51
|
Wang W, Wang X, Liu J, Lin C, Liu J, Wang J. The Integration of Gold Nanoparticles with Polymerase Chain Reaction for Constructing Colorimetric Sensing Platforms for Detection of Health-Related DNA and Proteins. BIOSENSORS 2022; 12:bios12060421. [PMID: 35735568 PMCID: PMC9220820 DOI: 10.3390/bios12060421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/02/2023]
Abstract
Polymerase chain reaction (PCR) is the standard tool in genetic information analysis, and the desirable detection merits of PCR have been extended to disease-related protein analysis. Recently, the combination of PCR and gold nanoparticles (AuNPs) to construct colorimetric sensing platforms has received considerable attention due to its high sensitivity, visual detection, capability for on-site detection, and low cost. However, it lacks a related review to summarize and discuss the advances in this area. This perspective gives an overview of established methods based on the combination of PCR and AuNPs for the visual detection of health-related DNA and proteins. Moreover, this work also addresses the future trends and perspectives for PCR-AuNP hybrid biosensors.
Collapse
Affiliation(s)
- Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Chuankai Lin
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jianhua Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
- Correspondence: ; Tel.: +86-13268283561
| |
Collapse
|
52
|
An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J Clin Med 2022; 11:jcm11113204. [PMID: 35683591 PMCID: PMC9181229 DOI: 10.3390/jcm11113204] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Healthcare-associated infections can occur in different care units and can affect both patients and healthcare professionals. Bacteria represent the most common cause of nosocomial infections and, due to the excessive and irrational use of antibiotics, resistant organisms have appeared. The most important healthcare-associated infections are central line-associated bloodstream infections, catheter-associated urinary tract infections, surgical site, soft tissue infections, ventilator-associated pneumonia, hospital acquired pneumonia, and Clostridioides difficile colitis. In Europe, some hospitalized patients develop nosocomial infections that lead to increased costs and prolonged hospitalizations. Healthcare-associated infection prevalence in developed countries is lower than in low-income and middle-income countries such as Romania, an Eastern European country, where several factors contribute to the occurrence of many nosocomial infections, but official data show a low reporting rate. For the rapid identification of bacteria that can cause these infections, fast, sensitive, and specific methods are needed, and they should be cost-effective. Therefore, this review focuses on the current situation regarding healthcare-associated infections in Europe and Romania, with discussions regarding the causes and possible solutions. As a possible weapon in the fight against the healthcare-associated infections, the diagnosis methods and tests used to determine the bacteria involved in healthcare-associated infections are evaluated.
Collapse
|
53
|
Mana T, Bhattacharya B, Lahiri H, Mukhopadhyay R. XNAs: A Troubleshooter for Nucleic Acid Sensing. ACS OMEGA 2022; 7:15296-15307. [PMID: 35571783 PMCID: PMC9096816 DOI: 10.1021/acsomega.2c00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The strategies for nucleic acid sensing based on nucleic acid hybridization between the target sequence and the capture probe sequence are considered to be largely successful as far as detection of a specific target of known sequence is concerned. However, when compared with other complementary methods, like direct sequencing, a number of results are still found to be either "false positives" or "false negatives". This suggests that modifications in these strategies are necessary to make them more accurate. In this minireview, we propose that one way toward improvement could be replacement of the DNA capture probes with the xeno nucleic acid or XNA capture probes. This is because the XNAs, especially the locked nucleic acid, the peptide nucleic acid, and the morpholino, have shown better single nucleobase mismatch discrimination capacity than the DNA capture probes, indicating their capacity for more precise detection of nucleic acid sequences, which is beneficial for detection of gene stretches having point mutations. Keeping the current trend in mind, this minireview will include the recent developments in nanoscale, fluorescent label-free applications, and present the cases where the XNA probes show clear advantages over the DNA probes.
Collapse
Affiliation(s)
- Tanushree Mana
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Budhaditya Bhattacharya
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Hiya Lahiri
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rupa Mukhopadhyay
- School
of Biological Sciences, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
54
|
Abstract
Current advances in the fabrication of smart nanomaterials and nanostructured surfaces find wide usage in the biomedical field. In this context, nanosensors based on localized surface plasmon resonance exhibit unprecedented optical features that can be exploited to reduce the costs, analytic times, and need for expensive lab equipment. Moreover, they are promising for the design of nanoplatforms with multiple functionalities (e.g., multiplexed detection) with large integration within microelectronics and microfluidics. In this review, we summarize the most recent design strategies, fabrication approaches, and bio-applications of plasmonic nanoparticles (NPs) arranged in colloids, nanoarrays, and nanocomposites. After a brief introduction on the physical principles behind plasmonic nanostructures both as inherent optical detection and as nanoantennas for external signal amplification, we classify the proposed examples in colloid-based devices when plasmonic NPs operate in solution, nanoarrays when they are assembled or fabricated on rigid substrates, and nanocomposites when they are assembled within flexible/polymeric substrates. We highlight the main biomedical applications of the proposed devices and offer a general overview of the main strengths and limitations of the currently available plasmonic nanodevices.
Collapse
|
55
|
Boranna R, Nataraj CT, Bannur Nanjunda S, Pahal S, Jagannath RK, Prashanth GR. Fluorescence Signal Enhancement by a Spray-Assisted Layer-by-Layer Technique on Aluminum Tape Devices for Biosensing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3149-3157. [PMID: 35235318 DOI: 10.1021/acs.langmuir.1c03186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte multilayer (PEM) films are a simple yet elegant bottom-up technology to create films at the nano-microscale. This low-cost technology has been widely used as a universal functionalization technique on a broad spectrum of substrates. Biomolecules under investigation can be incubated onto films based on complementary charge interactions between the films and biomolecules. There is a great demand for developing an ultralow-cost biosensing device, which can optimally enhance the fluorescence signal of the adsorbed biomolecules from the traditional labeled sensing platforms. In this work, we have incorporated a blend of the conventional metal enhanced fluorescence technology and the PEM as a dielectric spacer and functionalized film, coated on an aluminum paper (tape)-based substrate. These device has been found to be capable of holding biomolecules in three-dimensional PEM space. The devices fabricated by the proposed spray LbL technique provide significant fluorescence signal enhancement by holding a relatively higher mass per volume of the adsorbed biomolecules, when compared to traditional spin- and dip-coating techniques. Interestingly, our proposed device has expressed a fluorescence enhancement factor, which is 9 times higher than PEM-functionalized glass-based devices. To demonstrate the practical utility of our devices, we also compared our devices to Whatman FAST slides. Our experimental fluorescence results are almost comparable to Whatman FAST slides. Such PEM devices fabricated on top of low-cost aluminum tape using a spray LbL technique give new insights into the future development of ultralow-cost, high-throughput, and disposable lab-on-chip diagnostic applications.
Collapse
Affiliation(s)
- Rakshith Boranna
- Department of Electronics and Communication Engineering, National Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Chandrika Thondagere Nataraj
- Department of Electronics and Telecommunication Engineering, Siddaganga Institute of Technology, Tumkuru, Karnataka 572103, India
| | - Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging Technologies (Cen-Bio-SIM), Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Suman Pahal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | | | - Gurusiddappa R Prashanth
- Department of Electronics and Communication Engineering, National Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| |
Collapse
|
56
|
Shin JH, Reddy YVM, Park TJ, Park JP. Recent advances in analytical strategies and microsystems for food allergen detection. Food Chem 2022; 371:131120. [PMID: 34634648 DOI: 10.1016/j.foodchem.2021.131120] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Food allergies are abnormal immune responses that typically occur within short period after exposure of certain allergenic proteins in food or food-related resources. Currently, the means to treat food allergies is not clearly understood, and the only known prevention method is avoiding the consumption of allergen-containing foods. From the viewpoint of analytical methods, the effective detection of food allergens is hindered by the effects of various treatment processes and food matrices on trace amounts of allergens. The aim of this effort is to provide the reader with a clear and concise view of new advances for the detection of food allergens. Therefore, the present review explored the development status of various biosensors for the real-time, on-site detection of food allergens with high selectivity and sensitivity. The review also described the analytical consideration for the quantification of food allergens, and global development trends and the future availability of these technologies.
