC6004738 DOI: 10.3389/fimmu.2018.01362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/01/2018] [Indexed: 11/13/2022] Open
Abstract
Increasing body of evidence indicates that proper glial function plays an important role in neuroprotection and in organismal physiology throughout lifespan. Work done in the model organism Drosophila melanogaster has revealed important aspects of glial cell biology in the contexts of longevity and neurodegeneration. In this mini review, we summarize recent findings from work done in the fruit fly Drosophila about the role of glia in maintaining a healthy status during animal’s life and discuss the involvement of glial innate immune pathways in lifespan and neurodegeneration. Overactive nuclear factor kappa B (NF-κB) pathways and defective phagocytosis appear to be major contributors to lifespan shortening and neuropathology. Glial NF-κB silencing on the other hand, extends lifespan possibly through an immune–neuroendocrine axis. Given the evolutionary conservation of NF-κB innate immune signaling and of macrophage ontogeny across fruit flies, rodents, and humans, the above observations in glia could potentially support efforts for therapeutic interventions targeting to ameliorate age-related pathologies.
Collapse
Affiliation(s)
- Ilias Kounatidis
- Cell Biology, Development, and Genetics Laboratory, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
55
|
Zhai Z, Huang X, Yin Y. Beyond immunity: The Imd pathway as a coordinator of host defense, organismal physiology and behavior. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:51-59. [PMID: 29146454 DOI: 10.1016/j.dci.2017.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The humoral arm of host defense in Drosophila relies on two evolutionarily conserved NFκB signaling cascades, the Toll and the immune deficiency (Imd) pathways. The Imd signaling pathway senses and neutralizes Gram-negative bacteria. Its activity is tightly adjusted, allowing the host to simultaneously prevent infection by pathogenic bacteria and tolerate beneficial gut microbiota. Over-activation of Imd signaling is detrimental at least in part by causing gut dysbiosis that further exacerbates intestinal pathologies. Furthermore, it is increasingly recognized that the Imd pathway or its components also play non-immune roles. In this review, we summarize recent advances in Imd signal transduction, discuss the gut-microbiota interactions mediated by Imd signaling, and finally elaborate on its diverse physiological functions beyond immunity. Understanding the multifaceted physiological outputs of Imd activation will help integrate its immune role into the regulation of whole organismal physiology.
Collapse
Affiliation(s)
- Zongzhao Zhai
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China.
| | | | - Yulong Yin
- Changsha Medical University, 410125 Changsha, China; Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, 410081 Changsha, Hunan, China
| |
Collapse
|
56
|
Ylla G, Piulachs MD, Belles X. Comparative Transcriptomics in Two Extreme Neopterans Reveals General Trends in the Evolution of Modern Insects. iScience 2018; 4:164-179. [PMID: 30240738 PMCID: PMC6147021 DOI: 10.1016/j.isci.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
The success of neopteran insects, with 1 million species described, is associated with developmental innovations such as holometaboly and the evolution from short to long germband embryogenesis. To unveil the mechanisms underlining these innovations, we compared gene expression during the ontogeny of two extreme neopterans, the cockroach Blattella germanica (polyneopteran, hemimetabolan, and short germband species) and the fly Drosophila melanogaster (endopterygote, holometabolan, and long germband species). Results revealed that genes associated with metamorphosis are predominantly expressed in late nymphal stages in B. germanica and in the early-mid embryo in D. melanogaster. In B. germanica the maternal to zygotic transition (MZT) concentrates early in embryogenesis, when juvenile hormone factors are significantly expressed. In D. melanogaster, the MZT extends throughout embryogenesis, during which time juvenile hormone factors appear to be unimportant. These differences possibly reflect broad trends in the evolution of development within neopterans, related to the germband type and the metamorphosis mode. Transcriptomes of cockroaches and flies show key differences along development Cockroaches and flies express metamorphosis factors with distinct timings in ontogeny Cockroaches methylate DNA in early embryogenesis, whereas flies do not MZT is limited to the early embryo in cockroaches, but it extends until hatching in flies
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
57
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
58
|
Abstract
Here, we provide a brief review of the mechanistic connections between immunity and aging—a fundamental biological relationship that remains poorly understood—by considering two intertwined questions: how does aging affect immunity, and how does immunity affect aging? On the one hand, aging contributes to the deterioration of immune function and predisposes the organism to infections (“immuno-senescence”). On the other hand, excessive activation of the immune system can accelerate degenerative processes, cause inflammation and immunopathology, and thus promote aging (“inflammaging”). Interestingly, several recent lines of evidence support the hypothesis that restrained or curbed immune activity at old age (that is, optimized age-dependent immune homeostasis) might actually improve realized immune function and thereby promote longevity. We focus mainly on insights from
Drosophila, a powerful genetic model system in which both immunity and aging have been extensively studied, and conclude by outlining several unresolved questions in the field.
