51
|
Chen M, Mei Y, Chen X, Chen X, Xiao D, He K, Li Q, Wu M, Wang S, Zhang F, Li F. A chromosome-level assembly of the harlequin ladybird Harmonia axyridis as a genomic resource to study beetle and invasion biology. Mol Ecol Resour 2021; 21:1318-1332. [PMID: 33529495 DOI: 10.1111/1755-0998.13342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
The harlequin ladybird, Harmonia axyridis (Pallas), is a well-known model organism for genetic studies and is also a well-studied natural enemy used for pest control. It became an invasive species after being introduced to North America and Europe as a pest control agent. Though two genome assemblies for this insect have been previously reported, a high-quality genome assembly at the chromosome level is still not available. Here, we obtained a new chromosome-level genome assembly of H. axyridis by combining various sequencing technologies, namely Illumina short reads, PacBio long reads, 10X Genomics and Hi-C. The chromosome-level genome assembly is 423 Mb with a scaffold N50 of 45.92 Mb. Using Hi-C data 1,897 scaffolds were anchored to eight chromosomes. A total of 730,068 repeat sequences were identified, making up 51.2% of the assembled genome. After masking these repeat sequences, we annotated 22,810 protein-encoding genes. The X chromosome and Y-linked scaffolds were also identified by resequencing male and female genomes and calculating the male to female coverage ratios. Two gene families associated with environmental adaptation, odorant receptor and cytochrome P450, were analysed and showed no obvious expansion in H. axyridis. We successfully constructed a putative biosynthesis pathway of harmonine, a defence compound in the haemolymph of H. axyridis, which is a key factor for H. axyridis strong immunity. The chromosome-level genome assembly of H. axyridis is a helpful resource for studies of beetle biology and invasive biology.
Collapse
Affiliation(s)
- Mengyao Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Yang Mei
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Xu Chen
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xi Chen
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Qiang Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Mengmeng Wu
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
52
|
Rezvykh AP, Funikov SY, Protsenko LA, Kulikova DA, Zelentsova ES, Chuvakova LN, Blumenstiel JP, Evgen’ev MB. Evolutionary Dynamics of the Pericentromeric Heterochromatin in Drosophila virilis and Related Species. Genes (Basel) 2021; 12:175. [PMID: 33513919 PMCID: PMC7911463 DOI: 10.3390/genes12020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
Pericentromeric heterochromatin in Drosophila generally consists of repetitive DNA, forming the environment associated with gene silencing. Despite the expanding knowledge of the impact of transposable elements (TEs) on the host genome, little is known about the evolution of pericentromeric heterochromatin, its structural composition, and age. During the evolution of the Drosophilidae, hundreds of genes have become embedded within pericentromeric regions yet retained activity. We investigated a pericentromeric heterochromatin fragment found in D. virilis and related species, describing the evolution of genes in this region and the age of TE invasion. Regardless of the heterochromatic environment, the amino acid composition of the genes is under purifying selection. However, the selective pressure affects parts of genes in varying degrees, resulting in expansion of gene introns due to TEs invasion. According to the divergence of TEs, the pericentromeric heterochromatin of the species of virilis group began to form more than 20 million years ago by invasions of retroelements, miniature inverted repeat transposable elements (MITEs), and Helitrons. Importantly, invasions into the heterochromatin continue to occur by TEs that fall under the scope of piRNA silencing. Thus, the pericentromeric heterochromatin, in spite of its ability to induce silencing, has the means for being dynamic, incorporating the regions of active transcription.
Collapse
Affiliation(s)
- Alexander P. Rezvykh
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
- Moscow Institute of Physics and Technology, 117303 Dolgoprudny, Russia
| | - Sergei Yu. Funikov
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Lyudmila A. Protsenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
- Moscow Institute of Physics and Technology, 117303 Dolgoprudny, Russia
| | - Dina A. Kulikova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Lyubov N. Chuvakova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| | - Justin P. Blumenstiel
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia; (A.P.R.); (S.Y.F.); (L.A.P.); (E.S.Z.); (L.N.C.)
| |
Collapse
|
53
|
Adashev VE, Kotov AA, Bazylev SS, Shatskikh AS, Aravin AA, Olenina LV. Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster. Front Genet 2021; 11:610665. [PMID: 33584811 PMCID: PMC7874207 DOI: 10.3389/fgene.2020.610665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory β-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species.