Collapse
Affiliation(s)
- Jae Hwan Shin
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
57
|
Sharma P, Suleman S, Farooqui A, Ali W, Narang J, Malode SJ, Shetti NP. Analytical Methods for Ebola Virus Detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
58
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
59
|
Dutta S, Corni S, Brancolini G. Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications. Int J Mol Sci 2022; 23:1484. [PMID: 35163407 PMCID: PMC8835741 DOI: 10.3390/ijms23031484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Nanoscale biosensors, a highly promising technique in clinical analysis, can provide sensitive yet label-free detection of biomolecules. The spatial and chemical specificity of the surface coverage, the proper immobilization of the bioreceptor as well as the underlying interfacial phenomena are crucial elements for optimizing the performance of a biosensor. Due to experimental limitations at the microscopic level, integrated cross-disciplinary approaches that combine in silico design with experimental measurements have the potential to present a powerful new paradigm that tackles the issue of developing novel biosensors. In some cases, computational studies can be seen as alternative approaches to assess the microscopic working mechanisms of biosensors. Nonetheless, the complex architecture of a biosensor, associated with the collective contribution from "substrate-receptor-analyte" conjugate in a solvent, often requires extensive atomistic simulations and systems of prohibitive size which need to be addressed. In silico studies of functionalized surfaces also require ad hoc force field parameterization, as existing force fields for biomolecules are usually unable to correctly describe the biomolecule/surface interface. Thus, the computational studies in this field are limited to date. In this review, we aim to introduce fundamental principles that govern the absorption of biomolecules onto functionalized nanomaterials and to report state-of-the-art computational strategies to rationally design nanoscale biosensors. A detailed account of available in silico strategies used to drive and/or optimize the synthesis of functionalized nanomaterials for biosensing will be presented. The insights will not only stimulate the field to rationally design functionalized nanomaterials with improved biosensing performance but also foster research on the required functionalization to improve biomolecule-surface complex formation as a whole.
Collapse
Affiliation(s)
- Sutapa Dutta
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy; (S.D.); (S.C.)
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Institute of Nanoscience, CNR-NANO S3, Via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
60
|
Altug H, Oh SH, Maier SA, Homola J. Advances and applications of nanophotonic biosensors. NATURE NANOTECHNOLOGY 2022; 17:5-16. [PMID: 35046571 DOI: 10.1038/s41565-021-01045-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics. We highlight the prospects of achieving an improved sensor performance and added functionalities by leveraging nanostructures and on-chip and optoelectronic integration, as well as microfluidics, biochemistry and data science toolkits. We also discuss open challenges in nanophotonic biosensing, such as reducing the overall cost and handling of complex biological samples, and provide an outlook for future opportunities to improve these technologies and thereby increase their impact in terms of improving health and safety.
Collapse
Affiliation(s)
- Hatice Altug
- Laboratory of Bionanophotonic Systems, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut Munich, Faculty of Physics, Ludwig-Maximilians Universität München, Munich, Germany.
- Department of Physics, Imperial College London, London, UK.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
61
|
Hu S, Zhi Y, Shan S, Ni Y. Research progress of smart response composite hydrogels based on nanocellulose. Carbohydr Polym 2022; 275:118741. [PMID: 34742444 DOI: 10.1016/j.carbpol.2021.118741] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
In recent years, smart-responsive nanocellulose composite hydrogels have attracted extensive attention due to their unique porous substrate, hydrophilic properties, biocompatibility and stimulus responsiveness. At present, the research on smart response nanocellulose composite hydrogel mainly focuses on the selection of composite materials and the construction of internal chemical bonds. The common composite materials and connection methods used for preparation of smart response nanocellulose composite hydrogels are compared according to the different types of response sources such as temperature, pH and so on. The response mechanisms and the application prospects of different response types of nanocellulose composite hydrogels are summarized, and the transformation of internal ions, functional groups and chemical bonds, as well as the changes in mechanical properties such as modulus and strength are discussed. Finally, the shortcomings and application prospects of nanocellulose smart response composite hydrogels are summarized and prospected.
Collapse
Affiliation(s)
- Shuai Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yonghao Ni
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton E3B 5A3, Canada
| |
Collapse
|
62
|
Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Behbahan NGG, Arjmand M, Ramakrishna S, Lankarani KB, Moghadami M, Firoozsani M. Graphene-Based Femtogram-Level Sensitive Molecularly Imprinted Polymer of SARS-CoV-2. ADVANCED MATERIALS INTERFACES 2021; 8:2101466. [PMID: 34900518 PMCID: PMC8646612 DOI: 10.1002/admi.202101466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Rapid distribution of viral-induced diseases and weaknesses of common diagnostic platforms for accurate and sensitive identification of infected people raises an urgent demand for the design and fabrication of biosensors capable of early detection of viral biomarkers with high specificity. Accordingly, molecularly imprinted polymers (MIPs) as artificial antibodies prove to be an ideal preliminary detection platform for specific identification of target templates, with superior sensitivity and detection limit (DL). MIPs detect the target template with the "lock and key" mechanism, the same as natural monoclonal antibodies, and present ideal stability at ambient temperature, which improves their practicality for real applications. Herein, a 2D MIP platform consisting of decorated graphene oxide with the interconnected complex of polypyrrole-boronic acid is developed that can detect the trace of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen in aquatic biological samples with ultrahigh sensitivity/specificity with DL of 0.326 and 11.32 fg mL-1 using voltammetric and amperometric assays, respectively. Additionally, the developed MIP shows remarkable stability, selectivity, and accuracy toward detecting the target template, which paves the way for developing ultraspecific and prompt screening diagnostic configurations capable of detecting the antigen in 1 min or 20 s using voltammetric or amperometric techniques.
Collapse
Affiliation(s)
- Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites LaboratorySchool of EngineeringUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Sonia Bahrani
- Health Policy Research CenterHealth InstituteShiraz University of Medical SciencesShiraz71348‐45794Iran
| | - Seyyed Mojtaba Mousavi
- Department of Chemical EngineeringNational Taiwan University of Science and TechnologyTaipei City310635Taiwan
| | - Navid Omidifar
- Clinical Education Research CenterShiraz University of Medical SciencesShiraz71348‐14336Iran
- Department of PathologySchool of MedicineShiraz University of Medical SciencesShiraz71348‐14336Iran
| | - Nader Ghaleh Golab Behbahan
- Department of Poultry DiseaseRazi Vaccine and Serum Research InstituteShiraz BranchAgricultural Research, Education and Extension Organization (AREEO)Shiraz7188843568Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites LaboratorySchool of EngineeringUniversity of British ColumbiaKelownaBCV1V 1V7Canada
| | - Seeram Ramakrishna
- Department of Mechanical EngineeringCenter for Nanofibers and NanotechnologyNational University of SingaporeSingapore117576Singapore
| | - Kamran Bagheri Lankarani
- Health Policy Research CenterHealth InstituteShiraz University of Medical SciencesShiraz71348‐45794Iran
| | - Mohsen Moghadami
- Health Policy Research CenterHealth InstituteShiraz University of Medical SciencesShiraz71348‐45794Iran
| | - Mohammad Firoozsani
- Member of Board of TrusteesZand Institute of Higher EducationShiraz7188773489Iran
| |
Collapse
|
63
|
M A, Sebastian D. Evaluation of Sensitivity and Cost-Effectiveness of Molecular Methods for the Co-detection of Waterborne Pathogens in India. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:955-963. [PMID: 34714447 DOI: 10.1007/s10126-021-10078-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Waterborne microbial diseases are regarded as a major public health concern, particularly in nations with poor sanitation, a lack of social awareness, and problems linked with low socioeconomic status. Waterborne pathogen identification using traditional culture methods is time-consuming and labor-intensive. As a result, there is a growing demand for quick pathogen detection technologies. High sensitivity, specificity, and rapidity are all advantages of using molecular techniques like polymerase chain reaction (PCR) in such instances. In this study, we designed multiplex PCR and quantitative real-time PCR (qPCR) assays for the co-detection and enumeration of waterborne pathogens such as Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella enterica, Yersinia enterocolitica, Escherichia coli, Vibrio cholerae, and Shigella spp. Specific primers were selected against the virulence and species-specific genes of the seven target pathogens. For all seven target organisms, the detection limits for conventional culture methods were in the range of 103-104 cells/ml. While employing multiplex PCR method in this study, Pseudomonas aeruginosa and Shigella spp. have a detection sensitivity of 101 cells/ml, Vibrio cholerae and Aeromonas hydrophila have a detection sensitivity of 102 cells/ml, whereas Salmonella enterica, E. coli, and Yersinia enterocolitica have a detection sensitivity of only 103 cells/ml. According to our cost-benefit analysis, these molecular technologies are less expensive, with unit analysis costs of ₹52 and ₹173 for qPCR and multiplex PCR, respectively. Furthermore, all of the target genes had a detection limit of 1 cell/ml in qPCR. Because of their speed, sensitivity, specificity, and cost-effectiveness, these multiplex and qPCR assays could be employed for successful co-detection of aquatic pathogens.