Collapse
Affiliation(s)
- Kathrin Garschall
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
59
|
NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Rep 2018; 19:836-848. [PMID: 28445733 PMCID: PMC5413584 DOI: 10.1016/j.celrep.2017.04.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/22/2017] [Accepted: 03/31/2017] [Indexed: 01/03/2023] Open
Abstract
During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that “age well” from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant. Constitutive immunity predisposes to short lifespan with severe neurodegeneration Blocking constitutive immunity in glia rescues predisposed flies Suppression of immunity in glia of healthy flies triggers adipokinetic signaling This immune-endocrine axis mobilizes nutrients and extends active lifespan
Collapse
|
60
|
Rimkus SA, Wassarman DA. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant. PLoS One 2018; 13:e0190821. [PMID: 29338042 PMCID: PMC5770031 DOI: 10.1371/journal.pone.0190821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide new leads for understanding the biological and molecular roles of ATM and for the treatment of A-T.
Collapse
Affiliation(s)
- Stacey A. Rimkus
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - David A. Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
61
|
Logan MA. Glial contributions to neuronal health and disease: new insights from Drosophila. Curr Opin Neurobiol 2017; 47:162-167. [PMID: 29096245 PMCID: PMC5741183 DOI: 10.1016/j.conb.2017.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Glial cells are essential for proper formation and maintenance of the nervous system. During development, glia keep neuronal cell numbers in check and ensure that mature neural circuits are appropriately sculpted by engulfing superfluous cells and projections. In the adult brain, glial cells offer metabolic sustenance and provide critical immune support in the face of acute and chronic challenges. Dysfunctional glial immune activity is believed to contribute to age-related cognitive decline, as well as neurodegenerative disease risk, but we still know surprisingly little about the specific molecular pathways that govern glia-neuron communication in the healthy or diseased brain. Drosophila offers a versatile in vivo model to explore the conserved molecular underpinnings of glial cell biology and glial cell contributions to brain function, health, and disease susceptibility. This review addresses recent findings describing how Drosophila glial cells influence neuronal activity in the adult fly brain to support optimal brain function and, importantly, highlights new insights into specific glial defects that may contribute to neuronal demise.
Collapse
Affiliation(s)
- Mary A Logan
- Jungers Center, Department of Neurology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
62
|
Quek H, Lim YC, Lavin MF, Roberts TL. PIKKing a way to regulate inflammation. Immunol Cell Biol 2017; 96:8-20. [DOI: 10.1111/imcb.1001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Hazel Quek
- The University of Queensland Centre for Clinical Research; Herston Qld Australia
- QIMR Berghofer Medical Research Institute; Herston Qld Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute; Herston Qld Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research; Herston Qld Australia
| | - Tara L Roberts
- The University of Queensland Centre for Clinical Research; Herston Qld Australia
- The Ingham Institute for Applied Medical Research and School of Medicine; Western Sydney University; Liverpool New South Wales Australia
- South West Sydney Clinical School; Sydney UNSW Australia
| |
Collapse
|
63
|
Walkowicz L, Kijak E, Krzeptowski W, Górska-Andrzejak J, Stratoulias V, Woznicka O, Chwastek E, Heino TI, Pyza EM. Downregulation of DmMANF in Glial Cells Results in Neurodegeneration and Affects Sleep and Lifespan in Drosophila melanogaster. Front Neurosci 2017; 11:610. [PMID: 29163014 PMCID: PMC5673640 DOI: 10.3389/fnins.2017.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
In Drosophila melanogaster, mesencephalic astrocyte-derived neurotrophic factor (DmMANF) is an evolutionarily conserved ortholog of mammalian MANF and cerebral dopamine neurotrophic factor (CDNF), which have been shown to promote the survival of dopaminergic neurons in the brain. We observed especially high levels of DmMANF in the visual system of Drosophila, particularly in the first optic neuropil (lamina). In the lamina, DmMANF was found in glial cells (surface and epithelial glia), photoreceptors and interneurons. Interestingly, silencing of DmMANF in all neurons or specifically in photoreceptors or L2 interneurons had no impact on the structure of the visual system. However, downregulation of DmMANF in glial cells induced degeneration of the lamina. Remarkably, this degeneration in the form of holes and/or tightly packed membranes was observed only in the lamina epithelial glial cells. Those membranes seem to originate from the endoplasmic reticulum, which forms autophagosome membranes. Moreover, capitate projections, the epithelial glia invaginations into photoreceptor terminals that are involved in recycling of the photoreceptor neurotransmitter histamine, were less numerous after DmMANF silencing either in neurons or glial cells. The distribution of the alpha subunit of Na+/K+-ATPase protein in the lamina cell membranes was also changed. At the behavioral level, silencing of DmMANF either in neurons or glial cells affected the daily activity/sleep pattern, and flies showed less activity during the day but higher activity during the night than did controls. In the case of silencing in glia, the lifespan of flies was also shortened. The obtained results showed that DmMANF regulates many functions in the brain, particularly those dependent on glial cells.