Collapse
Affiliation(s)
- Vladimir E. Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexei A. Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Sergei S. Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Aleksei S. Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies at the Organismal Level, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ludmila V. Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| |
Collapse
|
54
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
55
|
Saint-Leandre B, Christopher C, Levine MT. Adaptive evolution of an essential telomere protein restricts telomeric retrotransposons. eLife 2020; 9:e60987. [PMID: 33350936 PMCID: PMC7755394 DOI: 10.7554/elife.60987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Essential, conserved cellular processes depend not only on essential, strictly conserved proteins but also on essential proteins that evolve rapidly. To probe this poorly understood paradox, we exploited the rapidly evolving Drosophila telomere-binding protein, cav/HOAP, which protects chromosomes from lethal end-to-end fusions. We replaced the D. melanogaster HOAP with a highly diverged version from its close relative, D. yakuba. The D. yakuba HOAP ('HOAP[yak]') localizes to D. melanogaster telomeres and protects D. melanogaster chromosomes from fusions. However, HOAP[yak] fails to rescue a previously uncharacterized HOAP function: silencing of the specialized telomeric retrotransposons that, instead of telomerase, maintain chromosome length in Drosophila. Whole genome sequencing and cytogenetics of experimentally evolved populations revealed that HOAP[yak] triggers telomeric retrotransposon proliferation, resulting in aberrantly long telomeres. This evolution-generated, separation-of-function allele resolves the paradoxical observation that a fast-evolving essential gene directs an essential, strictly conserved function: telomeric retrotransposon containment, not end-protection, requires evolutionary innovation at HOAP.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Courtney Christopher
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
56
|
Abstract
BACKGROUND The Oriental fruit fly, Bactrocera dorsalis, is a highly polyphagous invasive species with a high reproductive potential. In many tropical and subtropical parts of the world it ranks as one of the major pests of fruits and vegetables. Due to its economic importance, genetic, cytogenetic, genomic and biotechnological approaches have been applied to understand its biology and to implement the Sterile Insect Technique, currently a part of area-wide control programmes against this fly. Its chromosome complement includes five pairs of autosomes and the sex chromosomes. The X and Y sex chromosomes are heteromorphic and the highly heterochromatic and degenerate Y harbours the male factor BdMoY. The characterization of the Y chromosome in this fly apart from elucidating its role as primary sex determination system, it is also of crucial importance to understand its role in male biology. The repetitive nature of the Y chromosome makes it challenging to sequence and characterise. RESULTS Using Representational Difference Analysis, fluorescent in situ hybridisation on mitotic chromosomes and in silico genome resources, we show that the B. dorsalis Y chromosome harbours transcribed sequences of gyf, (typo-gyf) a homologue of the Drosophila melanogaster Gigyf gene, and of a non-LTR retrotransposon R1. Similar sequences are also transcribed on the X chromosome. Paralogues of the Gigyf gene are also present on the Y and X chromosomes of the related species B. tryoni. Another identified Y-specific repetitive sequence linked to BdMoY appears to be specific to B. dorsalis. CONCLUSIONS Our random scan of the Y chromosome provides a broad picture of its general composition and represents a starting point for further applicative and evolutionary studies. The identified repetitive sequences can provide a useful Y-marking system for molecular karyotyping of single embryos. Having a robust diagnostic marker associated with BdMoY will facilitate studies on how BdMoY regulates the male sex determination cascade during the embryonic sex-determination window. The Y chromosome, despite its high degeneracy and heterochromatic nature, harbours transcribed sequences of typo-gyf that may maintain their important function in post-transcriptional mRNA regulation. That transcribed paralogous copies of Gigyf are present also on the X and that this genomic distribution is maintained also in B. tryoni raises questions on the evolution of sex chromosomes in Bactrocera and other tephritids.
Collapse
|
57
|
Liu J, Ali M, Zhou Q. Establishment and evolution of heterochromatin. Ann N Y Acad Sci 2020; 1476:59-77. [PMID: 32017156 PMCID: PMC7586837 DOI: 10.1111/nyas.14303] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The eukaryotic genome is packaged into transcriptionally active euchromatin and silent heterochromatin, with most studies focused on the former encompassing the majority of protein-coding genes. The recent development of various sequencing techniques has refined this classic dichromatic partition and has better illuminated the composition, establishment, and evolution of this genomic and epigenomic "dark matter" in the context of topologically associated domains and phase-separated droplets. Heterochromatin includes genomic regions that can be densely stained by chemical dyes, which have been shown to be enriched for repetitive elements and epigenetic marks, including H3K9me2/3 and H3K27me3. Heterochromatin is usually replicated late, concentrated at the nuclear periphery or around nucleoli, and usually lacks highly expressed genes; and now it is considered to be as neither genetically inert nor developmentally static. Heterochromatin guards genome integrity against transposon activities and exerts important regulatory functions by targeting beyond its contained genes. Both its nucleotide sequences and regulatory proteins exhibit rapid coevolution between species. In addition, there are dynamic transitions between euchromatin and heterochromatin during developmental and evolutionary processes. We summarize here the ever-changing characteristics of heterochromatin and propose models and principles for the evolutionary transitions of heterochromatin that have been mainly learned from studies of Drosophila and yeast. Finally, we highlight the role of sex chromosomes in studying heterochromatin evolution.