Collapse
Affiliation(s)
- Ambili M
- Department of Life Sciences, University of Calicut, Malappuram, Kerala-673635, India
| | - Denoj Sebastian
- Department of Life Sciences, University of Calicut, Malappuram, Kerala-673635, India.
| |
Collapse
|
64
|
Andryukov BG, Lyapun IN, Matosova EV, Somova LM. Biosensor Technologies in Medicine: from Detection of Biochemical Markers to Research into Molecular Targets (Review). Sovrem Tekhnologii Med 2021; 12:70-83. [PMID: 34796021 PMCID: PMC8596237 DOI: 10.17691/stm2020.12.6.09] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 01/21/2023] Open
Abstract
Infections are a major cause of premature death. Fast and accurate laboratory diagnostics of infectious diseases is a key condition for the timely initiation and success of treatment. Potentially, it can reduce morbidity, as well as prevent the outbreak and spread of dangerous epidemics. The traditional methods of laboratory diagnostics of infectious diseases are quite time- and labour-consuming, require expensive equipment and trained personnel, which is crucial within limited resources. The fast biosensor-based methods that combine the diagnostic capabilities of biomedicine with modern technological advances in microelectronics, optoelectronics, and nanotechnology make an alternative. The modern achievements in the development of label-free biosensors make them promising diagnostic tools that combine rapid detection of specific molecular markers, simplicity, ease-of-use, efficiency, accuracy, and cost-effectiveness with the tendency to the development of portable platforms. These qualities exceed the generally accepted standards of microbiological and immunological diagnostics and open up broad prospects for using these analytical systems in clinical practice directly at the site of medical care provision (point-of-care, POC concept). A wide variety of modern biosensor designs are based on the use of diverse formats of analytical and technological strategies, identification of various regulatory and functional molecular markers associated with infectious pathogens. The solution to the existing problems in biosensing will open up great prospects for these rapidly developing diagnostic biotechnologies.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - E V Matosova
- Junior Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| | - L M Somova
- Professor, Chief Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
65
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
66
|
Sande MG, Rodrigues JL, Ferreira D, Silva CJ, Rodrigues LR. Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. BIOSENSORS 2021; 11:bios11110418. [PMID: 34821636 PMCID: PMC8615483 DOI: 10.3390/bios11110418] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
Infectious agents, especially bacteria and viruses, account for a vast number of hospitalisations and mortality worldwide. Providing effective and timely diagnostics for the multiplicity of infectious diseases is challenging. Conventional diagnostic solutions, although technologically advanced, are highly complex and often inaccessible in resource-limited settings. An alternative strategy involves convenient rapid diagnostics which can be easily administered at the point-of-care (POC) and at low cost without sacrificing reliability. Biosensors and other rapid POC diagnostic tools which require biorecognition elements to precisely identify the causative pathogen are being developed. The effectiveness of these devices is highly dependent on their biorecognition capabilities. Naturally occurring biorecognition elements include antibodies, bacteriophages and enzymes. Recently, modified molecules such as DNAzymes, peptide nucleic acids and molecules which suffer a selective screening like aptamers and peptides are gaining interest for their biorecognition capabilities and other advantages over purely natural ones, such as robustness and lower production costs. Antimicrobials with a broad-spectrum activity against pathogens, such as antibiotics, are also used in dual diagnostic and therapeutic strategies. Other successful pathogen identification strategies use chemical ligands, molecularly imprinted polymers and Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease. Herein, the latest developments regarding biorecognition elements and strategies to use them in the design of new biosensors for pathogens detection are reviewed.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal;
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
- Correspondence: ; Tel.: +351-253601978
| |
Collapse
|
67
|
Diagnostic Techniques for COVID-19: A Mini-review of Early Diagnostic Methods. JOURNAL OF ANALYSIS AND TESTING 2021; 5:314-326. [PMID: 34631199 PMCID: PMC8488931 DOI: 10.1007/s41664-021-00198-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
The outbreak of severe pneumonia at the end of 2019 was proved to be caused by the SARS-CoV-2 virus spreading out the world. And COVID-19 spread rapidly through a terrible transmission way by human-to-human, which led to many suspected cases waiting to be diagnosed and huge daily samples needed to be tested by an effective and rapid detection method. With an increasing number of COVID-19 infections, medical pressure is severe. Therefore, more efficient and accurate diagnosis methods were keen urgently established. In this review, we summarized several methods that can rapidly and sensitively identify COVID-19; some of them are widely used as the diagnostic techniques for SARS-CoV-2 in various countries, some diagnostic technologies refer to SARS (Severe Acute Respiratory Syndrome) or/and MERS (Middle East Respiratory Syndrome) detection, which may provide potential diagnosis ideas.
Collapse
|
68
|
Ozana V, Hruška K. Instrumental analytical tools for mycobacteria characterisation. CZECH JOURNAL OF FOOD SCIENCES 2021; 39:235-264. [DOI: 10.17221/69/2021-cjfs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
69
|
Zaczek-Moczydlowska MA, Beizaei A, Dillon M, Campbell K. Current state-of-the-art diagnostics for Norovirus detection: Model approaches for point-of-care analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
70
|
Misra R, Acharya S, Sushmitha N. Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol 2021; 32:e2267. [PMID: 34164867 PMCID: PMC8420101 DOI: 10.1002/rmv.2267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023]
Abstract
The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
Collapse
Affiliation(s)
- Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sarbari Acharya
- Department of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Nehru Sushmitha
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
71
|
Öndeş B, Evli S, Uygun M, Aktaş Uygun D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 2021; 191:113454. [PMID: 34171737 DOI: 10.1016/j.bios.2021.113454] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
In this presented study, a new boron nitride nanosheets modified label-free electrochemical immunosensors were prepared for early detection of cancer antigen 125 (CA125). To aim for, boron nitride (BN) nanosheets were synthesized by conventional sonication-assisted method and then characterized. BN nanosheets were used for the surface modification of the working electrode of the screen-printed electrode (SPE). Anti CA125 antibody was then directly immobilized onto the electrode surface due to its natural affinity towards BN nanosheets. Modified electrodes were blocked with BSA and finally protected with Nafion. The newly synthesized label-free immunosensor demonstrated good detection properties to CA125 with a linear range of 5-100 U and a detection limit of 1.18 U/mL. The developed immunosensor also showed excellent reproducibility, selectivity, and stability profiles. Additionally, this immunosensor was successfully used for the detection of CA125 in artificial human serum samples along with the interfering agents. Also, it is expected that the prepared immunosensor should carry the good potential for point-of-care diagnosis in real cases.
