51
|
Affiliation(s)
- Richard N Pierson
- Department of Surgery, Baltimore Veterans Affairs Medical Center, and Division of Cardiac Surgery, University of Maryland, Baltimore 21201, USA.
| |
Collapse
|
52
|
Hisashi Y, Yamada K, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Colvin RB, Shimizu A. Rejection of cardiac xenografts transplanted from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons. Am J Transplant 2008; 8:2516-26. [PMID: 19032222 PMCID: PMC2836186 DOI: 10.1111/j.1600-6143.2008.02444.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine donors in discordant xenotransplantation has extended the survival of cardiac xenografts in baboons following transplantation. Eight baboons received heterotopic cardiac xenografts from GalT-KO swine and were treated with a chronic immunosuppressive regimen. The pathologic features of acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR) and chronic rejection were assessed in the grafts. No hyperacute rejection developed and one graft survived up to 6 months after transplantation. However, all GalT-KO heart grafts underwent graft failure with AHXR, ACXR and/or chronic rejection. AHXR was characterized by interstitial hemorrhage and multiple thrombi in vessels of various sizes. ACXR was characterized by TUNEL(+) graft cell injury with the infiltration of T cells (including CD3 and TIA-1(+) cytotoxic T cells), CD4(+) cells, CD8(+) cells, macrophages and a small number of B and NK cells. Chronic xenograft vasculopathy, a manifestation of chronic rejection, was characterized by arterial intimal thickening with TUNEL(+) dead cells, antibody and complement deposition, and/or cytotoxic T-cell infiltration. In conclusion, despite the absence of the Gal epitope, acute and chronic antibody and cell-mediated rejection developed in grafts, maintained by chronic immunosupression, presumably due to de novo responses to non-Gal antigens.
Collapse
Affiliation(s)
- Y. Hisashi
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Kuwaki
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Y.-L Tseng
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - F. J. M. F. Dor
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. L Houser
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. C. Robson
- Department of Medicine, Transplant Center, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | | | - D. K. C. Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - D. H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - R. B. Colvin
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Immerge BioTherapeutics Inc., Cambridge, MA, Department of Pathology, Nippon Medical School, Tokyo, Japan,Corresponding author: Akira Shimizu,
| |
Collapse
|
53
|
Lin CC, Cooper DKC, Dorling A. Coagulation dysregulation as a barrier to xenotransplantation in the primate. Transpl Immunol 2008; 21:75-80. [PMID: 19000927 DOI: 10.1016/j.trim.2008.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The ability to generate pigs expressing a human complement regulatory protein (hCRP) and/or pigs in which the alpha1,3-galactosyltransferase gene has been knocked out (GT-KO) has largely overcome the barrier of hyperacute rejection of a pig organ transplanted into a primate. However, acute humoral xenograft rejection (AHXR), presenting as microvascular thrombosis and/or consumptive coagulopathy, remains a major hurdle to successful xenotransplantation. This review summarizes recent studies of the coagulation problems associated with xenotransplantation, and discusses potential strategies to overcome them. RECENT PROGRESS Organ transplantation into nonhuman primates from GT-KO pigs that express a hCRP are not susceptible to hyperacute rejection. Nevertheless, most recipients of GT-KO and/or hCRP transgenic pig organs develop a consumptive coagulopathy, even when the graft remains functioning. This is associated with platelet aggregation, thrombocytopenia, anemia, and a tendency to bleed. Whilst this may reflect an ongoing immune response against the graft, (as exposure to anti-nonGal antibodies in vitro induces procoagulant changes in porcine ECs, even in the absence of complement), histological examination of the graft often shows only minimal features of immune injury, unlike grafts undergoing typical AHXR. Importantly, recent in vitro studies have indicated that the coincubation of porcine endothelial cells (ECs) with human platelets activates the platelets to express tissue factor, independent of a humoral immune response. These observations suggest that the use of organs from GT-KO pigs that express a hCRP may not be sufficient to prevent the development of a coagulation disorder following xenotransplantation, even if complete immunological tolerance can be achieved. SUMMARY Both thrombotic microangiopathy and systemic consumptive coagulopathy are increasingly recognized as barriers to successful xenotransplantation. The breeding of transgenic pigs with one or more human anticoagulant genes, such as CD39 or tissue factor pathway inhibitor, is anticipated to inhibit the procoagulant changes that take place on the graft ECs, and thus may prevent or reduce platelet activation that arises as a result of immune-mediated injury. The identification of the molecular mechanisms that develop between porcine ECs and human platelets may allow pharmacological approaches to be determined that inhibit the development of thrombotic microangiopathy and consumptive coagulopathy. Hopefully, further genetic modification of the organ-source pigs, combined with systemic drug therapy to the recipient, will prolong graft survival further.