Collapse
Affiliation(s)
- Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Mujahid Ali
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Molecular Evolution and DevelopmentUniversity of ViennaViennaAustria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
58
|
Credendino SC, Neumayer C, Cantone I. Genetics and Epigenetics of Sex Bias: Insights from Human Cancer and Autoimmunity. Trends Genet 2020; 36:650-663. [PMID: 32736810 DOI: 10.1016/j.tig.2020.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
High-throughput sequencing and genome-wide association studies have revealed a sex bias in human diseases. The underlying molecular mechanisms remain, however, unknown. Here, we cover recent advances in cancer and autoimmunity focusing on intrinsic genetic and epigenetic differences underlying sex biases in human disease. These studies reveal a central role of genome regulatory mechanisms including genome repair, chromosome folding, and epigenetic regulation in dictating the sex bias. These highlight the importance of considering sex as a variable in both basic science and clinical investigations. Understanding the molecular mechanisms underlying sex bias in human diseases will be instrumental in making a first step forwards into the era of personalized medicine.
Collapse
Affiliation(s)
- Sara Carmela Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Christoph Neumayer
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Irene Cantone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
59
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
60
|
Kolesnikova TD, Kolodyazhnaya AV, Pokholkova GV, Schubert V, Dovgan VV, Romanenko SA, Prokopov DY, Zhimulev IF. Effects of Mutations in the Drosophila melanogaster Rif1 Gene on the Replication and Underreplication of Pericentromeric Heterochromatin in Salivary Gland Polytene Chromosomes. Cells 2020; 9:cells9061501. [PMID: 32575592 PMCID: PMC7349278 DOI: 10.3390/cells9061501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
In Drosophila salivary gland polytene chromosomes, a substantial portion of heterochromatin is underreplicated. The combination of mutations SuURES and Su(var)3-906 results in the polytenization of a substantial fraction of unique and moderately repeated sequences but has almost no effect on satellite DNA replication. The Rap1 interacting factor 1 (Rif) protein is a conserved regulator of replication timing, and in Drosophila, it affects underreplication in polytene chromosomes. We compared the morphology of pericentromeric regions and labeling patterns of in situ hybridization of heterochromatin-specific DNA probes between wild-type salivary gland polytene chromosomes and the chromosomes of Rif1 mutants and SuUR Su(var)3-906 double mutants. We show that, despite general similarities, heterochromatin zones exist that are polytenized only in the Rif1 mutants, and that there are zones that are under specific control of Su(var)3-9. In the Rif1 mutants, we found additional polytenization of the largest blocks of satellite DNA (in particular, satellite 1.688 of chromosome X and simple satellites in chromosomes X and 4) as well as partial polytenization of chromosome Y. Data on pulsed incorporation of 5-ethynyl-2′-deoxyuridine (EdU) into polytene chromosomes indicated that in the Rif1 mutants, just as in the wild type, most of the heterochromatin becomes replicated during the late S phase. Nevertheless, a significantly increased number of heterochromatin replicons was noted. These results suggest that Rif1 regulates the activation probability of heterochromatic origins in the satellite DNA region.
Collapse
Affiliation(s)
- Tatyana D. Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| | - Alexandra V. Kolodyazhnaya
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Galina V. Pokholkova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany;
| | - Viktoria V. Dovgan
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.V.K.); (G.V.P.); (V.V.D.); (S.A.R.); (D.Y.P.); (I.F.Z.)
- Laboratory of Structural, Functional and Comparative Genomics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
61
|
Shatskikh AS, Kotov AA, Adashev VE, Bazylev SS, Olenina LV. Functional Significance of Satellite DNAs: Insights From Drosophila. Front Cell Dev Biol 2020; 8:312. [PMID: 32432114 PMCID: PMC7214746 DOI: 10.3389/fcell.2020.00312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional “junk,” but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome – centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.
Collapse
Affiliation(s)
- Aleksei S Shatskikh
- Laboratory of Analysis of Clinical and Model Tumor Pathologies on the Organismal Level, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alexei A Kotov
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Adashev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergei S Bazylev
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V Olenina
- Laboratory of Biochemical Genetics of Animals, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
62
|
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A 2020; 117:9451-9457. [PMID: 32300014 PMCID: PMC7196820 DOI: 10.1073/pnas.1921046117] [Citation(s) in RCA: 1717] [Impact Index Per Article: 343.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The accelerating pace of genome sequencing throughout the tree of life is driving the need for improved unsupervised annotation of genome components such as transposable elements (TEs). Because the types and sequences of TEs are highly variable across species, automated TE discovery and annotation are challenging and time-consuming tasks. A critical first step is the de novo identification and accurate compilation of sequence models representing all of the unique TE families dispersed in the genome. Here we introduce RepeatModeler2, a pipeline that greatly facilitates this process. This program brings substantial improvements over the original version of RepeatModeler, one of the most widely used tools for TE discovery. In particular, this version incorporates a module for structural discovery of complete long terminal repeat (LTR) retroelements, which are widespread in eukaryotic genomes but recalcitrant to automated identification because of their size and sequence complexity. We benchmarked RepeatModeler2 on three model species with diverse TE landscapes and high-quality, manually curated TE libraries: Drosophila melanogaster (fruit fly), Danio rerio (zebrafish), and Oryza sativa (rice). In these three species, RepeatModeler2 identified approximately 3 times more consensus sequences matching with >95% sequence identity and sequence coverage to the manually curated sequences than the original RepeatModeler. As expected, the greatest improvement is for LTR retroelements. Thus, RepeatModeler2 represents a valuable addition to the genome annotation toolkit that will enhance the identification and study of TEs in eukaryotic genome sequences. RepeatModeler2 is available as source code or a containerized package under an open license (https://github.com/Dfam-consortium/RepeatModeler, http://www.repeatmasker.org/RepeatModeler/).