Collapse
Affiliation(s)
- Baha Öndeş
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Sinem Evli
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Murat Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey.
| |
Collapse
|
72
|
Cordeiro TAR, de Resende MAC, Moraes SCDS, Franco DL, Pereira AC, Ferreira LF. Electrochemical biosensors for neglected tropical diseases: A review. Talanta 2021; 234:122617. [PMID: 34364426 DOI: 10.1016/j.talanta.2021.122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/26/2022]
Abstract
A group of infectious and parasitic diseases with prevalence in tropical and subtropical regions of the planet, especially in places with difficult access, internal conflicts, poverty, and low visibility from the government and health agencies are classified as neglected tropical diseases. While some well-intentioned isolated groups are making the difference on a global scale, the number of new cases and deaths is still alarming. The development and employment of low-cost, miniaturized, and easy-to-use devices as biosensors could be the key to fast diagnosis in such areas leading to a better treatment to further eradication of such diseases. Therefore, this review contains useful information regarding the development of such devices in the past ten years (2010-2020). Guided by the updated list from the World Health Organization, the work evaluated the new trends in the biosensor field applied to the early detection of neglected tropical diseases, the efficiencies of the devices compared to the traditional techniques, and the applicability on-site for local distribution. So, we focus on Malaria, Chagas, Leishmaniasis, Dengue, Zika, Chikungunya, Schistosomiasis, Leprosy, Human African trypanosomiasis (sleeping sickness), Lymphatic filariasis, and Rabies. Few papers were found concerning such diseases and there is no available commercial device in the market. The works contain information regarding the development of point-of-care devices, but there are only at proof of concepts stage so far. Details of electrode modification and construction of electrochemical biosensors were summarized in Tables. The demand for the eradication of neglected tropical diseases is increasing. The use of biosensors is pivotal for the cause, but appliable devices are scarce. The information present in this review can be useful for further development of biosensors in the hope of helping the world combat these deadly diseases.
Collapse
Affiliation(s)
- Taís Aparecida Reis Cordeiro
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | | | - Simone Cristina Dos Santos Moraes
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil
| | - Diego Leoni Franco
- Group of Electrochemistry Applied to Polymers and Sensors - Multidisciplinary Group of Research, Science and Technology - Laboratory of Electroanalytic Applied to Biotechnology and Food Engineering - Institute of Chemistry, Federal University of Uberlândia, Patos de Minas, Brazil.
| | - Arnaldo César Pereira
- Department of Natural Sciences, Federal University of São João Del-Rei, São João Del-Rei, Brazil.
| | - Lucas Franco Ferreira
- Institute of Science and Technology, Laboratory of Electrochemistry and Applied Nanotechnology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil.
| |
Collapse
|
73
|
Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJA, Ford R. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Front Chem 2021; 9:636245. [PMID: 34150716 PMCID: PMC8207201 DOI: 10.3389/fchem.2021.636245] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plant pathogens are a major reason of reduced crop productivity and may lead to a shortage of food for both human and animal consumption. Although chemical control remains the main method to reduce foliar fungal disease incidence, frequent use can lead to loss of susceptibility in the fungal population. Furthermore, over-spraying can cause environmental contamination and poses a heavy financial burden on growers. To prevent or control disease epidemics, it is important for growers to be able to detect causal pathogen accurately, sensitively, and rapidly, so that the best practice disease management strategies can be chosen and enacted. To reach this goal, many culture-dependent, biochemical, and molecular methods have been developed for plant pathogen detection. However, these methods lack accuracy, specificity, reliability, and rapidity, and they are generally not suitable for in-situ analysis. Accordingly, there is strong interest in developing biosensing systems for early and accurate pathogen detection. There is also great scope to translate innovative nanoparticle-based biosensor approaches developed initially for human disease diagnostics for early detection of plant disease-causing pathogens. In this review, we compare conventional methods used in plant disease diagnostics with new sensing technologies in particular with deeper focus on electrochemical and optical biosensors that may be applied for plant pathogen detection and management. In addition, we discuss challenges facing biosensors and new capability the technology provides to informing disease management strategies.
Collapse
Affiliation(s)
- Kazbek Dyussembayev
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Prabhakaran Sambasivam
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jeremy C. Brownlie
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Muhammad J. A. Shiddiky
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
74
|
Goud KY, Reddy KK, Khorshed A, Kumar VS, Mishra RK, Oraby M, Ibrahim AH, Kim H, Gobi KV. Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosens Bioelectron 2021; 180:113112. [PMID: 33706158 PMCID: PMC7921732 DOI: 10.1016/j.bios.2021.113112] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by viruses can elevate up to undesired pandemic conditions affecting the global population and normal life function. These in turn impact the established world economy, create jobless situations, physical, mental, emotional stress, and challenge the human survival. Therefore, timely detection, treatment, isolation and prevention of spreading the pandemic infectious diseases not beyond the originated town is critical to avoid global impairment of life (e.g., Corona virus disease - 2019, COVID-19). The objective of this review article is to emphasize the recent advancements in the electrochemical diagnostics of twelve life-threatening viruses namely - COVID-19, Middle east respiratory syndrome (MERS), Severe acute respiratory syndrome (SARS), Influenza, Hepatitis, Human immunodeficiency virus (HIV), Human papilloma virus (HPV), Zika virus, Herpes simplex virus, Chikungunya, Dengue, and Rotavirus. This review describes the design, principle, underlying rationale, receptor, and mechanistic aspects of sensor systems reported for such viruses. Electrochemical sensor systems which comprised either antibody or aptamers or direct/mediated electron transfer in the recognition matrix were explicitly segregated into separate sub-sections for critical comparison. This review emphasizes the current challenges involved in translating laboratory research to real-world device applications, future prospects and commercialization aspects of electrochemical diagnostic devices for virus detection. The background and overall progress provided in this review are expected to be insightful to the researchers in sensor field and facilitate the design and fabrication of electrochemical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- K Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
| | - K Koteshwara Reddy
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - Ahmed Khorshed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt.
| | - V Sunil Kumar
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India
| | - Rupesh K Mishra
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mohamed Oraby
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Alyaa Hatem Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Hern Kim
- Smart Living Innovation Technology Centre, Department of Energy Science and Technology, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea.
| | - K Vengatajalabathy Gobi
- Department of Chemistry, National Institute of Technology Warangal, Telangana, 506004, India.
| |
Collapse
|
75
|
George A, Amrutha MS, Srivastava P, Sunil S, Sai VVR, Srinivasan R. Development of a U-bent plastic optical fiber biosensor with plasmonic labels for the detection of chikungunya non-structural protein 3. Analyst 2021; 146:244-252. [PMID: 33107522 DOI: 10.1039/d0an01603a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study presents a novel plasmonic fiber optic sandwich immunobiosensor for the detection of chikungunya, an infectious mosquito-borne disease with chronic musculoskeletal pain and acute febrile illness, by exploiting non-structural protein 3 (CHIKV-nsP3) as a biomarker. A plasmonic sandwich immunoassay for CHIKV-nsP3 was realized on the surface of a compact U-bent plastic optical fiber (POF, 0.5 mm core diameter) with gold nanoparticles (AuNPs) as labels. The high evanescent wave absorbance (EWA) sensitivity of the U-bent probes allows the absorption of the light passing through the fiber by the AuNP labels, upon the formation of a sandwich immunocomplex of CHIKV-nsP3 on the core surface of the U-bent probe region. A simple optical set-up with a low-cost green LED and a photodetector on either end of the U-bent probe gave rise to a detection limit of 0.52 ng mL-1 (8.6 pM), and a linear range of 1-104 ng mL-1 with a sensitivity of 0.1043A530 nm/log(CnsP3). In addition, the plasmonic POF biosensor shows strong specificity towards the CHIKV-nsP3 analyte in comparison with Pf-HRP2, HIgG, and dengue whole virus. The results illustrate the potential of plasmonic POF biosensors for direct and sensitive point-of-care detection of the chikungunya viral disease.