Collapse
Affiliation(s)
- Chih Che Lin
- Department of Immunology, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
54
|
d'Apice AJF, Cowan PJ. Xenotransplantation: the next generation of engineered animals. Transpl Immunol 2008; 21:111-5. [PMID: 18973810 DOI: 10.1016/j.trim.2008.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/09/2008] [Indexed: 11/20/2022]
Affiliation(s)
- Anthony J F d'Apice
- Immunology Research Centre & Department of Medicine, University of Melbourne St. Vincent's Hospital 41 Victoria Parade Fitzroy, Victoria, Australia.
| | | |
Collapse
|
55
|
The coagulation barrier in xenotransplantation: incompatibilities and strategies to overcome them. Curr Opin Organ Transplant 2008; 13:178-83. [PMID: 18685300 DOI: 10.1097/mot.0b013e3282f63c74] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Dysregulated coagulation is now recognized as a major contributor to graft loss in xenotransplantation. This review summarizes recent data on putative mechanisms of pathogenic coagulation in xenotransplantation and discusses progress on strategies to overcome them. RECENT FINDINGS Evidence continues to grow that the primary cause of failure of pig cardiac and renal xenografts is probably antibody-mediated injury to the endothelium, leading to development of microvascular thrombosis. Several factors that may exacerbate the problem will remain, even in the absence of a humoral response. These include molecular incompatibilities that affect the control of coagulation - in particular the failure of pig thrombomodulin to activate the primate protein C pathway - and platelet reactivity. Expression of anticoagulant and antiplatelet molecules within the graft is a potential solution that has been successfully tested in rodent models and will soon be applied to the pig-to-primate model. This strategy, in parallel with physical methods such as encasing islets in a protective layer, also holds promise for reducing the thrombogenicity of pig islet xenografts. SUMMARY Thrombosis is a barrier to long-term survival and function of porcine xenografts, which may eventually be overcome by various combinations of genetic and physical manipulation.