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | | | - Clément Goubert
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA 98109
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853;
| | - Arian F Smit
- Institute for Systems Biology, Seattle, WA 98109
| |
Collapse
|
63
|
The Y chromosome may contribute to sex-specific ageing in Drosophila. Nat Ecol Evol 2020; 4:853-862. [PMID: 32313175 PMCID: PMC7274899 DOI: 10.1038/s41559-020-1179-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/16/2020] [Indexed: 12/03/2022]
Abstract
Heterochromatin suppresses repetitive DNA, and a loss of heterochromatin has been observed in aged cells of several species, including humans and Drosophila. Males often contain substantially more heterochromatic DNA than females, due to the presence of a large, repeat-rich Y chromosome, and male flies generally have shorter average life spans than females. Here we show that repetitive DNA becomes de-repressed more rapidly in old male flies relative to females, and repeats on the Y chromosome are disproportionally mis-expressed during aging. This is associated with a loss of heterochromatin at repetitive elements during aging in male flies, and a general loss of repressive chromatin in aged males away from pericentromeric regions and the Y. By generating flies with different sex chromosome karyotypes (XXY females; X0 and XYY males), we show that repeat de-repression and average lifespan is correlated with the number of Y chromosomes. This suggests that sex-specific chromatin differences may contribute to sex-specific aging in flies.
Collapse
|
64
|
Bayega A, Djambazian H, Tsoumani KT, Gregoriou ME, Sagri E, Drosopoulou E, Mavragani-Tsipidou P, Giorda K, Tsiamis G, Bourtzis K, Oikonomopoulos S, Dewar K, Church DM, Papanicolaou A, Mathiopoulos KD, Ragoussis J. De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genomics 2020; 21:259. [PMID: 32228451 PMCID: PMC7106766 DOI: 10.1186/s12864-020-6672-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly's biology and proposing alternative control methods to pesticide use. RESULTS Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. CONCLUSIONS The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome's organization, function and evolution and is poised to provide avenues for sterile insect technique approaches.
Collapse
Affiliation(s)
- Anthony Bayega
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Haig Djambazian
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Konstantina T. Tsoumani
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Efthimia Sagri
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Eleni Drosopoulou
- Department of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kristina Giorda
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, Iowa, 52241 USA
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Spyridon Oikonomopoulos
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| | - Deanna M. Church
- Inscripta, Inc., 5500 Central Avenue #220, Boulder, CO 80301 USA
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753 Australia
| | - Kostas D. Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Jiannis Ragoussis
- McGill University and Genome Quebec Innovation Centre, Department of Human Genetics, McGill University, Montreal, Canada
| |
Collapse
|
65
|
Sharma A, Kinney NA, Timoshevskiy VA, Sharakhova MV, Sharakhov IV. Structural Variation of the X Chromosome Heterochromatin in the Anopheles gambiae Complex. Genes (Basel) 2020; 11:E327. [PMID: 32204543 PMCID: PMC7140835 DOI: 10.3390/genes11030327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
Heterochromatin is identified as a potential factor driving diversification of species. To understand the magnitude of heterochromatin variation within the Anopheles gambiae complex of malaria mosquitoes, we analyzed metaphase chromosomes in An. arabiensis, An. coluzzii, An. gambiae, An. merus, and An. quadriannulatus. Using fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA), a highly repetitive fraction of DNA, and heterochromatic Bacterial Artificial Chromosome (BAC) clones, we established the correspondence of pericentric heterochromatin between the metaphase and polytene X chromosomes of An. gambiae. We then developed chromosome idiograms and demonstrated that the X chromosomes exhibit qualitative differences in their pattern of heterochromatic bands and position of satellite DNA (satDNA) repeats among the sibling species with postzygotic isolation, An. arabiensis, An. merus, An. quadriannulatus, and An. coluzzii or An. gambiae. The identified differences in the size and structure of the X chromosome heterochromatin point to a possible role of repetitive DNA in speciation of mosquitoes. We found that An. coluzzii and An. gambiae, incipient species with prezygotic isolation, share variations in the relative positions of the satDNA repeats and the proximal heterochromatin band on the X chromosomes. This previously unknown genetic polymorphism in malaria mosquitoes may be caused by a differential amplification of DNA repeats or an inversion in the sex chromosome heterochromatin.