Collapse
Affiliation(s)
- Ankitha George
- Department of Chemical Engineering, Indian Institute of Technology, Madras, India.
| | | | | | | | | | | |
Collapse
|
76
|
Sadighbayan D, Ghafar-Zadeh E. Portable Sensing Devices for Detection of COVID-19: A Review. IEEE SENSORS JOURNAL 2021; 21:10219-10230. [PMID: 36790948 PMCID: PMC8769007 DOI: 10.1109/jsen.2021.3059970] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus pandemic is the most challenging incident that people have faced in recent years. Despite the time-consuming and expensive conventional methods, point-of-care diagnostics have a crucial role in deterrence, timely detection, and intensive care of the disease's progress. Hence, this detrimental health emergency persuaded researchers to accelerate the development of highly-scalable diagnostic devices to control the propagation of the virus even in the least developed countries. The strategies exploited for detecting COVID-19 stem from the already designed systems for studying other maladies, particularly viral infections. The present report reviews not only the novel advances in portable diagnostic devices for recognizing COVID-19, but also the previously existing biosensors for detecting other viruses. It discusses their adaptability for identifying surface proteins, whole viruses, viral genomes, host antibodies, and other biomarkers in biological samples. The prominence of different types of biosensors such as electrochemical, optical, and electrical for detecting low viral loads have been underlined. Thus, it is anticipated that this review will assist scientists who have embarked on a competition to come up with more efficient and marketable in-situ test kits for identifying the infection even in its incubation time without sample pretreatment. Finally, a conclusion is provided to highlight the importance of such an approach for monitoring people to combat the spread of such contagious diseases.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BioSA), Lassonde School of Engineering, Department of Electrical Engineering and Computer Science, Faculty of ScienceDepartment of BiologyYork UniversityTorontoONM3J 1P3Canada
| |
Collapse
|
77
|
Schulze H, Arnott A, Libori A, Obaje EA, Bachmann TT. Temperature-Enhanced mcr-1 Colistin Resistance Gene Detection with Electrochemical Impedance Spectroscopy Biosensors. Anal Chem 2021; 93:6025-6033. [PMID: 33819015 DOI: 10.1021/acs.analchem.0c00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance is now one of the biggest threats humankind is facing, as highlighted in a declaration by the General Assembly of the United Nations in 2016. In particular, the growing resistance rates of Gram-negative bacteria cause increasing concerns. The occurrence of the easily transferable, plasmid-encoded mcr-1 colistin resistance gene further worsened the situation, significantly enhancing the risk of the occurrence of pan-resistant bacteria. There is therefore a strong demand for new rapid molecular diagnostic tests for the detection of mcr-1 gene-associated colistin resistance. Electrochemical impedance spectroscopy (EIS) is a well-suited method for rapid antimicrobial resistance detection as it enables rapid, label-free target detection in a cost-efficient manner. Here, we describe the development of an EIS-based mcr-1 gene detection test, including the design of mcr-1-specific peptide nucleic acid probes and assay specificity optimization through temperature-controlled real-time kinetic EIS measurements. A new flow cell measurement setup enabled for the first time detailed real-time, kinetic temperature-controlled hybridization and dehybridization studies of EIS-based nucleic acid biosensors. The temperature-controlled EIS setup allowed single-nucleotide polymorphism discrimination. Target hybridization at 60 °C enhanced the perfect match/mismatch (PM/MM) discrimination ratio from 2.1 at room temperature to 3.4. A hybridization and washing temperature of 55 °C further increased the PM/MM discrimination ratio to 5.7 by diminishing the mismatch signal during the washing step while keeping the perfect match signal. This newly developed mcr-1 gene detection test enabled the direct, specific label, and amplification-free detection of mcr-1 gene harboring plasmids from Escherichia coli.
Collapse
Affiliation(s)
- Holger Schulze
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Andrew Arnott
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Adriana Libori
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Eleojo A Obaje
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| | - Till T Bachmann
- Infection Medicine, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, U.K
| |
Collapse
|
78
|
Miranda B, Rea I, Dardano P, De Stefano L, Forestiere C. Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. BIOSENSORS-BASEL 2021; 11:bios11040107. [PMID: 33916580 PMCID: PMC8066870 DOI: 10.3390/bios11040107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, optical biosensors based on nanostructured materials have obtained increasing interest since they allow the screening of a wide variety of biomolecules with high specificity, low limits of detection, and great sensitivity. Among them, flexible optical platforms have the advantage of adapting to non-planar surfaces, suitable for in vivo and real-time monitoring of diseases and assessment of food safety. In this review, we summarize the newest and most advanced platforms coupling optically active materials (noble metal nanoparticles) and flexible substrates giving rise to hybrid nanomaterials and/or nanocomposites, whose performances are comparable to the ones obtained with hard substrates (e.g., glass and semiconductors). We focus on localized surface plasmon resonance (LSPR)-based and surface-enhanced Raman spectroscopy (SERS)-based biosensors. We show that large-scale, cost-effective plasmonic platforms can be realized with the currently available techniques and we emphasize the open issues associated with this topic.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, National Research Council, Via P. Castellino 111, 80131 Napoli, Italy; (B.M.); (I.R.); (P.D.)
- Correspondence:
| | - Carlo Forestiere
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Napoli, Italy;
| |
Collapse
|
79
|
Low-cost colorimetric diagnostic screening assay for methicillin resistant Staphylococcus aureus. Talanta 2021; 225:121946. [PMID: 33592701 DOI: 10.1016/j.talanta.2020.121946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
The timely diagnosis of MRSA in clinical samples helps to reduce the attendant morbidity/mortality associated with infection due to the organism. The early institution of appropriate therapy or deployment of infection control protocols are dependent on a timely report from the microbiology laboratory. Various assays currently used in the identification of MRSA are associated with inherent shortcomings, thus there is a need to explore newer diagnostic frontiers that can eliminate some of these short comings at a relatively cheap, timely, specific and sensitive manner. We present in this study a MRSA specific optical immunosensor to detect the presence of the pathogen on contaminated surface using control and patient strains. Results revealed a detection limits of 103 CFU mL-1 upon visual observation, and 29 CFU mL-1 as determined by the linear regression equation, following the use of ImageJ to quantify activated cotton swab color intensity. The specificity of the sensor was examined by blind testing a panel of non-MRSA bacteria (E. coli, S. aureus and S. epidermis). Negative visual read-out was observed for all tested non-specific bacteria except for MRSA. Assay takes an average of 5 min and presents a powerful point-of-care diagnostic platform for the detection of MRSA.
Collapse
|
80
|
Zhu R, Avsievich T, Popov A, Bykov A, Meglinski I. In vivo nano-biosensing element of red blood cell-mediated delivery. Biosens Bioelectron 2021; 175:112845. [PMID: 33262059 DOI: 10.1016/j.bios.2020.112845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
Biosensors based on nanotechnology are developing rapidly and are widely applied in many fields including biomedicine, environmental monitoring, national defense and analytical chemistry, and have achieved vital positions in these fields. Novel nano-materials are intensively developed and manufactured for potential biosensing and theranostic applications while lacking comprehensive assessment of their potential health risks. The integration of diagnostic in vivo biosensors and the DDSs for delivery of therapeutic drugs holds an enormous potential in next-generation theranostic platforms. Controllable, precise, and safe delivery of diagnostic biosensing devices and therapeutic agents to the target tissues, organs, or cells is an important determinant in developing advanced nanobiosensor-based theranostic platforms. Particularly, inspired by the comprehensive biological investigations on the red blood cells (RBCs), advanced strategies of RBC-mediated in vivo delivery have been developed rapidly and are currently in different stages of transforming from research and design to pre-clinical and clinical investigations. In this review, the RBC-mediated delivery of in vivo nanobiosensors for applications of bio-imaging at the single-cell level, advanced medical diagnostics, and analytical detection of biomolecules and cellular activities are presented. A comprehensive perspective of the technical framework of the state-of-the-art RBC-mediated delivery systems is explained in detail to inspire the design and implementation of advanced nanobiosensor-based theranostic platforms taking advantage of RBC-delivery modalities.
Collapse
Affiliation(s)
- Ruixue Zhu
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Tatiana Avsievich
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Alexey Popov
- VTT Technical Research Centre of Finland, Kaitoväylä 1, 90590, Oulu, Finland.
| | - Alexander Bykov
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland.
| | - Igor Meglinski
- Optoelectronics and Measurement Techniques Laboratory, University of Oulu, 90570, Oulu, Finland; Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University, 634050, Tomsk, Russia; Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University (MEPhI), 115409, Moscow, Russia; Department of Histology, Cytology and Embryology, Institute of Clinical Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
81
|
Singhal J, Verma S, Kumar S, Mehrotra D. Recent Advances in Nano-Bio-Sensing Fabrication Technology for the Detection of Oral Cancer. Mol Biotechnol 2021; 63:339-362. [PMID: 33638110 DOI: 10.1007/s12033-021-00306-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Nanotechnology-based miniaturized devices have been a breakthrough in the pre-clinical and clinical research areas, e.g. drug delivery, personalized medicine. They have revolutionized the discovery and development of biomarker-based diagnostic devices for detection of various diseases such as tuberculosis, malaria and cancer. Nanomaterials (NMs) hold tremendous diagnostic potential due to their high surface-to-volume ratio and quantum confinement phenomenon, improving the detection limit of clinically relevant biomolecules in bio-fluids. Thus, they are helpful in the translation of bench-on platform to point-of-care (POC) screening device. The nanomaterial-based biosensor fabrication technology has also simplified and improved oral cancer (OC) or oral squamous cell carcinomas (OSCC) diagnosis. The fabrication of nano-bio sensors involves application specific modifications of NMs. The unique properties functionalized NMs have augmented their application on the nano-biosensing platform for the detection of clinically relevant biomolecules in bio-fluids. Therefore, this article summarizes the recent advancements in the process of fabrication of nano-biosensors for detection of OC.