Collapse
Affiliation(s)
- Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Kijak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | | | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Chwastek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Tapio I. Heino
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
64
|
Beraldi R, Meyerholz DK, Savinov A, Kovács AD, Weimer JM, Dykstra JA, Geraets RD, Pearce DA. Genetic ataxia telangiectasia porcine model phenocopies the multisystemic features of the human disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2862-2870. [PMID: 28746835 PMCID: PMC5687068 DOI: 10.1016/j.bbadis.2017.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Ataxia telangiectasia (AT) is a progressive multisystem autosomal recessive disorder caused by mutations in the AT-mutated (ATM) gene. Early onset AT in children is characterized by cerebellar degeneration, leading to motor impairment. Lung disease and cancer are the two most common causes of death in AT patients. Accelerated thymic involution may contribute to the cancer, and recurrent and/or chronic respiratory infections may be a contributing factor to lung disease in AT. AT patients have fertility issues, are highly sensitive to ionizing radiation and they present oculocutaneous telangiectasia. Current treatments only slightly ameliorate disease symptoms; therapy that alters or reverses the course of the disease has not yet been discovered. Previously, we have shown that ATM-/- pigs, a novel model of AT, present with a loss of Purkinje cells, altered cerebellar cytoarchitecture and motor coordination deficits. ATM-/- porcine model not only recapitulates the neurological phenotype, but also other multifaceted clinical features of the human disease. Our current study shows that ATM-/- female pigs are infertile, with anatomical and functional signs of an immature reproductive system. Both male and female ATM-/- pigs show abnormal thymus structure with decreased cell cycle and apoptosis markers in the gland. Moreover, ATM-/- pigs have an altered immune system with decreased CD8+ and increased natural killer and CD4+CD8+ double-positive cells. Nevertheless, ATM-/- pigs manifest a deficient IgG response after a viral infection. Based on the neurological and peripheral phenotypes, the ATM-/- pig is a novel genetic model that may be used for therapeutic assessments and to identify pathomechanisms of this disease.
Collapse
Affiliation(s)
- Rosanna Beraldi
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Alexei Savinov
- Diabetes Group Sanford Research, Sioux Falls, SD 57105, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - Attila D Kovács
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M Weimer
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jordan A Dykstra
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA
| | - Ryan D Geraets
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - David A Pearce
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
65
|
Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, Bellingham MC, Noakes PG, Lim YC, Barnett NL, Dingwall S, Wolvetang E, Mashimo T, Roberts TL, Lavin MF. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet 2017; 26:109-123. [PMID: 28007901 DOI: 10.1093/hmg/ddw371] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Ataxia-telangiectasia (A-T), an autosomal recessive disease caused by mutations in the ATM gene is characterised by cerebellar atrophy and progressive neurodegeneration which has been poorly recapitulated in Atm mutant mice. Consequently, pathways leading to neurodegeneration in A-T are poorly understood. We describe here the generation of an Atm knockout rat model that does not display cerebellar atrophy but instead paralysis and spinal cord atrophy, reminiscent of that seen in older patients and milder forms of the disorder. Loss of Atm in neurons and glia leads to accumulation of cytosolic DNA, increased cytokine production and constitutive activation of microglia consistent with a neuroinflammatory phenotype. Rats lacking ATM had significant loss of motor neurons and microgliosis in the spinal cord, consistent with onset of paralysis. Since short term treatment with steroids has been shown to improve the neurological signs in A-T patients we determined if that was also the case for Atm-deficient rats. Betamethasone treatment extended the lifespan of Atm knockout rats, prevented microglial activation and significantly decreased neuroinflammatory changes and motor neuron loss. These results point to unrepaired damage to DNA leading to significant levels of cytosolic DNA in Atm-deficient neurons and microglia and as a consequence activation of the cGAS-STING pathway and cytokine production. This in turn would increase the inflammatory microenvironment leading to dysfunction and death of neurons. Thus the rat model represents a suitable one for studying neurodegeneration in A-T and adds support for the use of anti-inflammatory drugs for the treatment of neurodegeneration in A-T patients.
