51
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
52
|
Chen B, Jia P, Han J. Role of indoor aerosols for COVID-19 viral transmission: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1953-1970. [PMID: 33462543 PMCID: PMC7805572 DOI: 10.1007/s10311-020-01174-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 05/16/2023]
Abstract
The relationship between outdoor atmospheric pollution by particulate matter and the morbidity and mortality of coronavirus disease 2019 (COVID-19) infections was recently disclosed, yet the role of indoor aerosols is poorly known . Since people spend most of their time indoor, indoor aerosols are closer to human occupants than outdoors, thus favoring airborne transmission of COVID-19. Therefore, here we review the characteristics of aerosol particles emitted from indoor sources, and how exposure to particles affects human respiratory infections and transport of airborne pathogens. We found that tobacco smoking, cooking, vacuum cleaning, laser printing, burning candles, mosquito coils and incenses generate large quantities of particles, mostly in the ultrafine range below 100 nm. These tiny particles stay airborne, are deposited in the deeper regions of human airways and are difficult to be removed by the respiratory system. As a consequence, adverse effects can be induced by inhaled aerosol particles via oxidative stress and inflammation. Early epidemiological evidence and animal studies have revealed the adverse effects of particle exposure in respiratory infections. In particular, inhaled particles can impair human respiratory systems and immune functions, and induce the upregulation of angiotensin-converting enzyme 2, thus inducing higher vulnerability to COVID-19 infection. Moreover, co-production of inflammation mediators by COVID-19 infection and particle exposure magnifies the cytokine storm and aggravates symptoms in patients. We also discuss the role of indoor aerosol particles as virus carriers. Although many hypotheses were proposed, there is still few knowledge on interactions between aerosol articles and virus-laden droplets or droplet nuclei.
Collapse
Affiliation(s)
- Bo Chen
- Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Puqi Jia
- Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| |
Collapse
|
53
|
Wang Z, Zhou Y, Zhang Y, Huang X, Duan X, Ou Y, Liu S, Hu W, Liao C, Zheng Y, Wang L, Xie M, Yang H, Xiao S, Luo M, Tang L, Zheng J, Liu S, Wu F, Deng Z, Tian H, Peng J, Wang X, Zhong N, Ran P. Association of hospital admission for bronchiectasis with air pollution: A province-wide time-series study in southern China. Int J Hyg Environ Health 2020; 231:113654. [PMID: 33157415 DOI: 10.1016/j.ijheh.2020.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022]
Abstract
The relation of acute fluctuations of air pollution to hospital admission for bronchiectasis remained uncertain, and large-scale studies were needed. We collected daily concentrations of particulate matter (PM), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and daily hospitalizations for bronchiectasis for 21 cities across Guangdong Province from 2013 through 2017. We examined their association using two-stage time-series analysis. Our analysis was stratified by specific sub-diagnosis, sex and age group to assess potential effect modifications. Relative risks of hospitalization for bronchiectasis were 1.060 (95%CI 1.014-1.108) for PM10 at lag0-6, 1.067 (95%CI 1.020-1.116) for PM2.5 at lag0-6, 1.038 (95%CI 1.005-1.073) for PMcoarse at lag0-6, 1.058 (95%CI 1.015-1.103) for SO2 at lag0-4, 1.057 (95%CI 1.030-1.084) for NO2 at lag0 and 1.055 (95%CI 1.025-1.085) for CO at lag0-6 per interquartile range increase of air pollution. Specifically, acute fluctuations of air pollution might be a risk factor for bronchiectasis patients with lower respiratory infection but not with hemoptysis. Patients aged ≥65 years, and female patients appeared to be particularly susceptible to air pollution. Acute fluctuations of air pollution, particularly PM may increase the risk of hospital admission for bronchiectasis exacerbations, especially for the patients complicated with lower respiratory infection. This study strengthens the importance of reducing adverse impact on respiratory health of air pollution to protect vulnerable populations.