Collapse
Affiliation(s)
- Atashi Sharma
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (A.S.); (V.A.T.); (M.V.S.)
| | - Nicholas A. Kinney
- Genomics Bioinformatics and Computational Biology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA;
| | - Vladimir A. Timoshevskiy
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (A.S.); (V.A.T.); (M.V.S.)
| | - Maria V. Sharakhova
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (A.S.); (V.A.T.); (M.V.S.)
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 634050 Tomsk, Russia
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA; (A.S.); (V.A.T.); (M.V.S.)
- Genomics Bioinformatics and Computational Biology, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA;
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
66
|
A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genet 2020; 16:e1008647. [PMID: 32168334 PMCID: PMC7108745 DOI: 10.1371/journal.pgen.1008647] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/31/2020] [Accepted: 02/03/2020] [Indexed: 01/24/2023] Open
Abstract
Synthetic sex distorters have recently been developed in the malaria mosquito, relying on endonucleases that target the X-chromosome during spermatogenesis. Although inspired by naturally-occurring traits, it has remained unclear how they function and, given their potential for genetic control, how portable this strategy is across species. We established Drosophila models for two distinct mechanisms for CRISPR/Cas9 sex-ratio distortion—“X-shredding” and “X-poisoning”—and dissected their target-site requirements and repair dynamics. X-shredding resulted in sex distortion when Cas9 endonuclease activity occurred during the meiotic stages of spermatogenesis but not when Cas9 was expressed from the stem cell stages onwards. Our results suggest that X-shredding is counteracted by the NHEJ DNA repair pathway and can operate on a single repeat cluster of non-essential sequences, although the targeting of a number of such repeats had no effect on the sex ratio. X-poisoning by contrast, i.e. targeting putative haplolethal genes on the X chromosome, induced a high bias towards males (>92%) when we directed Cas9 cleavage to the X-linked ribosomal target gene RpS6. In the case of X-poisoning sex distortion was coupled to a loss in reproductive output, although a dominant-negative effect appeared to drive the mechanism of female lethality. These model systems will guide the study and the application of sex distorters to medically or agriculturally important insect target species. Harmful insect populations can be eliminated for a lack of females if they are made to produce mostly male offspring. There are genes that occur naturally that make males produce mostly sons and, although we don’t know exactly how they work, this appears to coincide with damage to the X-chromosome during the production of sperm. Recently, we showed in a mosquito species that such sex-biasing genes could also be constructed artificially from first principles. To better understand if this works in other species too, we designed and built male-biasing genes of two types in the fruit fly and determined what is needed to for a shift towards males. We show how different ways of cutting the X-chromosome DNA at different times with CRISPR, results in distinct outcomes and started to ask what cellular processes are involved in this. These models will help us to design such genes for the control of insect species that transmit disease or threaten crops.
Collapse
|
67
|
Dissecting Fertility Functions of Drosophila Y Chromosome Genes with CRISPR. Genetics 2020; 214:977-990. [PMID: 32098759 DOI: 10.1534/genetics.120.302672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022] Open
Abstract
Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating "junk." Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb Y chromosome of Drosophila melanoga st er contains only 16 known protein-coding genes, and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile Y-linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three Y-linked genes. Two genes, PRY and FDY, had no previously identified functions. We found that PRY mutant males are subfertile, but FDY mutant males had no detectable fertility defects. FDY, the newest known gene on the Y chromosome, may have fertility effects that are conditional or too subtle to detect. The third gene, CCY, had been predicted but never formally shown to be required for male fertility. CRISPR targeting and RNA interference of CCY caused male sterility. Surprisingly, however, our CCY mutants were sterile even in the presence of an extra wild-type Y chromosome, suggesting that perturbation of the Y chromosome can lead to dominant sterility. Our approach provides an important step toward understanding the complex functions of the Y chromosome and parsing which functions are accomplished by genes vs. repeat elements.