Collapse
Affiliation(s)
- Hazel Quek
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - John Luff
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - KaGeen Cheung
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Sergei Kozlov
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - Magtouf Gatei
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - C Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Nigel L Barnett
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,Queensland Eye Institute, South Brisbane, Qld, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - Steven Dingwall
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Tomoji Mashimo
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tara L Roberts
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
66
|
Central Nervous System Responses of the Oriental migratory, Locusta migratoria manilensis, to Fungal Infection. Sci Rep 2017; 7:10340. [PMID: 28871168 PMCID: PMC5583336 DOI: 10.1038/s41598-017-10622-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023] Open
Abstract
Responses of the central nervous system (CNS) to microbial challenge and the interplay between the CNS and the immune system are important for defending against pathogen attack. We have examined the CNS transcriptional response of Locusta migratoria manilensis to infection by the locust-specific fungal pathogen, Metarhizium acridum. CNS responses were examined during spore attachment, fungal germination and pre-penetration of the cuticle, and cuticle penetration/hemocoel ingress and proliferation. Effects were seen at the earliest time points (4 h post-infection) and the number of differentially expressed genes (DEGs) was highest during late mycosis (72 h post-infection). Significantly affected neurological pathways included genes involved in serotonergic, cholinergic, dopaminergic, GABAergic, and glutamergic synapse responses, as well as pathways responsible for synaptic vesicle cycle, long-term potentiation and depression, and neurotrophin and retrograde endocannabinoid signaling. In addition, a significant number of immune related DEGs were identified. These included components of the Toll, Imd and JAK/STAT pathways, consistent with interactions between the CNS and immune systems. The activation of immune response related CNS genes during early stage infection highlights the rapid detection of microbial pathogens and suggests an important role for the CNS in modulating immunity potentially via initiating behavioral adaptations along with innate immune responses.
Collapse
|
67
|
Sex and Genetic Background Influence Superoxide Dismutase (cSOD)-Related Phenotypic Variation in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2017. [PMID: 28624774 PMCID: PMC5555470 DOI: 10.1534/g3.117.043836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mutations often have drastically different effects in different genetic backgrounds; understanding a gene’s biological function then requires an understanding of its interaction with genetic diversity. The antioxidant enzyme cytosolic copper/zinc superoxide dismutase (cSOD) catalyzes the dismutation of the superoxide radical, a molecule that can induce oxidative stress if its concentration exceeds cellular control. Accordingly, Drosophila melanogaster lacking functional cSOD exhibit a suite of phenotypes including decreased longevity, hypersensitivity to oxidative stress, impaired locomotion, and reduced NADP(H) enzyme activity in males. To date, cSOD-null phenotypes have primarily been characterized using males carrying one allele, cSodn108red, in a single genetic background. We used ANOVA, and the effect size partial eta squared, to partition the amount of variation attributable to cSOD activity, sex, and genetic background across a series of life history, locomotor, and biochemical phenotypes associated with the cSOD-null condition. Overall, the results demonstrate that the cSOD-null syndrome is largely consistent across sex and genetic background, but also significantly influenced by both. The sex-specific effects are particularly striking and our results support the idea that phenotypes cannot be considered to be fully defined if they are examined in limited genetic contexts.
Collapse
|
68
|
Yorkie Regulates Neurodegeneration Through Canonical Pathway and Innate Immune Response. Mol Neurobiol 2017; 55:1193-1207. [PMID: 28102471 DOI: 10.1007/s12035-017-0388-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Expansion of CAG repeats in certain genes has long been known to be associated with neurodegenerastion, but the quest to identity the underlying mechanisms is still on. Here, we analyzed the role of Yorkie, the coactivator of the Hippo pathway, and provide evidence to state that it is a robust genetic modifier of polyglutamine (PolyQ)-mediated neurodegeneration. Yorkie reduces the pathogenicity of inclusion bodies in the cell by activating cyclin E and bantam, rather than by preventing apoptosis through DIAP1. PolyQ aggregates inhibit Yorkie functioning at the protein, rather than the transcript level, and this is probably accomplished by the interaction between PolyQ and Yorkie. We show that PolyQ aggregates upregulate expression of antimicrobial peptides (AMPs) and Yorkie negatively regulates immune deficiency (IMD) and Toll pathways through relish and cactus, respectively, thus reducing AMPs and mitigating PolyQ affects. These studies strongly suggest a novel mechanism of suppression of PolyQ-mediated neurotoxicity by Yorkie through multiple channels.