Collapse
|
56
|
Ekser B, Rigotti P, Gridelli B, Cooper DKC. Xenotransplantation of solid organs in the pig-to-primate model. Transpl Immunol 2008; 21:87-92. [PMID: 18955143 DOI: 10.1016/j.trim.2008.10.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 10/09/2008] [Indexed: 12/12/2022]
Abstract
Xenotransplantation using pig organs could solve the significant increasing shortage of donor organs for allotransplantation. In the last two decades, major progress has been made in understanding the xenoimmunobiology of pig-to-nonhuman primate transplantation, and today we are close to clinical trials. The ability to genetically engineer pigs, such as human decay-accelerating factor (hDAF), CD46 (membrane cofactor protein), or alpha1,3-galactosyltransferase gene-knockout (GT-KO), has been a significant step toward the clinical application of xenotransplantation. Using GT-KO pigs and novel immunosuppressant agents, 2 to 6 months' survival of heterotopic heart xenotransplants has been achieved. In life-supporting kidney xenotransplantation, promising survival of close to 3 months has been achieved. However, liver and lung xenotransplantations do not have such encouraging survival as kidney and heart xenotransplantation. Although the introduction of hDAF and GT-KO pigs largely overcame hyperacute rejection, acute humoral xenograft rejection (AHXR) remains a challenge to be overcome if survival is to be increased. In several studies, when classical AHXR was prevented, thrombotic microangiopathy and coagulation dysregulation became more obvious, which make them another hurdle to be overcome. The initiating cause of failure of pig cardiac and renal xenografts may be antibody-mediated injury to the endothelium, leading to the development of microvascular thrombosis. Potential contributing factors toward the development of the thrombotic microangiopathy include: 1) the presence of preformed anti-non-Gal antibodies, 2) the development of very low levels of elicited antibodies to non-Gal antigens, 3) natural killer cell or macrophage activity, and 4) inherent coagulation dysregulation between pigs and primates. The breeding of pigs transgenic for an 'anticoagulant' or 'anti-thrombotic' gene, such as human tissue factor pathway inhibitor, hirudin, or CD39, or lacking the gene for the prothrombinase, fibrinogen-like protein-2, is anticipated to inhibit the change in the endothelium to a procoagulant state that takes place in the pig organ after transplantation. A further limitation for organ xenotransplantation is the potential for cross-species infection. As far as exogenous viruses are concerned, porcine cytomegalovirus has been detected in the tissues of recipient non-human primates, although no invasive disease was reported. Until today, no formal evidence has been presented from in vivo studies in non-human primates or from humans exposed to pig organs, tissues, or cells that porcine endogenous retroviruses infect primate cells. Xenotransplantation is a potential answer to the current organ shortage. Its future depends on; 1) further genetic modification of pigs, 2) the introduction of novel immunosuppressive agents that target the innate immune system and plasma cells, and 3) the development of clinically-applicable methods to induce donor-specific tolerance.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
57
|
Expression of tissue factor and initiation of clotting by human platelets and monocytes after incubation with porcine endothelial cells. Transplantation 2008; 86:702-9. [PMID: 18791452 DOI: 10.1097/tp.0b013e31818410a3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Intravascular thrombosis remains a major barrier to successful pig-to-primate xenotransplantation. However, the precise factors initiating thrombosis are unknown. In this study, we investigated the contribution of recipient platelets and monocytes. METHODS Primary pig aortic endothelial cells (PAECs) were incubated with combinations of fresh or heat-inactivated human plasma, platelets, or monocytes, after which they were separated and analyzed individually by flow cytometry for tissue factor (TF) expression and for their ability to clot recalcified normal or factor-VII-deficient plasma. RESULTS Procoagulant porcine TF was induced in PAECs only by fresh human plasma, and not by heat-inactivated plasma, platelets, or monocytes. In contrast, procoagulant human TF was induced on platelets and monocytes after incubation with PAEC, irrespective of whether the plasma was present or not. In addition, human platelets caused the shedding of procoagulant TF-expressing aggregates from PAEC. CONCLUSIONS This work defines a cell-based in vitro assay system to address complex interactions among PAECs, human platelets, and monocytes. The induction of procoagulant TF on PAECs by fresh human plasma was most likely dependent on xenoreactive natural antibody and complement present in fresh human plasma. In contrast, the shedding of procoagulant platelet-PAEC aggregates, induced by human platelets, and the induction of procoagulant TF on human platelets and monocytes by PAEC, occurred independently of these factors. These results suggest that different mechanisms may contribute to the initiation of thrombosis after xenotransplantation, some of which may not be influenced by the further manipulation of the immune response against pig xenografts.