Collapse
|
68
|
Choo A, Nguyen TNM, Ward CM, Chen IY, Sved J, Shearman D, Gilchrist AS, Crisp P, Baxter SW. Identification of Y-chromosome scaffolds of the Queensland fruit fly reveals a duplicated gyf gene paralogue common to many Bactrocera pest species. INSECT MOLECULAR BIOLOGY 2019; 28:873-886. [PMID: 31150140 DOI: 10.1111/imb.12602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Bactrocera tryoni (Queensland fruit fly) are polyphagous horticultural pests of eastern Australia. Heterogametic males contain a sex-determining Y-chromosome thought to be gene poor and repetitive. Here, we report 39 Y-chromosome scaffolds (~700 kb) from B. tryoni identified using genotype-by-sequencing data and whole-genome resequencing. Male diagnostic PCR assays validated eight Y-scaffolds, and one (Btry4096) contained a novel gene with five exons that encode a predicted 575 amino acid protein. The Y-gene, referred to as typo-gyf, is a truncated Y-chromosome paralogue of X-chromosome gene gyf (1773 aa). The Y-chromosome contained ~41 copies of typo-gyf, and expression occurred in male flies and embryos. Analysis of 13 tephritid transcriptomes confirmed typo-gyf expression in six additional Bactrocera species, including Bactrocera latifrons, Bactrocera dorsalis and Bactrocera zonata. Molecular dating estimated typo-gyf evolved within the past 8.02 million years (95% highest posterior density 10.56-5.52 million years), after the split with Bactrocera oleae. Phylogenetic analysis also highlighted complex evolutionary histories among several Bactrocera species, as discordant nuclear (116 genes) and mitochondrial (13 genes) topologies were observed. B. tryoni Y-sequences may provide useful sites for future transgene insertions, and typo-gyf could act as a Y-chromosome diagnostic marker for many Bactrocera species, although its function is unknown.
Collapse
Affiliation(s)
- Amanda Choo
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thu N M Nguyen
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher M Ward
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Isabel Y Chen
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - John Sved
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah Shearman
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Anthony S Gilchrist
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter Crisp
- South Australian Research and Development Institute, Adelaide, South Australia, Australia
| | - Simon W Baxter
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
69
|
Ancestral male recombination in Drosophila albomicans produced geographically restricted neo-Y chromosome haplotypes varying in age and onset of decay. PLoS Genet 2019; 15:e1008502. [PMID: 31738748 PMCID: PMC6897423 DOI: 10.1371/journal.pgen.1008502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/06/2019] [Accepted: 11/01/2019] [Indexed: 12/30/2022] Open
Abstract
Male Drosophila typically have achiasmatic meiosis, and fusions between autosomes and the Y chromosome have repeatedly created non-recombining neo-Y chromosomes that degenerate. Intriguingly, Drosophila nasuta males recombine, but their close relative D. albomicans reverted back to achiasmy after evolving neo-sex chromosomes. Here we use genome-wide polymorphism data to reconstruct the complex evolutionary history of neo-sex chromosomes in D. albomicans and examine the effect of recombination and its cessation on the initiation of neo-Y decay. Population and phylogenomic analyses reveal three distinct neo-Y types that are geographically restricted. Due to ancestral recombination with the neo-X, overall nucleotide diversity on the neo-Y is similar to the neo-X but severely reduced within neo-Y types. Consistently, the neo-Y chromosomes fail to form a monophyletic clade in sliding window trees outside of the region proximal to the fusion. Based on tree topology changes, we inferred the recombination breakpoints that produced haplotypes specific to each neo-Y type. We show that recombination became suppressed at different time points for the different neo-Y haplotypes. Haplotype age correlates with onset of neo-Y decay, and older neo-Y haplotypes show more fixed gene disruption via frameshift indels and down-regulation of neo-Y alleles. Genes are downregulated independently on the different neo-Ys, but are depleted of testes-expressed genes across all haplotypes. This indicates that genes important for male function are initially shielded from degeneration. Our results offer a time course of the early progression of Y chromosome evolution, showing how the suppression of recombination, through the reversal to achiasmy in D. albomicans males, initiates the process of degeneration.
Collapse
|
70
|
Unpredictable Effects of the Genetic Background of Transgenic Lines in Physiological Quantitative Traits. G3-GENES GENOMES GENETICS 2019; 9:3877-3890. [PMID: 31540975 PMCID: PMC6829147 DOI: 10.1534/g3.119.400715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Physiology, fitness and disease phenotypes are complex traits exhibiting continuous variation in natural populations. To understand complex trait gene functions transgenic lines of undefined genetic background are often combined to assess quantitative phenotypes ignoring the impact of genetic polymorphisms. Here, we used inbred wild-type strains of the Drosophila Genetics Reference Panel to assess the phenotypic variation of six physiological and fitness traits, namely, female fecundity, survival and intestinal mitosis upon oral infection, defecation rate and fecal pH upon oral infection, and terminal tracheal cell branching in hypoxia. We found continuous variation in the approximately 150 strains tested for each trait, with extreme values differing by more than four standard deviations for all traits. In addition, we assessed the effects of commonly used Drosophila UAS-RNAi transgenic strains and their backcrossed isogenized counterparts, in the same traits plus baseline intestinal mitosis and tracheal branching in normoxia, in heterozygous conditions, when only half of the genetic background was different among strains. We tested 20 non-isogenic strains (10 KK and 10 GD) from the Vienna Drosophila Resource Center and their isogenized counterparts without Gal4 induction. Survival upon infection and female fecundity exhibited differences in 50% and 40% of the tested isogenic vs. non-isogenic pairs, respectively, whereas all other traits were affected in only 10–25% of the cases. When 11 isogenic and their corresponding non-isogenic UAS-RNAi lines were expressed ubiquitously with Gal4, 4 isogenic vs. non-isogenic pairs exhibited differences in survival to infection. Furthermore, when a single UAS-RNAi line was crossed with the same Gal4 transgene inserted in different genetic backgrounds, the quantitative variations observed were unpredictable on the basis of pure line performance. Thus, irrespective of the trait of interest, the genetic background of commonly used transgenic strains needs to be considered carefully during experimentation.