Collapse
Affiliation(s)
- Zihui Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yongbo Zhang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Xiaoliang Huang
- Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Xianzhong Duan
- Department of Ecology and Environment of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Yubo Ou
- Guangdong Provincial Environment Monitoring Center, Guangzhou, Guangdong Province, China
| | - Shiliang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China; Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Canada
| | - Wei Hu
- Government Affairs Service Center of Health Commission of Guangdong Province, Guangzhou, Guangdong Province, China
| | - Chenghao Liao
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Yijia Zheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Long Wang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, Guangdong Province, China
| | - Min Xie
- Guangdong Provincial Environment Monitoring Center, Guangzhou, Guangdong Province, China
| | - Huajing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shan Xiao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ming Luo
- School of Geography and Planning, Sun Yat Sen University, Guangzhou, Guangdong Province, China
| | - Longhui Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jinzhen Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Sha Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Heshen Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jieqi Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xinwang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
54
|
Xue Y, Chu J, Li Y, Kong X. The influence of air pollution on respiratory microbiome: A link to respiratory disease. Toxicol Lett 2020; 334:14-20. [DOI: 10.1016/j.toxlet.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/08/2023]
|
55
|
Coinfection with Porcine Circovirus Type 2 (PCV2) and Streptococcus suis Serotype 2 (SS2) Enhances the Survival of SS2 in Swine Tracheal Epithelial Cells by Decreasing Reactive Oxygen Species Production. Infect Immun 2020; 88:IAI.00537-20. [PMID: 32868342 DOI: 10.1128/iai.00537-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) and Streptococcus suis serotype 2 (SS2) clinical coinfection cases have been frequently detected. The respiratory epithelium plays a crucial role in host defense against a variety of inhaled pathogens. Reactive oxygen species (ROS) are involved in killing of bacteria and host immune response. The aim of this study is to assess whether PCV2 and SS2 coinfection in swine tracheal epithelial cells (STEC) affects ROS production and investigate the roles of ROS in bacterial survival and the inflammatory response. Compared to SS2 infection, PCV2/SS2 coinfection inhibited the activity of NADPH oxidase, resulting in lower ROS levels. Bacterial intracellular survival experiments showed that coinfection with PCV2 and SS2 enhanced SS2 survival in STEC. Pretreatment of STEC with N-acetylcysteine (NAC) also helps SS2 intracellular survival, indicating that PCV2/SS2 coinfection enhances the survival of SS2 in STEC through a decrease in ROS production. In addition, compared to SS2-infected STEC, PCV2/SS2 coinfection and pretreatment of STEC with NAC prior to SS2 infection both downregulated the expression of the inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β. Further research found that activation of p38/MAPK promoted the expression of inflammatory cytokines in SS2-infected STEC; however, PCV2/SS2 coinfection or NAC pretreatment of STEC inhibited p38 phosphorylation, suggesting that coinfection of STEC with PCV2 and SS2 weakens the inflammatory response to SS2 infection through reduced ROS production. Collectively, coinfection of STEC with PCV2 and SS2 enhances the intracellular survival of SS2 and weakens the inflammatory response through decreased ROS production, which might exacerbate SS2 infection in the host.
Collapse
|
56
|
Pompilio A, Di Bonaventura G. Ambient air pollution and respiratory bacterial infections, a troubling association: epidemiology, underlying mechanisms, and future challenges. Crit Rev Microbiol 2020; 46:600-630. [PMID: 33059504 DOI: 10.1080/1040841x.2020.1816894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The World Health Organization attributed more than four million premature deaths to ambient air pollution in 2016. Numerous epidemiologic studies demonstrate that acute respiratory tract infections and exacerbations of pre-existing chronic airway diseases can result from exposure to ambient (outdoor) air pollution. In this context, the atmosphere contains both chemical and microbial pollutants (bioaerosols), whose impact on human health remains unclear. Therefore, this review: summarises the findings from recent studies on the association between exposure to air pollutants-especially particulate matter and ozone-and onset or exacerbation of respiratory infections (e.g. pneumonia, cystic fibrosis lung infection, and tuberculosis); discusses the mechanisms underlying the relationship between air pollution and respiratory bacterial infections, which is necessary to define prevention and treatment strategies; demonstrates the relevance of air pollution modelling in investigating and preventing the impact of exposure to air pollutants on human health; and outlines future actions required to improve air quality and reduce morbidity and mortality related to air pollution.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
57
|
Qin S, Lin P, Wu Q, Pu Q, Zhou C, Wang B, Gao P, Wang Z, Gao A, Overby M, Yang J, Jiang J, Wilson DL, Tahara YK, Kool ET, Xia Z, Wu M. Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during Pseudomonas aeruginosa Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2231-2242. [PMID: 32929043 PMCID: PMC7541742 DOI: 10.4049/jimmunol.1901533] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-β axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.