Collapse
|
58
|
Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Yamada K, Colvin RB. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1471-81. [PMID: 18467706 DOI: 10.2353/ajpath.2008.070672] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heterotopic cardiac xenotransplantation from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine to baboons was performed to characterize immunological reaction to the xenograft in the absence of anti-Gal antibody-mediated rejection. Eight baboons received heterotopic cardiac xenografts from GalT-KO porcine donors. All baboons were treated with chronic immunosuppressive therapy. Both histological and immunohistochemical studies were performed on biopsy and graftectomy samples. No hyperacute rejection was observed. Three baboons were euthanized or died 16 to 56 days after transplantation. The other five grafts ceased beating between days 59 and 179 (median, 78 days). All failing grafts exhibited thrombotic microangiopathy (TM) with platelet-rich fibrin thrombi in the microvasculature, myocardial ischemia and necrosis, and focal interstitial hemorrhage. TM developed in parallel with increases in immunoglobulin (IgM and IgG) and complement (C3, C4d, and C5b-9) deposition, as well as with subsequent increases in both TUNEL(+) endothelial cell death and procoagulant activation (increased expression of both tissue factor and von Willebrand factor and decreased expression of CD39). CD3(+) T-cell infiltration occurred in all grafts and weakly correlated with the development of TM. In conclusion, although the use of GalT-KO swine donors prevented hyperacute rejection and prolonged graft survival, slowly progressive humoral rejection--probably associated with non-Gal antibodies to the xenograft--and disordered thromboregulation represent major immunological barriers to long-term xenograft survival.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Distribution of the alphaGal- and the non-alphaGal T-antigens in the pig kidney: potential targets for rejection in pig-to-man xenotransplantation. Immunol Cell Biol 2008; 86:363-71. [PMID: 18301385 DOI: 10.1038/icb.2008.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Carbohydrate antigens, present on pig vascular endothelial cells, seem to be the prime agents responsible for graft rejection, and although genetically modified animals that express less amounts of carbohydrate antigen are available, it is still useful to decide the localization of the reactive xenoantigens in organs contemplated for xenotransplantation. Here we compare the distribution in pig kidney of antigens important in xenograft destruction, namely the Galalpha1-3Gal (alphaGal) glycans, with the localization of the T-antigen (Galbeta1-3GalNAc). The alpha-galactose-specific lectin Griffonia simplicifolia isolectin 1B4 was used to detect the Galalpha1-3Gal glycans, whereas Arachis hypogaea (PNA) lectin and a monoclonal antibody (3C9) detected T-antigen. In addition, two vascular markers (anti-caveolin-1 and anti-von Willebrand factor) served to identify vascular structures of the kidney. Both conventional fluorescence and confocal microscopy were used to distinguish lectin and immunohistochemical staining. On the basis of fluorescence signals, the results indicate that the carbohydrate antigens are heterogeneously distributed in the pig kidney. alphaGal epitopes were sparse in the capillary loops forming the glomeruli and in the capillaries surrounding the convoluted tubules, but showed stronger staining in capillaries surrounding the limbs of Henle. In addition, the brush border and basement membranes of the convoluted tubules strongly reacted with the GS1-B4-lectin. Finally, the Galalpha1-3Gal glycans were also present on epithelial cells of the large collecting tubules. Regarding the T-antigen, PNA and 3C9 reacted with different glomerular cells, whereas both reacted strongly with the endothelial cells lining the large kidney vessels. Human serum incubation of pig kidney sections, in which the alphaGal epitopes were blocked by unconjugated GS1-B4, showed staining of the same vascular structures as were obtained after incubation with the T-antigen-detecting agents. The study thus proves a complex spatial distribution of carbohydrate antigens relevant for xenotransplantation of pig kidney.
Collapse
|
60
|
Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future. Nat Rev Immunol 2007; 7:519-31. [PMID: 17571072 DOI: 10.1038/nri2099] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Xenotransplantation using pigs as the transplant source has the potential to resolve the severe shortage of human organ donors. Although the development of relatively non-toxic immunosuppressive or tolerance-inducing regimens will be required to justify clinical trials using pig organs, recent advances in our understanding of the biology of xenograft rejection and zoonotic infections, and the generation of alpha1,3-galactosyltransferase-deficient pigs have moved this approach closer to clinical application. This Review highlights the major obstacles impeding the translation of xenotransplantation into clinical therapies and the potential solutions, providing a perspective on the future of clinical xenotransplantation.