Collapse
|
69
|
Kaynar AM, Bakalov V, Laverde SM, Cambriel AIF, Lee BH, Towheed A, Gregory AD, Webb SAR, Palladino MJ, Bozza FA, Shapiro SD, Angus DC. Cost of surviving sepsis: a novel model of recovery from sepsis in Drosophila melanogaster. Intensive Care Med Exp 2016; 4:4. [PMID: 26791145 PMCID: PMC4720623 DOI: 10.1186/s40635-016-0075-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple organ failure, wasting, increased morbidity, and mortality following acute illness complicates the health span of patients surviving sepsis. Persistent inflammation has been implicated, and it is proposed that insulin signaling contributes to persistent inflammatory signaling during the recovery phase after sepsis. However, mechanisms are unknown and suitable pre-clinical models are lacking. We therefore developed a novel Drosophila melanogaster model of sepsis to recapitulate the clinical course of sepsis, explored inflammation over time, and its relation to impaired mobility, metabolic disturbance, and changes in lifespan. METHODS We used wild-type (WT), Drosomycin-green fluorescent protein (GFP), and NF-κB-luc reporter male Drosophila melanogaster 4-5 days of age (unmanipulated). We infected Drosophila with Staphylococcus aureus (infected without treatment) or pricked with aseptic needles (sham). Subsets of insects were treated with oral linezolid after the infection (infected with antibiotics). We assessed rapid iterative negative geotaxis (RING) in all the groups as a surrogate for neuromuscular functional outcome up to 96 h following infection. We harvested the flies over the 7-day course to evaluate bacterial burden, inflammatory and metabolic pathway gene expression patterns, NF-κB translation, and metabolic reserve. We also followed the lifespan of the flies. RESULTS Our results showed that when treated with antibiotics, flies had improved survival compared to infected without treatment flies in the early phase of sepsis up to 1 week (81 %, p = 0.001). However, the lifespan of infected with antibiotics flies was significantly shorter than that of sham controls (p = 0.001). Among infected with antibiotic sepsis survivors, we observed persistent elevation of NF-κB in the absence of any obvious infection as shown by culturing flies surviving sepsis. In the same group, geotaxis had an early (18 h) and sustained decline compared to its baseline. Geotaxis in infected with antibiotics sepsis survivors was significantly lower than that in sham and age-matched unmanipulated flies at 18 and 48 h. Expression of antimicrobial peptides (AMP) remained significantly elevated over the course of 7 days after sepsis, especially drosomycin (5.7-fold, p = 0.0145) on day 7 compared to that of sham flies. Infected with antibiotics flies had a trend towards decreased Akt activation, yet their glucose stores were significantly lower than those of sham flies (p = 0.001). Sepsis survivors had increased lactate levels and LDH activity by 1 week, whereas ATP and pyruvate content was similar to that of the sham group. CONCLUSIONS In summary, our model mimics human survivors of sepsis with persistent inflammation, impaired motility, dysregulated glucose metabolism, and shortened lifespan.
Collapse
Affiliation(s)
- Ata Murat Kaynar
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 612 Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
| | - Veli Bakalov
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 612 Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
| | - Silvia Martinez Laverde
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | | | - Byoung-Hoon Lee
- Department of Pulmonology and Allergy, Eulji University, Seoul, 139-711, Korea
| | - Atif Towheed
- Department of Pharmacology and Chemical Biology, Pittsburgh, PA, 15260, USA
- Present address: Center of Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Steven A R Webb
- School of Population Health, University of Western Australia, Crawly, Perth, WA, 6009, Australia
| | | | - Fernando A Bozza
- Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Derek C Angus
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 612 Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
| |
Collapse
|
70
|
Abstract
Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries. We recently reported that TBI in flies, as in humans, increases permeability of the intestinal epithelial barrier resulting in hyperglycemia and a higher risk of death. Furthermore, we demonstrated that genetic variation in flies is also pertinent to the complexity of non-neurological injuries following TBI. The goals of this review are to place our findings in the context of what is known about TBI-induced intestinal permeability from studies of TBI patients and rodent TBI models and to draw attention to how studies of the fly TBI model can provide unique insights that may facilitate diagnosis and treatment of TBI.