Collapse
Affiliation(s)
- Jaya Singhal
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Saurabh Verma
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| | - Divya Mehrotra
- Department of Health Research - Multidisciplinary Research Unit, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India. .,Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India.
| |
Collapse
|
82
|
Dutta S, Bellucci L, Agostini M, Gagliardi M, Corni S, Cecchini M, Brancolini G. Atomistic simulations of gold surface functionalization for nanoscale biosensors applications. NANOTECHNOLOGY 2021; 32:095702. [PMID: 33137790 DOI: 10.1088/1361-6528/abc6dc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide class of biosensors can be built via functionalization of gold surface with proper bio conjugation element capable of interacting with the analyte in solution, and the detection can be performed either optically, mechanically or electrically. Any change in physico-chemical environment or any slight variation in mass localization near the surface of the sensor can cause differences in nature of the transduction mechanism. The optimization of such sensors may require multiple experiments to determine suitable experimental conditions for the immobilization and detection of the analyte. Here, we employ molecular modeling techniques to assist the optimization of a gold-surface biosensor. The gold surface of a quartz-crystal-microbalance sensor is functionalized using polymeric chains of poly(ethylene glycol) (PEG) of 2 KDa molecular weight, which is an inert long chain amphiphilic molecule, supporting biotin molecules (bPEG) as the ligand molecules for streptavidin analyte. The PEG linkers are immobilized onto the gold surface through sulphur chemistry. Four gold surfaces with different PEG linker density and different biotinylation ratio between bPEG and PEG, are investigated by means of state-of-the art atomistic simulations and compared with available experimental data. Results suggest that the amount of biotin molecules accessible for the binding with the protein increases upon increasing the linkers density. At the high density a 1:1 ratio of bPEG/PEG can further improve the accessibility of the biotin ligand due to a strong repulsion between linker chains and different degree of hydrophobicity between bPEG and PEG linkers. The study provides a computaional protocol to model sensors at the level of single molecular interactions, and for optimizing the physical properties of surface conjugated ligand which is crucial to enhance output of the sensor.
Collapse
Affiliation(s)
- Sutapa Dutta
- Dipartimento di Scienze Chimiche, Università di Padova, I-35131 Padova, Italy
- Istituto Nanoscienze-CNR-NANO, Center S3, via G. Campi 213/A, I-41125 Modena, Italy
| | - Luca Bellucci
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Matteo Agostini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Mariacristina Gagliardi
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, I-35131 Padova, Italy
- Istituto Nanoscienze-CNR-NANO, Center S3, via G. Campi 213/A, I-41125 Modena, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze-CNR-NANO, Center S3, via G. Campi 213/A, I-41125 Modena, Italy
| |
Collapse
|
83
|
Hassan RY, Febbraio F, Andreescu S. Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:1279. [PMID: 33670122 PMCID: PMC7916843 DOI: 10.3390/s21041279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Microbial electrochemical systems are a fast emerging technology that use microorganisms to harvest the chemical energy from bioorganic materials to produce electrical power. Due to their flexibility and the wide variety of materials that can be used as a source, these devices show promise for applications in many fields including energy, environment and sensing. Microbial electrochemical systems rely on the integration of microbial cells, bioelectrochemistry, material science and electrochemical technologies to achieve effective conversion of the chemical energy stored in organic materials into electrical power. Therefore, the interaction between microorganisms and electrodes and their operation at physiological important potentials are critical for their development. This article provides an overview of the principles and applications of microbial electrochemical systems, their development status and potential for implementation in the biosensing field. It also provides a discussion of the recent developments in the selection of electrode materials to improve electron transfer using nanomaterials along with challenges for achieving practical implementation, and examples of applications in the biosensing field.
Collapse
Affiliation(s)
- Rabeay Y.A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt;
- National Research Centre (NRC), Applied Organic Chemistry Department, El Bohouth st., Dokki, Giza 12622, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
84
|
Jain S, Nehra M, Kumar R, Dilbaghi N, Hu T, Kumar S, Kaushik A, Li CZ. Internet of medical things (IoMT)-integrated biosensors for point-of-care testing of infectious diseases. Biosens Bioelectron 2021; 179:113074. [PMID: 33596516 PMCID: PMC7866895 DOI: 10.1016/j.bios.2021.113074] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
On global scale, the current situation of pandemic is symptomatic of increased incidences of contagious diseases caused by pathogens. The faster spread of these diseases, in a moderately short timeframe, is threatening the overall population wellbeing and conceivably the economy. The inadequacy of conventional diagnostic tools in terms of time consuming and complex laboratory-based diagnosis process is a major challenge to medical care. In present era, the development of point-of-care testing (POCT) is in demand for fast detection of infectious diseases along with “on-site” results that are helpful in timely and early action for better treatment. In addition, POCT devices also play a crucial role in preventing the transmission of infectious diseases by offering real-time testing and lab quality microbial diagnosis within minutes. Timely diagnosis and further treatment optimization facilitate the containment of outbreaks of infectious diseases. Presently, efforts are being made to support such POCT by the technological development in the field of internet of medical things (IoMT). The IoMT offers wireless-based operation and connectivity of POCT devices with health expert and medical centre. In this review, the recently developed POC diagnostics integrated or future possibilities of integration with IoMT are discussed with focus on emerging and re-emerging infectious diseases like malaria, dengue fever, influenza A (H1N1), human papilloma virus (HPV), Ebola virus disease (EVD), Zika virus (ZIKV), and coronavirus (COVID-19). The IoMT-assisted POCT systems are capable enough to fill the gap between bioinformatics generation, big rapid analytics, and clinical validation. An optimized IoMT-assisted POCT will be useful in understanding the diseases progression, treatment decision, and evaluation of efficacy of prescribed therapy.
Collapse
Affiliation(s)
- Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, 160014, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - TonyY Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States.
| | - Chen-Zhong Li
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
85
|
Andryukov BG, Lyapun IN, Bynina MP, Matosova EV. Simplified formats of modern biosensors: 60 years of using immunochromatographic test systems in laboratory diagnostics. Klin Lab Diagn 2021; 65:611-618. [PMID: 33245650 DOI: 10.18821/0869-2084-2020-65-10-611-618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunochromatographic test systems known to foreign laboratory diagnostic experts as lateral flow immunoassay (LFIA) are simplified tape formats of modern biosensors. For 60 years, they have been widely used for the rapid detection of target molecules (ligands) in biosubstrates and the diagnosis of many diseases and conditions. The growing popularity of these test systems for providing medical care or diagnostics in developing countries, medical facilities, in emergency situations, as well as for individual home use by patients while monitoring their health are the main factors contributing to the continuous development and improvement of these methods, the emergence of a new generation of formats. The attractiveness and popularity of these fast, easy-to-use, inexpensive and portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as the ease of interpretation of the results. These qualities have passed the test of time, and today LFIA test systems are fully consistent with the modern world concept of «point-of-care testing», finding wide application not only in medicine, but also in ecology, veterinary medicine, and agriculture. This review will highlight the modern principles of designing the most widely used formats of immunochromatographic test systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as current achievements and prospects of LFIA technology. Modern innovations aimed at improving the analytical characteristics of LFIA technology are interesting, promising and can bring additional benefits to immunochromatographic platforms that have gained popularity and attractiveness for six decades.
