51
|
Singh VK, Newman VL, Romaine PLP, Wise SY, Seed TM. Radiation countermeasure agents: an update (2011-2014). Expert Opin Ther Pat 2014; 24:1229-55. [PMID: 25315070 PMCID: PMC4438421 DOI: 10.1517/13543776.2014.964684] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past 60 years towards the development of a safe, nontoxic and effective radiation countermeasure for the acute radiation syndrome (ARS), no drug has been approved by the US FDA. A radiation countermeasure to protect the population at large from the effects of lethal radiation exposure remains a significant unmet medical need of the US citizenry and, thus, has been recognized as a high priority area by the government. AREA COVERED This article reviews relevant publications and patents for recent developments and progress for potential ARS treatments in the area of radiation countermeasures. Emphasis is placed on the advanced development of existing agents since 2011 and new agents identified as radiation countermeasure for ARS during this period. EXPERT OPINION A number of promising radiation countermeasures are currently under development, seven of which have received US FDA investigational new drug status for clinical investigation. Four of these agents, CBLB502, Ex-RAD, HemaMax and OrbeShield, are progressing with large animal studies and clinical trials. G-CSF has high potential and well-documented therapeutic effects in countering myelosuppression and may receive full licensing approval by the US FDA in the future.
Collapse
Affiliation(s)
- Vijay K Singh
- Armed Forces Radiobiology Research Institute , 8901 Wisconsin Ave, Bethesda, MD 20889-5603 , USA +1 301 295 2347 ; +1 301 295 6503 ;
| | | | | | | | | |
Collapse
|
52
|
Ha CT, Li XH, Fu D, Moroni M, Fisher C, Arnott R, Srinivasan V, Xiao M. Circulating interleukin-18 as a biomarker of total-body radiation exposure in mice, minipigs, and nonhuman primates (NHP). PLoS One 2014; 9:e109249. [PMID: 25290447 PMCID: PMC4188589 DOI: 10.1371/journal.pone.0109249] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
We aim to develop a rapid, easy-to-use, inexpensive and accurate radiation dose-assessment assay that tests easily obtained samples (e.g., blood) to triage and track radiological casualties, and to evaluate the radioprotective and therapeutic effects of radiation countermeasures. In the present study, we evaluated the interleukin (IL)-1 family of cytokines, IL-1β, IL-18 and IL-33, as well as their secondary cytokines’ expression and secretion in CD2F1 mouse bone marrow (BM), spleen, thymus and serum in response to γ-radiation from sublethal to lethal doses (5, 7, 8, 9, 10, or 12 Gy) at different time points using the enzyme-linked immune sorbent assay (ELISA), immunoblotting, and cytokine antibody array. Our data identified increases of IL-1β, IL-18, and/or IL-33 in mouse thymus, spleen and BM cells after total-body irradiation (TBI). However, levels of these cytokines varied in different tissues. Interestingly, IL-18 but not IL-1β or IL-33 increased significantly (2.5–24 fold) and stably in mouse serum from day 1 after TBI up to 13 days in a radiation dose-dependent manner. We further confirmed our finding in total-body γ-irradiated nonhuman primates (NHPs) and minipigs, and demonstrated that radiation significantly enhanced IL-18 in serum from NHPs 2–4 days post-irradiation and in minipig plasma 1–3 days post-irradiation. Finally, we compared circulating IL-18 with the well known hematological radiation biomarkers lymphocyte and neutrophil counts in blood of mouse, minipigs and NHPs and demonstrated close correlations between these biomarkers in response to radiation. Our results suggest that the elevated levels of circulating IL-18 after radiation proportionally reflect radiation dose and severity of radiation injury and may be used both as a potential biomarker for triage and also to track casualties after radiological accidents as well as for therapeutic radiation exposure.