Collapse
|
71
|
Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits. Nat Commun 2019; 10:4872. [PMID: 31653862 PMCID: PMC6814777 DOI: 10.1038/s41467-019-12884-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect.
Collapse
|
72
|
Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, Scheffler B, Hackett K, Korlach J, Geib SM. A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system. Gigascience 2019; 8:giz122. [PMID: 31609423 PMCID: PMC6791401 DOI: 10.1093/gigascience/giz122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. RESULTS The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. CONCLUSIONS We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.
Collapse
Affiliation(s)
- Sarah B Kingan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Julie Urban
- Department of Entomology, 501 ASI Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Primo Baybayan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Anna K Childers
- USDA-ARS, Bee Research Laboratory, 10300 Baltimore Avenue, Building 306, Room 315, BARC-East, Beltsville, MD 20705, USA
| | - Brad Coates
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 2333 Genetics Laboratory, 819 Wallace Road, Ames, IA 50011, USA
| | - Brian Scheffler
- USDA-ARS, Genomics and Bioinformatics Research, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Kevin Hackett
- USDA-ARS, Office of National Programs, George Washington Carver Center, 5601 Sunnyside Avenue, Beltsville, MD 20705, USA
| | - Jonas Korlach
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Scott M Geib
- USDA-ARS, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI 96720, USA
| |
Collapse
|
73
|
Bracewell R, Chatla K, Nalley MJ, Bachtrog D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. eLife 2019; 8:e49002. [PMID: 31524597 PMCID: PMC6795482 DOI: 10.7554/elife.49002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
Centromeres are the basic unit for chromosome inheritance, but their evolutionary dynamics is poorly understood. We generate high-quality reference genomes for multiple Drosophila obscura group species to reconstruct karyotype evolution. All chromosomes in this lineage were ancestrally telocentric and the creation of metacentric chromosomes in some species was driven by de novo seeding of new centromeres at ancestrally gene-rich regions, independently of chromosomal rearrangements. The emergence of centromeres resulted in a drastic size increase due to repeat accumulation, and dozens of genes previously located in euchromatin are now embedded in pericentromeric heterochromatin. Metacentric chromosomes secondarily became telocentric in the pseudoobscura subgroup through centromere repositioning and a pericentric inversion. The former (peri)centric sequences left behind shrunk dramatically in size after their inactivation, yet contain remnants of their evolutionary past, including increased repeat-content and heterochromatic environment. Centromere movements are accompanied by rapid turnover of the major satellite DNA detected in (peri)centromeric regions.
Collapse
Affiliation(s)
- Ryan Bracewell
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Kamalakar Chatla
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Matthew J Nalley
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Doris Bachtrog
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
74
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
75
|
Saint-Leandre B, Nguyen SC, Levine MT. Diversification and collapse of a telomere elongation mechanism. Genome Res 2019; 29:920-931. [PMID: 31138619 PMCID: PMC6581046 DOI: 10.1101/gr.245001.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
In most eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert exclusively at telomeres. This exchange of goods between host and mobile element-wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation-has been called a "genomic symbiosis." However, these telomere-specialized, jockey family retrotransposons may actually evolve to "selfishly" overreplicate in the genomes that they ostensibly serve. Under this model, we expect rapid diversification of telomere-specialized retrotransposon lineages and, possibly, the breakdown of this ostensibly symbiotic relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-Myr-old melanogaster species group, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this retrotransposon lineage diversity. In Drosophila biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Telomeric retrotransposon diversification and disappearance suggest that persistently "selfish" machinery shapes telomere elongation across Drosophila rather than completely domesticated, symbiotic mobile elements.