Collapse
Affiliation(s)
- Boris Georgievich Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science.,Far Eastern Federal University of the Ministry of Education and Science of Russia
| | - I N Lyapun
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - M P Bynina
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - E V Matosova
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| |
Collapse
|
86
|
Kim Y, Gonzales J, Zheng Y. Sensitivity-Enhancing Strategies in Optical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004988. [PMID: 33369864 PMCID: PMC7884068 DOI: 10.1002/smll.202004988] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Indexed: 05/07/2023]
Abstract
High-sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity-improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity-improving strategies are introduced, which can be developed into "plug-and-play" modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion-limit-breaking systems for enhancing sensor-analyte contact and subsequent analyte recognition by fluid-mixing and analyte-concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step.
Collapse
Affiliation(s)
- Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Gonzales
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Materials Science and Engineering Program and Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
87
|
Rho D, Kim S. Demonstration of a Label-Free and Low-Cost Optical Cavity-Based Biosensor Using Streptavidin and C-Reactive Protein. BIOSENSORS-BASEL 2020; 11:bios11010004. [PMID: 33374119 PMCID: PMC7824430 DOI: 10.3390/bios11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.
Collapse
|
88
|
Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2020; 7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sopan N. Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| | - Pravin O. Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| |
Collapse
|
89
|
Sheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic techniques for COVID-19 and new developments. Talanta 2020; 220:121392. [PMID: 32928412 PMCID: PMC7358765 DOI: 10.1016/j.talanta.2020.121392] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022]
Abstract
COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia16150 Kubang Kerian, Kelantan, Malaysia
| | - Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
90
|
Chandra H, Singh C, Kumari P, Yadav S, Mishra AP, Laishevtcev A, Brisc C, Brisc MC, Munteanu MA, Bungau S. Promising Roles of Alternative Medicine and Plant-Based Nanotechnology as Remedies for Urinary Tract Infections. Molecules 2020; 25:E5593. [PMID: 33260701 PMCID: PMC7731396 DOI: 10.3390/molecules25235593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Urinary tract infections (UTIs) are considered to be the most common infections worldwide, having an incidence rate of 40-60% in women. Moreover, the prevalence of this disorder in adult women is 30 times more than in men. UTIs are usually found in many hospitals and clinical practice; as disorders, they are complicated and uncomplicated; in uncomplicated cases, there is no structural or functional abnormality in the urogenital tract. However, obstruction, retention of urine flow and use of catheters increase the complexity. There are several bacteria (e.g., E. coli, Klebsiella pneumoniae, Proteus vulgaris, etc.) successfully residing in the tract. The diagnosis must not only be accurate but rapid, so early detection is an important step in the control of UTIs caused by uropathogens. The treatment of UTIs includes appropriate antimicrobial therapy to control the infection and kill the causal microbes inside the body. A long-time usage of antibiotics has resulted in multidrug resistance causing an impediment in treatment. Thus, alternative, combinatorial medication approaches have given some hope. Available treatments considered Homeopathic, Ayurvedic, Unani, and other herbal-based drugs. There are new upcoming roles of nanoparticles in combating UTIs which needs further validation. The role of medicinal plant-based nanotechnology approaches has shown promising results. Therefore, there must be active research in phyto-based therapies of UTIs, such as Ayurvedic Biology.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Botany and Microbiology, Gurukula Kangri (Deemed to be University), Haridwar 249404, India;
| | - Chanchal Singh
- Department of Microbiology, Faculty of Science and Technology, Mewar University, Chittorgarh 312901, India;
| | - Pragati Kumari
- S-02, Scientist Hostel, Chauras Campus, Srinagar Garhwal, Uttarakhand 246174, India;
| | - Saurabh Yadav
- Department of Biotechnology, H.N.B. Garhwal University (A Central University), Srinagar (Garhwal) 246174, Uttarakhand, India
| | - Abhay P. Mishra
- Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh 247341, India
| | - Aleksey Laishevtcev
- Federal Research Center, Russian Scientific Research Institute of Experimental Veterinary Medicine Named after K. I. Skryabin and Y. R. Kovalenko of the Russian Academy of Sciences, 109428 Moscow, Russia;
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University, Named after I. S. Turgenev, 302026 Orel, Russia
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihaela Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.B.); (M.C.B.); (M.A.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| |
Collapse
|
91
|
Lim HJ, Saha T, Tey BT, Tan WS, Ooi CW. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens Bioelectron 2020; 168:112513. [PMID: 32889395 PMCID: PMC7443316 DOI: 10.1016/j.bios.2020.112513] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Infectious diseases are the ever-present threats to public health and the global economy. Accurate and timely diagnosis is crucial to impede the progression of a disease and break the chain of transmission. Conventional diagnostic techniques are typically time-consuming and costly, making them inefficient for early diagnosis of infections and inconvenient for use at the point of care. Developments of sensitive, rapid, and affordable diagnostic methods are necessary to improve the clinical management of infectious diseases. Quartz crystal microbalance (QCM) systems have emerged as a robust biosensing platform due to their label-free mechanism, which allows the detection and quantification of a wide range of biomolecules. The high sensitivity and short detection time offered by QCM-based biosensors are attractive for the early detection of infections and the routine monitoring of disease progression. Herein, the strategies employed in QCM-based biosensors for the detection of infectious diseases are extensively reviewed, with a focus on prevalent diseases for which improved diagnostic techniques are in high demand. The challenges to the clinical application of QCM-based biosensors are highlighted, along with an outline of the future scope of research in QCM-based diagnostics.
Collapse
Affiliation(s)
- Hui Jean Lim
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Tridib Saha
- Electrical and Computer Systems Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
92
|
Sardini E, Serpelloni M, Tonello S. Printed Electrochemical Biosensors: Opportunities and Metrological Challenges. BIOSENSORS 2020; 10:E166. [PMID: 33158129 PMCID: PMC7694196 DOI: 10.3390/bios10110166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Printed electrochemical biosensors have recently gained increasing relevance in fields ranging from basic research to home-based point-of-care. Thus, they represent a unique opportunity to enable low-cost, fast, non-invasive and/or continuous monitoring of cells and biomolecules, exploiting their electrical properties. Printing technologies represent powerful tools to combine simpler and more customizable fabrication of biosensors with high resolution, miniaturization and integration with more complex microfluidic and electronics systems. The metrological aspects of those biosensors, such as sensitivity, repeatability and stability, represent very challenging aspects that are required for the assessment of the sensor itself. This review provides an overview of the opportunities of printed electrochemical biosensors in terms of transducing principles, metrological characteristics and the enlargement of the application field. A critical discussion on metrological challenges is then provided, deepening our understanding of the most promising trends in order to overcome them: printed nanostructures to improve the limit of detection, sensitivity and repeatability; printing strategies to improve organic biosensor integration in biological environments; emerging printing methods for non-conventional substrates; microfluidic dispensing to improve repeatability. Finally, an up-to-date analysis of the most recent examples of printed electrochemical biosensors for the main classes of target analytes (live cells, nucleic acids, proteins, metabolites and electrolytes) is reported.
Collapse
Affiliation(s)
- Emilio Sardini
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, Via Gradenigo 6, 35131 Padova, Italy
| |
Collapse
|
93
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
94
|
Ramos-Sono D, Laureano R, Rueda D, Gilman RH, La Rosa A, Ruiz J, León R, Sheen P, Zimic M. An electrochemical biosensor for the detection of Mycobacterium tuberculosis DNA from sputum and urine samples. PLoS One 2020; 15:e0241067. [PMID: 33112923 PMCID: PMC7592764 DOI: 10.1371/journal.pone.0241067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is a major global public health problem with high mortality and morbidity. In low-middle income countries (LMIC) a large number of respiratory symptomatic cases that require TB screening per year demands more accurate, fast and affordable testing for TB diagnostics. Sputum smear is the initial screening test in LMICs, however, its sensitivity is limited in patients with low sputum bacilli load. The same limitation is observed in the currently available molecular tests. We designed, standardized and evaluated an electrochemical biosensor that detects the highly specific DNA insertion element 6110 (IS6110). A PCR amplified DNA product is hybridized on the surface of the working electrode built on FTO-Glass with immobilized specific DNA probes, after which cyclic voltammetry is performed with an Ag/AgCl reference electrode and a platinum counter electrode. The response of the sensor was measured by the ratio (cathodic peak current of the hybridized sensor) / (cathodic peak current of the non-hybridized sensor). We tested the biosensor, using positive hybridization control sequences, genomic DNA extracted from M. tuberculosis strains and sputum of TB patients, and extracted DNA from the urine of healthy controls spiked with M. tuberculosis DNA. This biosensor was effective for the detection of M. tuberculosis DNA with a detection limit of 16 fM in sputum sample and 1 fM in spiked urine samples. The low cost and the relatively brief duration of the assay make this an important TB screening tool in the fight against tuberculosis.