Collapse
Affiliation(s)
- Yong-Guang Yang
- Bone Marrow Transplantation Section, Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA
| | | |
Collapse
|
61
|
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA. [corrected]
| | | |
Collapse
|
62
|
Using α1,3-galactosyltransferase gene-knockout pig organs in nonhuman primates. Curr Opin Organ Transplant 2007. [DOI: 10.1097/mot.0b013e3280146495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Abstract
Mohiuddin discusses the lessons learned from large animal xenograft models and why the immunological barrier is still the most important hurdle preventing clinical xenotransplantation of organs.
Collapse
Affiliation(s)
- Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| |
Collapse
|
64
|
|
65
|
Dwyer KM, Deaglio S, Crikis S, Gao W, Enjyoji K, Strom TB, Cowan PJ, d'Apice AJ, Robson SC. Salutary roles of CD39 in transplantation. Transplant Rev (Orlando) 2007. [DOI: 10.1016/j.trre.2007.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Abstract
A series of immunological and physiological barriers must be overcome for the successful clinical application of xenotransplantation. The acute phases of xenograft rejection have been prevented or at least attenuated by a variety of interventions including treatment of the recipient and genetic modification of the donor. However, recent data suggest that xenografts have a heightened susceptibility to intravascular thrombosis, a process that is emerging as a major contributor to xenograft loss. Current data strongly suggest that thrombosis is primarily a direct consequence of the rejection process, but it may also be facilitated by the failure of porcine regulators of coagulation to efficiently regulate the primate coagulation cascade. Systemic anticoagulant therapy has met with limited success and poses significant risks. Genetic strategies to express antithrombotic agents on xenograft endothelium appear to be more promising and achievable, with candidate molecules including human and leech anticoagulants and the antiplatelet enzyme CD39. Deletion of porcine procoagulants may also prove to be a useful approach.
Collapse
Affiliation(s)
- Sandra Crikis
- Immunology Research Centre and the Department of Medicine, St. Vincent's Health, University of Melbourne, Melbourne, Australia
| | | | | |
Collapse
|
67
|
Shimizu A, Yamada K. Pathology of renal xenograft rejection in pig to non-human primate transplantation. Clin Transplant 2006; 20 Suppl 15:46-52. [PMID: 16848876 DOI: 10.1111/j.1399-0012.2006.00550.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Xenotransplantation has the potential to alleviate the critical shortage of organs for transplantation in humans. Miniature swine are a promising donor species for xenotransplantation. However, when swine organs are transplanted into primates, hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR), and chronic xenograft rejection prevent successful engraftment. Developing a suitable regimen for preventing xenograft rejection requires the ability to accurately diagnosis the severity and type of rejection in the graft. For this purpose, histopathology remains the most definitive and reliable tool. We discuss here the characteristic features of xenograft rejection in a preclinical pig-to-non-human primate transplantation model. In miniature swine to baboon xenotransplantation, marked interstitial hemorrhage develops in HAR, and renal microvascular injury develops with multiple platelet-fibrin microthrombi in both HAR and AHXR. T-cell-mediated cellular immunity plays an important role in ACXR. Chronic humoral and cellular rejection may induce chronic xenograft rejection, and will be a major cause of graft loss in discordant xenotransplantation.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
68
|
Current World Literature. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000218938.96009.b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
69
|
Histopathology of discordant xenotransplantation. Curr Opin Organ Transplant 2006. [DOI: 10.1097/01.mot.0000218931.19773.f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
70
|
O'Connell PJ. Thrombotic microangiopathy: the next big hurdle for xenotransplantation. J Am Soc Nephrol 2005; 16:2529-30. [PMID: 16093447 DOI: 10.1681/asn.2005070735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|