Collapse
Affiliation(s)
| | - Barry Ganetzky
- a Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI USA
| | - David A Wassarman
- a Laboratory of Genetics; University of Wisconsin-Madison ; Madison , WI USA
| |
Collapse
|
71
|
A polydnaviral genome of Microplitis bicoloratus bracovirus and molecular interactions between the host and virus involved in NF-κB signaling. Arch Virol 2016; 161:3095-124. [DOI: 10.1007/s00705-016-2988-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
72
|
Highfill CA, Reeves GA, Macdonald SJ. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population. BMC Genet 2016; 17:113. [PMID: 27485207 PMCID: PMC4970266 DOI: 10.1186/s12863-016-0419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considerable natural variation for lifespan exists within human and animal populations. Genetically dissecting this variation can elucidate the pathways and genes involved in aging, and help uncover the genetic mechanisms underlying risk for age-related diseases. Studying aging in model systems is attractive due to their relatively short lifespan, and the ability to carry out programmed crosses under environmentally-controlled conditions. Here we investigate the genetic architecture of lifespan using the Drosophila Synthetic Population Resource (DSPR), a multiparental advanced intercross mapping population. RESULTS We measured lifespan in females from 805 DSPR lines, mapping five QTL (Quantitative Trait Loci) that each contribute 4-5 % to among-line lifespan variation in the DSPR. Each of these QTL co-localizes with the position of at least one QTL mapped in 13 previous studies of lifespan variation in flies. However, given that these studies implicate >90 % of the genome in the control of lifespan, this level of overlap is unsurprising. DSPR QTL intervals harbor 11-155 protein-coding genes, and we used RNAseq on samples of young and old flies to help resolve pathways affecting lifespan, and identify potentially causative loci present within mapped QTL intervals. Broad age-related patterns of expression revealed by these data recapitulate results from previous work. For example, we see an increase in antimicrobial defense gene expression with age, and a decrease in expression of genes involved in the electron transport chain. Several genes within QTL intervals are highlighted by our RNAseq data, such as Relish, a critical immune response gene, that shows increased expression with age, and UQCR-14, a gene involved in mitochondrial electron transport, that has reduced expression in older flies. CONCLUSIONS The five QTL we isolate collectively explain a considerable fraction of the genetic variation for female lifespan in the DSPR, and implicate modest numbers of genes. In several cases the candidate loci we highlight reside in biological pathways already implicated in the control of lifespan variation. Thus, our results provide further evidence that functional genetics tests targeting these genes will be fruitful, lead to the identification of natural sequence variants contributing to lifespan variation, and help uncover the mechanisms of aging.
Collapse
Affiliation(s)
- Chad A Highfill
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - G Adam Reeves
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA. .,Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
| |
Collapse
|
73
|
Piegholdt S, Rimbach G, Wagner AE. Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster. Redox Biol 2016; 8:119-26. [PMID: 26774080 PMCID: PMC4732017 DOI: 10.1016/j.redox.2016.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/30/2023] Open
Abstract
The traditional Asian diet is rich in fruits, vegetables and soy, the latter representing a significant source of dietary isoflavones. The isoflavone prunetin was recently identified to improve intestinal epithelial barrier function in vitro and to ameliorate general survival and overall health state in vivo in male Drosophila melanogaster. However, the prunetin-mediated health benefits in the fruit fly were ascertained under standard living conditions. As the loss of intestinal integrity is closely related to a reduction in Drosophila lifespan and barrier dysfunction increases with age, effects on prunetin-modulated gut health under oxidative or pathogenic stress provocation remain to be elucidated. In this study, male adult D. melanogaster were administered either a prunetin or a control diet. Gut-derived junction protein expression and pathogen-induced antimicrobial peptide expressions as well as the stem cell proliferation in the gut were evaluated. Furthermore, survival following exposure to hydrogen peroxide was assessed. Prunetin ingestion did not attenuate bacterial infection and did not protect flies from oxidative stress. Intestinal mRNA expression levels of adherence and septate junction proteins as well as the stem cell proliferation were not altered by prunetin intake. Prunetin does not improve the resistance of flies against severe injuring, exogenous stress and therefore seems to function in a preventive rather than a therapeutic approach since the health-promoting benefits appear to be exclusively restricted to normal living circumstances. Gram-negative bacterial strains induce AMP-mediated defense in the fruit fly. Prunetin improves life and health span in male fruit flies independent of gut health. Prunetin fails to ameliorate resistance of the flies towards severe injury. AMP expression, stem cell proliferation & oxidative stress resistance are unaffected.
Collapse
Affiliation(s)
- Stefanie Piegholdt
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany
| | - Anika E Wagner
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6-8, D-24118 Kiel, Germany
| |
Collapse
|
74
|
Piegholdt S, Rimbach G, Wagner AE. The phytoestrogen prunetin affects body composition and improves fitness and lifespan in male
Drosophila melanogaster. FASEB J 2015; 30:948-58. [DOI: 10.1096/fj.15-282061] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Stefanie Piegholdt
- Institute of Human Nutrition and Food ScienceUniversity of KielKielGermany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food ScienceUniversity of KielKielGermany
| | - Anika E. Wagner
- Institute of Human Nutrition and Food ScienceUniversity of KielKielGermany
| |
Collapse
|
75
|
|
76
|