Collapse
Affiliation(s)
- Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Chuanmin Zhou
- Wuhan University School of Health Sciences, Wuhan, Hubei Province 430071, China
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; and
| | - Ashley Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Madison Overby
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | - David L Wilson
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Yu-Ki Tahara
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
58
|
Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, Rezaee F. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2020; 319:L481-L496. [PMID: 32640839 PMCID: PMC7518063 DOI: 10.1152/ajplung.00104.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in children worldwide. While most develop a mild, self-limiting illness, some develop severe acute lower respiratory infection and persistent airway disease. Exposure to ambient particulate matter has been linked to asthma, bronchitis, and viral infection in multiple epidemiological studies. We hypothesized that coexposure to nanoparticles worsens RSV-induced airway epithelial barrier dysfunction. Bronchial epithelial cells were incubated with titanium dioxide nanoparticles (TiO2-NP) or a combination of TiO2-NP and RSV. Structure and function of epithelial cell barrier were analyzed. Viral titer and the role of reactive oxygen species (ROS) generation were evaluated. In vivo, mice were intranasally incubated with TiO2-NP, RSV, or a combination. Lungs and bronchoalveolar lavage (BAL) fluid were harvested for analysis of airway inflammation and apical junctional complex (AJC) disruption. RSV-induced AJC disruption was amplified by TiO2-NP. Nanoparticle exposure increased viral infection in epithelial cells. TiO2-NP induced generation of ROS, and pretreatment with antioxidant, N-acetylcysteine, reversed said barrier dysfunction. In vivo, RSV-induced injury and AJC disruption were augmented in the lungs of mice given TiO2-NP. Airway inflammation was exacerbated, as evidenced by increased white blood cell infiltration into the BAL, along with exaggeration of peribronchial inflammation and AJC disruption. These data demonstrate that TiO2-NP exposure exacerbates RSV-induced AJC dysfunction and increases inflammation by mechanisms involving generation of ROS. Further studies are required to determine whether NP exposure plays a role in the health disparities of asthma and other lung diseases, and why some children experience more severe airway disease with RSV infection.
Collapse
Affiliation(s)
- Carrie C Smallcombe
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Terri J Harford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
- Centre for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio
| |
Collapse
|
59
|
Yang L, Li C, Tang X. The Impact of PM 2.5 on the Host Defense of Respiratory System. Front Cell Dev Biol 2020; 8:91. [PMID: 32195248 PMCID: PMC7064735 DOI: 10.3389/fcell.2020.00091] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The harm of fine particulate matter (PM2.5) to public health is the focus of attention around the world. The Global Burden of Disease (GBD) Study 2015 (GBD 2015 Risk Factors Collaborators, 2016) ranked PM2.5 as the fifth leading risk factor for death, which caused 4.2 million deaths and 103.1 million disability-adjusted life-years (DALYs) loss, representing 7.6% of total global deaths and 4.2% of global DALYs. Epidemiological studies have confirmed that exposure to PM2.5 increases the incidence and mortality of respiratory infections. The host defense dysfunction caused by PM2.5 exposure may be the key to the susceptibility of respiratory system infection. Thus, this review aims to assess the impact of PM2.5 on the host defense of respiratory system. Firstly, we elaborated the epidemiological evidence that exposure to PM2.5 increases the risk of respiratory infections. Secondly, we summarized the experimental evidence that PM2.5 exposure increases the susceptibility of different pathogens (including bacteria and viruses) in respiratory system. Furthermore, here we discussed the underlying host defense mechanisms by which PM2.5 exposure increases the risk of respiratory infections as well as future perspectives.
Collapse
Affiliation(s)
- Liyao Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxiao Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
60
|
Vargas Buonfiglio LG, Comellas AP. Mechanism of ambient particulate matter and respiratory infections. J Thorac Dis 2020; 12:134-136. [PMID: 32274073 PMCID: PMC7139067 DOI: 10.21037/jtd.2019.12.33] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Luis G Vargas Buonfiglio
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|