Collapse
Affiliation(s)
- Bastien Saint-Leandre
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mia T Levine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
76
|
Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, Smith CL, Edgley ML, Rougvie AE, Fire AZ, Morishita S, Schwarz EM. Recompleting the Caenorhabditis elegans genome. Genome Res 2019; 29:1009-1022. [PMID: 31123080 PMCID: PMC6581061 DOI: 10.1101/gr.244830.118] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/11/2019] [Indexed: 01/14/2023]
Abstract
Caenorhabditis elegans was the first multicellular eukaryotic genome sequenced to apparent completion. Although this assembly employed a standard C. elegans strain (N2), it used sequence data from several laboratories, with DNA propagated in bacteria and yeast. Thus, the N2 assembly has many differences from any C. elegans available today. To provide a more accurate C. elegans genome, we performed long-read assembly of VC2010, a modern strain derived from N2. Our VC2010 assembly has 99.98% identity to N2 but with an additional 1.8 Mb including tandem repeat expansions and genome duplications. For 116 structural discrepancies between N2 and VC2010, 97 structures matching VC2010 (84%) were also found in two outgroup strains, implying deficiencies in N2. Over 98% of N2 genes encoded unchanged products in VC2010; moreover, we predicted ≥53 new genes in VC2010. The recompleted genome of C. elegans should be a valuable resource for genetics, genomics, and systems biology.
Collapse
Affiliation(s)
- Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Kazuki Ichikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Massa J Shoura
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Karen L Artiles
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Idan Gabdank
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Lamia Wahba
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Cheryl L Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Mark L Edgley
- Department of Zoology and Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ann E Rougvie
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55454, USA
| | - Andrew Z Fire
- Department of Pathology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8583, Japan
| | - Erich M Schwarz
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
77
|
Genetic and Molecular Analysis of Essential Genes in Centromeric Heterochromatin of the Left Arm of Chromosome 3 in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:1581-1595. [PMID: 30948422 PMCID: PMC6505167 DOI: 10.1534/g3.119.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A large portion of the Drosophila melanogaster genome is contained within heterochromatic regions of chromosomes, predominantly at centromeres and telomeres. The remaining euchromatic portions of the genome have been extensively characterized with respect to gene organization, function and regulation. However, it has been difficult to derive similar data for sequences within centromeric (centric) heterochromatin because these regions have not been as amenable to analysis by standard genetic and molecular tools. Here we present an updated genetic and molecular analysis of chromosome 3L centric heterochromatin (3L Het). We have generated and characterized a number of new, overlapping deficiencies (Dfs) which remove regions of 3L Het. These Dfs were critically important reagents in our subsequent genetic analysis for the isolation and characterization of lethal point mutations in the region. The assignment of these mutations to genetically-defined essential loci was followed by matching them to gene models derived from genome sequence data: this was done by using molecular mapping plus sequence analysis of mutant alleles, thereby aligning genetic and physical maps of the region. We also identified putative essential gene sequences in 3L Het by using RNA interference to target candidate gene sequences. We report that at least 25, or just under 2/3 of loci in 3L Het, are essential for viability and/or fertility. This work contributes to the functional annotation of centric heterochromatin in Drosophila, and the genetic and molecular tools generated should help to provide important insights into the organization and functions of gene sequences in 3L Het.
Collapse
|
78
|
Chang CH, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, Chen CC, Erceg J, Beliveau BJ, Wu CT, Larracuente AM, Mellone BG. Islands of retroelements are major components of Drosophila centromeres. PLoS Biol 2019; 17:e3000241. [PMID: 31086362 PMCID: PMC6516634 DOI: 10.1371/journal.pbio.3000241] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Centromeres are essential chromosomal regions that mediate kinetochore assembly and spindle attachments during cell division. Despite their functional conservation, centromeres are among the most rapidly evolving genomic regions and can shape karyotype evolution and speciation across taxa. Although significant progress has been made in identifying centromere-associated proteins, the highly repetitive centromeres of metazoans have been refractory to DNA sequencing and assembly, leaving large gaps in our understanding of their functional organization and evolution. Here, we identify the sequence composition and organization of the centromeres of Drosophila melanogaster by combining long-read sequencing, chromatin immunoprecipitation for the centromeric histone CENP-A, and high-resolution chromatin fiber imaging. Contrary to previous models that heralded satellite repeats as the major functional components, we demonstrate that functional centromeres form on islands of complex DNA sequences enriched in retroelements that are flanked by large arrays of satellite repeats. Each centromere displays distinct size and arrangement of its DNA elements but is similar in composition overall. We discover that a specific retroelement, G2/Jockey-3, is the most highly enriched sequence in CENP-A chromatin and is the only element shared among all centromeres. G2/Jockey-3 is also associated with CENP-A in the sister species D. simulans, revealing an unexpected conservation despite the reported turnover of centromeric satellite DNA. Our work reveals the DNA sequence identity of the active centromeres of a premier model organism and implicates retroelements as conserved features of centromeric DNA.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Ankita Chavan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jason Palladino
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiaolu Wei
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nuno M. C. Martins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryce Santinello
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Chin-Chi Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian J. Beliveau
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genome Sciences, University of Washington Seattle, Seattle, Washington, United States of America
| | - Chao-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda M. Larracuente
- Department of Biology, University of Rochester; Rochester, New York, United States of America
| | - Barbara G. Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut Storrs, Connecticut, United States of America
| |
Collapse
|