Katzenberger RJ, Chtarbanova S, Rimkus SA, Fischer JA, Kaur G, Seppala JM, Swanson LC, Zajac JE, Ganetzky B, Wassarman DA. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction. eLife 2015; 4. [PMID: 25742603 PMCID: PMC4377547 DOI: 10.7554/elife.04790] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/05/2015] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI:http://dx.doi.org/10.7554/eLife.04790.001 Traumatic brain injury (TBI) caused by a violent blow to the head or body and the resultant collision of the brain against the skull is a major cause of disability and death in humans. Primary injury to the brain triggers secondary injuries that further damage the brain and other organs, generating many of the detrimental consequences of TBI. However, despite decades of study, the exact nature of these secondary injuries and their origin are poorly understood. A better understanding of secondary injuries should help to develop novel therapies to improve TBI outcomes in affected individuals. To obtain this information, in 2013 researchers devised a method to inflict TBI in the common fruit fly, Drosophila melanogaster, an organism that is readily amenable to detailed genetic and molecular studies. This investigation demonstrated that flies subjected to TBI display many of the same symptoms observed in humans after a brain injury, including temporary loss of mobility and damage to the brain that becomes worse over time. In addition, many of the flies die within 24 hr after brain injury. Now Katzenberger et al. use this experimental system to investigate the secondary injuries responsible for these deaths. First, genetic variants were identified that confer increased or decreased susceptibility to death after brain injury. Several of the identified genes affect the structural integrity of the intestinal barrier that isolates the contents of the gut—including nutrients and bacteria—from the circulatory system. Katzenberger et al. subsequently found that the breakdown of this barrier after brain injury permits bacteria and glucose to leak out of the intestine. Treating flies with antibiotics did not increase survival, whereas reducing glucose levels in the circulatory system after brain injury did. Thus, Katzenberger et al. conclude that high levels of glucose in the circulatory system, a condition known as hyperglycemia, is a key culprit in death following TBI. Notably, these results parallel findings in humans, where hyperglycemia is highly predictive of death following TBI. Similarly, individuals with diabetes have a significantly increased risk of death after TBI. These results suggest that the secondary injuries leading to death are the same in flies and humans and that further studies in flies are likely to provide additional new information that will help us understand the complex consequences of TBI. Important challenges remain, including understanding precisely how the brain and intestine communicate, how injury to the brain leads to disruption of the intestinal barrier, and why elevated glucose levels increase mortality after brain injury. Answers to these questions could help pave the way to new therapies for TBI. DOI:http://dx.doi.org/10.7554/eLife.04790.002
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | | | - Stacey A Rimkus
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Julie A Fischer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Gulpreet Kaur
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Jocelyn M Seppala
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Laura C Swanson
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Jocelyn E Zajac
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - David A Wassarman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
77
|
|
78
|
|
79
|
Stratoulias V, Heino TI. MANF silencing, immunity induction or autophagy trigger an unusual cell type in metamorphosing Drosophila brain. Cell Mol Life Sci 2014; 72:1989-2004. [PMID: 25511196 PMCID: PMC4412683 DOI: 10.1007/s00018-014-1789-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
Glia are abundant cells in the brain of animals ranging from flies to humans. They perform conserved functions not only in neural development and wiring, but also in brain homeostasis. Here we show that by manipulating gene expression in glia, a previously unidentified cell type appears in the Drosophila brain during metamorphosis. More specifically, this cell type appears in three contexts: (1) after the induction of either immunity, or (2) autophagy, or (3) by silencing of neurotrophic factor DmMANF in glial cells. We call these cells MANF immunoreactive Cells (MiCs). MiCs are migratory based on their shape, appearance in brain areas where no cell bodies exist and the nuclear localization of dSTAT. They are labeled with a unique set of molecular markers including the conserved neurotrophic factor DmMANF and the transcription factor Zfh1. They possess the nuclearly localized protein Relish, which is the hallmark of immune response activation. They also express the conserved engulfment receptor Draper, therefore indicating that they are potentially phagocytic. Surprisingly, they do not express any of the common glial and neuronal markers. In addition, ultrastructural studies show that MiCs are extremely rich in lysosomes. Our findings reveal critical molecular and functional components of an unusual cell type in the Drosophila brain. We suggest that MiCs resemble macrophages/hemocytes and vertebrate microglia based on their appearance in the brain upon genetically challenged conditions and the expression of molecular markers. Interestingly, macrophages/hemocytes or microglia-like cells have not been reported in the fly nervous system before.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5, 00014, Helsinki, Finland,
| | | |
Collapse
|
80
|
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol 2014; 14:796-810. [PMID: 25421701 PMCID: PMC6190593 DOI: 10.1038/nri3763] [Citation(s) in RCA: 563] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Collapse
Affiliation(s)
- Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, University of Massachusetts School of Medicine, Worcester, Massachusetts 01605, USA
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
81
|
Abstract
The triggering of innate immune mechanisms is emerging as a crucial component of major neurodegenerative diseases. Microglia and other cell types in the brain can be activated in response to misfolded proteins or aberrantly localized nucleic acids. This diverts microglia from their physiological and beneficial functions, and leads to their sustained release of pro-inflammatory mediators. In this Review, we discuss how the activation of innate immune signalling pathways - in particular, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome - by aberrant host proteins may be a common step in the development of diverse neurodegenerative disorders. During chronic activation of microglia, the sustained exposure of neurons to pro-inflammatory mediators can cause neuronal dysfunction and contribute to cell death. As chronic neuroinflammation is observed at relatively early stages of neurodegenerative disease, targeting the mechanisms that drive this process may be useful for diagnostic and therapeutic purposes.