Collapse
Affiliation(s)
- Daniel Ramos-Sono
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Raúl Laureano
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniel Rueda
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Adolfo La Rosa
- Laboratorio de Electroquímica, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú
| | - Jesús Ruiz
- Laboratorio de Metalurgia y Ciencias de Materiales, NDT Innovations, Inc., Lima, Perú
| | - Raúl León
- Laboratorio de Metalurgia y Ciencias de Materiales, NDT Innovations, Inc., Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mirko Zimic
- Laboratorio de Bioinformática y Biología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
95
|
Xie P, Song N, Shen W, Allen M, Javanmard M. A ten-minute, single step, label-free, sample-to-answer assay for qualitative detection of cytokines in serum at femtomolar levels. Biomed Microdevices 2020; 22:73. [PMID: 33037941 DOI: 10.1007/s10544-020-00525-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Label-free electronic affinity based immuno-sensing is an attractive candidate as a platform technology for analyzing biomarkers due to the ease of miniaturization and minimal use of reagents. Electronic based sensing approaches, however, have lagged behind their optical counterparts in terms of detection limit, selectivity, and reliability. Also, the matrix dependent nature of electronic sensing modalities makes difficult the analysis of biomarkers in high salt concentration samples such as serum due to charge screening. We present a novel sensing platform, the micro-well sensor, that works by functionalizing nanoscale volume wells with antibodies and monitoring the impedance change inside the wells due binding of target protein. This detection modality is advantageous to many label-free electronic sensors in that signal power scales with increase in salt concentration, thus improving the sensitivity of the platform. We demonstrate rapid label-free qualitative detection of cytokines within ten minutes at femtoMolar concentrations and a dynamic range of 3 orders of magnitude in serum samples. We describe the design, fabrication, and characterization of the micro-well sensor in serum samples using inflammatory protein biomarkers.
Collapse
Affiliation(s)
| | - Naixin Song
- University of Pennsylvania, Philadelphia, PA, USA
| | - Wen Shen
- University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Allen
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
96
|
Laghrib F, Saqrane S, El Bouabi Y, Farahi A, Bakasse M, Lahrich S, El Mhammedi MA. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem J 2020; 160:105606. [PMID: 33052148 PMCID: PMC7543751 DOI: 10.1016/j.microc.2020.105606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
COVID-19 infection poses a serious risk to human life by causing acute lung damage. Various techniques used to identify and quantify COVID-19 infection. Major challenges for containing the spread of COVID-19 is the ability to identify asymptomatic cases. Currently available diagnostic methods, biosensing technology developed during COVID-19 infection.
The technologies used for coronavirus testing consist of a pre-existing device developed to examine different pathologies, such as bacterial infections, or cancer biomarkers. However, for the 2019 pandemic, researchers knew that their technology could be modified to detect a low viral load at an early stage. Today, countries around the world are working to control the new coronavirus disease (n-SARS-CoV-2). From this perspective, laboratories, universities, and companies around the world have embarked on a race to develop and produce much-needed test kits. This review has been developed to provide an overview of current trends and strategies in n-SARS-CoV-2 diagnostics based on traditional and new emerging assessment technologies, to continuous innovation. It focuses on recent trends in biosensors to build a fast, reliable, more sensitive, accessible, user-friendly system and easily adaptable technology n-SARS-CoV-2 detection and monitoring. On the whole, we have addressed and identified research evidence supporting the use of biosensors on the premise that screening people for n-SARS-CoV-2 is the best way to contain its spread.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - S Saqrane
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - Y El Bouabi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - A Farahi
- Ibn Zohr University, Team of Catalysis and Environment, Faculty of Sciences, BP 8106 Agadir, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Faculty of Sciences, Laboratory of Organic Bioorganic Chemistry and Environment, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25 000 Khouribga, Morocco
| |
Collapse
|
97
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
98
|
A novel iron quantum cluster confined in hemoglobin as fluorescent sensor for rapid detection of Escherichia coli. Talanta 2020; 218:121137. [PMID: 32797894 DOI: 10.1016/j.talanta.2020.121137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
A new method based on fluorescent probe of iron quantum cluster has been proposed for rapid detection of Escherichia coli (E. coli). The iron quantum cluster was synthesized using hemoglobin as both a source of iron and a protective agent (Hb-FeQCs). The investigation of the sensitivity of Hb-FeQCs towards metal ions showed a highly selective turn off fluorescence for Cu2+. It suggests that Cu2+ can induce fluorescence quenching by binding to amino acids of Hb. The ability of E. coli bacteria to capture and reduce of Cu ions caused to efficient recovery of the fluorescence of Hb-FeQCs from Cu2+-caused quenching. This probe has a satisfactorily linear range of 0.35-35 μM for Cu2+ under the optimal iron quantum cluster concentration (500 μg/mL) with an 85 nM detection limit. Rapid and facile detection of E.coli bacteria with the limit of detection around 8.3 × 103 CFU/mL was successfully achieved in the artificially contaminated urine, tap water, and DMEM samples within 30 min. The fluorescence recovery was investigated by different types of bacteria and only E. coli revealed 56% recovery which related to its capability to Cu2+ reduction and the great potential of the fluorescent probe for rapid detection of pathogenic E. coli bacteria. Furthermore, the Hb-FeQCs can detect E. coli bacteria in an infected urine sample by retrieving up to 74% of its fluorescence which is helpful to accelerate the diagnosis and treatment of urinary tract infection (UTI).
Collapse
|
99
|
Duong MM, Carmody CM, Nugen SR. Phage-based biosensors: in vivo analysis of native T4 phage promoters to enhance reporter enzyme expression. Analyst 2020; 145:6291-6297. [PMID: 32945826 DOI: 10.1039/d0an01413c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phage-based biosensors have shown significant promise in meeting the present needs of the food and agricultural industries due to a combination of sufficient portability, speed, ease of use, sensitivity, and low production cost. Although current phage-based methods do not meet the bacteria detection limit imposed by the EPA, FDA, and USDA, a better understanding of phage genetics can significantly increase their sensitivity as biosensors. In the current study, the signal sensitivity of a T4 phage-based detection system was improved via transcriptional upregulation of the reporter enzyme Nanoluc luciferase (Nluc). An efficient platform to evaluate the promoter activity of reporter T4 phages was developed. The ability to upregulate Nluc within T4 phages was evaluated using 15 native T4 promoters. Data indicates a six-fold increase in reporter enzyme signal from integration of the selected promoters. Collectively, this work demonstrates that fine tuning the expression of reporter enzymes such as Nluc through optimization of transcription can significantly reduce the limits of detection.
Collapse
Affiliation(s)
- Michelle M Duong
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
100
|
Flynn C, Ignaszak A. Lyme Disease Biosensors: A Potential Solution to a Diagnostic Dilemma. BIOSENSORS 2020; 10:E137. [PMID: 32998254 PMCID: PMC7601730 DOI: 10.3390/bios10100137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Over the past four decades, Lyme disease has remained a virulent and pervasive illness, persisting throughout North America and many other regions of the world. Recent increases in illness in many countries has sparked a renewed interest in improved Lyme diagnostics. While current standards of diagnosis are acceptable for the late stages of the disease, it remains difficult to accurately diagnose early forms of the illness. In addition, current diagnostic methods tend to be relatively expensive and require a large degree of laboratory-based analysis. Biosensors represent the fusion of biological materials with chemical techniques to provide simple, inexpensive alternatives to traditional diagnostic methods. Lyme disease biosensors have the potential to better diagnose early stages of the illness and provide possible patients with an inexpensive, commercially available test. This review examines the current state of Lyme disease biosensing, with a focus on previous biosensor development and essential future considerations.
Collapse
Affiliation(s)
- Connor Flynn
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | | |
Collapse
|