Collapse
Affiliation(s)
- Cam T. Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Xiang-Hong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Maria Moroni
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carolyn Fisher
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Robert Arnott
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Venkataraman Srinivasan
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
53
|
Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. SPRINGERPLUS 2014; 3:414. [PMID: 25133093 PMCID: PMC4132458 DOI: 10.1186/2193-1801-3-414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Purpose These comments suggest a division of radiation protective agents on the grounds of their mechanism of action that increase the radio resistance of an organism. Conclusion Given below is the division of radiation protective agents on the basis of their mechanism of action into 3 groups: 1) Radiation protective agents, with the implementation of radiation protective action taking place at the cellular level in the course of rapidly proceeding radiation-chemical reactions. At the same time, when the ionizing radiation energy is absorbed, these agents partially neutralize the “oxygen effect” as a radiobiological phenomenon, especially in the radiolysis of DNA; 2) Radiation protective agents that exert their effect at the system level by accelerating the post-radiation recovery of radiosensitive tissues through activation of a number of pro-inflammatory signaling pathways and an increase in the secretion of hematopoietic growth factors, including their use as mitigators in the early period after irradiation prior to the clinical development of acute radiation syndrome (ARS). 3) Radiomodulators including drugs and nutritional supplements that can elevate the resistance of the organism to adverse environmental factors, including exposure to ionization by means of modulating the gene expression through a hormetic effect of small doses of stressors and a “substrate” maintenance of adaptive changes, resulting in an increased antioxidant protection of the organism. Radiation protective agents having polyvalence in implementation of their action may simultaneously induce radioprotective effect by various routes with a prevalence of basis mechanisms of the action.
Collapse
Affiliation(s)
- Mikhail V Vasin
- Department of Medicine of Catastrophe, Russian Medical Academy of Post-Graduate Education, St. Polikarpova 10, 125284 Moscow, Russia
| |
Collapse
|
54
|
Mirzoeva S, Paunesku T, Wanzer MB, Shirvan A, Kaempfer R, Woloschak GE, Small W. Single administration of p2TA (AB103), a CD28 antagonist peptide, prevents inflammatory and thrombotic reactions and protects against gastrointestinal injury in total-body irradiated mice. PLoS One 2014; 9:e101161. [PMID: 25054224 PMCID: PMC4108308 DOI: 10.1371/journal.pone.0101161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023] Open
Abstract
The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103) that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C), Peptide (P; 5 mg/kg of p2TA peptide), Radiation (R; total body irradiation with 8 Gy γ-rays), and Radiation + Peptide (RP; irradiation followed by p2TA peptide 24 h later). Gastrointestinal tissue damage was evaluated by analysis of jejunum histopathology and immunohistochemistry for cell proliferation (Cyclin D1) and inflammation (COX-2) markers, as well as the presence of macrophages (F4/80). Pro-inflammatory cytokines IL-6 and KC as well as fibrinogen were quantified in plasma samples obtained from the same mice. Our results demonstrated that administration of p2TA peptide significantly reduced the irradiation-induced increase of IL-6 and fibrinogen in plasma 7 days after exposure. Seven days after total body irradiation with 8 Gy of gamma rays numbers of intestinal crypt cells were reduced and villi were shorter in irradiated animals compared to the controls. The p2TA peptide delivery 24 h after irradiation led to improved morphology of villi and crypts, increased Cyclin D1 expression, decreased COX-2 staining and decreased numbers of macrophages in small intestine of irradiated mice. Our study suggests that attenuation of CD28 signaling is a promising therapeutic approach for mitigation of radiation-induced tissue injury.
Collapse
Affiliation(s)
- Salida Mirzoeva
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - M. Beau Wanzer
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | | | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gayle E. Woloschak
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - William Small
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
55
|
Kma L. Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review. Asian Pac J Cancer Prev 2014; 15:2405-25. [DOI: 10.7314/apjcp.2014.15.6.2405] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
56
|
Li XH, Ghosh SP, Ha CT, Fu D, Elliott TB, Bolduc DL, Villa V, Whitnall MH, Landauer MR, Xiao M. Delta-Tocotrienol Protects Mice from Radiation-Induced Gastrointestinal Injury. Radiat Res 2013; 180:649-57. [DOI: 10.1667/rr13398.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|