Collapse
|
82
|
Zhan L, Xie Q, Tibbetts RS. Opposing roles of p38 and JNK in a Drosophila model of TDP-43 proteinopathy reveal oxidative stress and innate immunity as pathogenic components of neurodegeneration. Hum Mol Genet 2014; 24:757-72. [PMID: 25281658 DOI: 10.1093/hmg/ddu493] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathological aggregation and mutation of the 43-kDa TAR DNA-binding protein (TDP-43) are strongly implicated in the pathogenesis amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 neurotoxicity has been extensively modeled in mice, zebrafish, Caenorhabditis elegans and Drosophila, where selective expression of TDP-43 in motoneurons led to paralysis and premature lethality. Through a genetic screen aimed to identify genetic modifiers of TDP-43, we found that the Drosophila dual leucine kinase Wallenda (Wnd) and its downstream kinases JNK and p38 influenced TDP-43 neurotoxicity. Reducing Wnd gene dosage or overexpressing its antagonist highwire partially rescued TDP-43-associated premature lethality. Downstream of Wnd, the JNK and p38 kinases played opposing roles in TDP-43-associated neurodegeneration. LOF alleles of the p38b gene as well as p38 inhibitors diminished TDP-43-associated premature lethality, whereas p38b GOF caused phenotypic worsening. In stark contrast, disruptive alleles of Basket (Bsk), the Drosophila homologue of JNK, exacerbated longevity shortening, whereas overexpression of Bsk extended lifespan. Among possible mechanisms, we found motoneuron-directed expression of TDP-43 elicited oxidative stress and innate immune gene activation that were exacerbated by p38 GOF and Bsk LOF, respectively. A key pathologic role for innate immunity in TDP-43-associated neurodegeneration was further supported by the finding that genetic suppression of the Toll/Dif and Imd/Relish inflammatory pathways dramatically extended lifespan of TDP-43 transgenic flies. We propose that oxidative stress and neuroinflammation are intrinsic components of TDP-43-associated neurodegeneration and that the balance between cytoprotective JNK and cytotoxic p38 signaling dictates phenotypic outcome to TDP-43 expression in Drosophila.
Collapse
Affiliation(s)
- Lihong Zhan
- Department of Human Oncology, Program in Molecular and Cellular Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Qijing Xie
- Department of Human Oncology, Program in Molecular and Cellular Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Randal S Tibbetts
- Department of Human Oncology, Program in Molecular and Cellular Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
83
|
Cantera R, Barrio R. Do the genes of the innate immune response contribute to neuroprotection in Drosophila? J Innate Immun 2014; 7:3-10. [PMID: 25115549 DOI: 10.1159/000365195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/12/2014] [Indexed: 12/23/2022] Open
Abstract
A profound debate exists on the relationship between neurodegeneration and the innate immune response in humans. Although it is clear that such a relation exists, the causes and consequences of this complex association remain to be determined in detail. Drosophila is being used to investigate the mechanisms involved in neurodegeneration, and all genomic studies on this issue have generated gene catalogues enriched in genes of the innate immune response. We review the data reported in these publications and propose that the abundance of immune genes in studies of neurodegeneration reflects at least two phenomena: (i) some proteins have functions in both immune and nervous systems, and (ii) immune genes might also be of neuroprotective value in Drosophila. This review opens this debate in Drosophila, which could thus be used as an instrumental model to elucidate this question.
Collapse
Affiliation(s)
- Rafael Cantera
- Zoology Department, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
84
|
Myllymäki H, Valanne S, Rämet M. The Drosophila Imd Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2014; 192:3455-62. [DOI: 10.4049/jimmunol.1303309] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
85
|
Abstract
Traumatic brain injury (TBI) is a substantial health issue worldwide, yet the mechanisms responsible for its complex spectrum of pathologies remains largely unknown. To investigate the mechanisms underlying TBI pathologies, we developed a model of TBI in Drosophila melanogaster. The model allows us to take advantage of the wealth of experimental tools available in flies. Closed head TBI was inflicted with a mechanical device that subjects flies to rapid acceleration and deceleration. Similar to humans with TBI, flies with TBI exhibited temporary incapacitation, ataxia, activation of the innate immune response, neurodegeneration, and death. Our data indicate that TBI results in death shortly after a primary injury only if the injury exceeds a certain threshold and that age and genetic background, but not sex, substantially affect this threshold. Furthermore, this threshold also appears to be dependent on the same cellular and molecular mechanisms that control normal longevity. This study demonstrates the potential of flies for providing key insights into human TBI that may ultimately provide unique opportunities for therapeutic intervention.
Collapse
|