51
|
Stevenson S, Nelson LD, Sharpe DT, Thornton MJ. 17beta-estradiol regulates the secretion of TGF-beta by cultured human dermal fibroblasts. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2008; 19:1097-109. [PMID: 18644234 DOI: 10.1163/156856208784909354] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogen plays an important role in skin homeostasis, as demonstrated by the changes seen in the skin of post-menopausal women, changes reversed by HRT. Estrogen also has a role in wound healing, since estrogen deficiency as occurs post-menopausally and in ovariectomised animals, is associated with a reduced rate of wound healing. Estrogen appears to modulate all phases of wound healing with effects on inflammatory cells, epithelialization, angiogenesis, extracellular matrix deposition and tissue remodelling. This study was designed to investigate the effects of 17beta-estradiol on cultured human dermal fibroblasts using an in vitro wound-healing assay. The end points investigated were cell migration, proliferation, total collagen secretion and active TGF-beta1 secretion. 17beta-estradiol significantly increased the migration and proliferation of cultured dermal fibroblasts following mechanical wounding, although the secretion of total soluble collagen was not altered. An increase in TGF-beta1 was demonstrated by unwounded confluent dermal fibroblast monolayers in response to 17beta-estradiol, but paradoxically, a decrease in the secretion of TGF-beta1 was demonstrated in the mechanically wounded dermal fibroblasts. These results identify human dermal fibroblasts as estrogen target cells and provide further evidence for a role by which estrogen regulates this particular cell type as part of the wound-healing process. However, the paradoxical nature of the effect of estrogen on TGF-beta1 secretion following mechanical wounding suggests that the cellular mechanism of action is complex. A greater understanding of the cell-specific action of estrogen may help to develop therapies that will improve cutaneous wound healing in the future.
Collapse
Affiliation(s)
- S Stevenson
- Burns & Plastic Surgery Research Unit, Medical Biosciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire, UK
| | | | | | | |
Collapse
|
52
|
|
53
|
Abstract
In recent years, growing importance has been afforded to assisting women in coping with the menopausal transition. Menopause is a normal stage of development and a woman's attitude toward this transition embodies biological, psychological and social influences. An enlarging body of conflicting data concerning menopausal hormone therapy (MHT) demands reassessment of established paradigms of disease prevention and menopausal health. Currently, a woman's decision to participate in or abstain from menopausal HT is personal. It involves not only consideration of risk stratification of potential harm and benefit, but also involves her expectations and attitudes toward perceived physical and emotional changes associated with this change. Through the use of extensive patient history, quality-of-life questionnaires and powerful biological profiling, we may be able to develop a rational approach to menopausal HT that safely guides our patients through this transition.
Collapse
Affiliation(s)
- Danielle Vitiello
- Division of Reproductive Endocrinology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
54
|
Lee CE, McArdle A, Griffiths RD. The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin Nutr 2007; 26:524-34. [PMID: 17590243 DOI: 10.1016/j.clnu.2007.05.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/20/2007] [Accepted: 05/16/2007] [Indexed: 01/04/2023]
Abstract
Ageing is associated with a progressive decline of muscle mass, strength, and quality, a condition known as sarcopenia. Due to the progressive ageing of western populations, age-related sarcopenia is a major public health problem. Several possible mechanisms for age-related muscle atrophy have been described; however the precise contribution of each is unknown. Age-related muscle loss is thought to be a multi-factoral process composed of events such as physical activity, nutritional intake, oxidative stress, inflammatory insults and hormonal changes. There is a need for a greater understanding of the loss of muscle mass with age as this could have a dramatic impact on the elderly and critically ill if this research leads to maintenance or improvement in functional ability. This review aims to outline the process of skeletal muscle degeneration with ageing, normal and aberrant skeletal muscle regeneration, and to address recent research on the effects of gender and sex steroid hormones during the process of age-related muscle loss.
Collapse
Affiliation(s)
- Claire E Lee
- School of Clinical Sciences, Faculty of Medicine, University of Liverpool, Liverpool L69 3GA, UK
| | | | | |
Collapse
|
55
|
Discussion. Plast Reconstr Surg 2007. [DOI: 10.1097/01.prs.0000258850.53835.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
56
|
Thomas-Ahner JM, Wulff BC, Tober KL, Kusewitt DF, Riggenbach JA, Oberyszyn TM. Gender Differences in UVB-Induced Skin Carcinogenesis, Inflammation, and DNA Damage. Cancer Res 2007; 67:3468-74. [PMID: 17389759 DOI: 10.1158/0008-5472.can-06-3798] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The American Cancer Society reports the incidence of squamous cell carcinoma in males to be thrice the incidence in females. This increased squamous cell carcinoma incidence has been attributed to men accumulating more sun exposure and using less sun protection than women. To date, there have been no controlled studies examining the effect of gender on skin tumor development following equal doses of UVB. Gender differences in UVB-induced skin carcinogenesis were examined using the Skh-1 mouse model. After chronic exposure to equal doses of UVB, male mice developed tumors earlier and had more tumors than female mice; tumors in male mice tended to be larger, and the total tumor burden was greater than in females. In addition, tumors in males were of more advanced histologic grade compared with those of female mice. To evaluate the contribution of differences in inflammation and DNA damage to differences in skin carcinogenesis, male and female Skh-1 mice were exposed once to 2,240 J/m(2) UVB and examined 48 h after exposure. Surprisingly, male mice developed less of an inflammatory response, as determined by skin fold thickness and myeloperoxidase activity, compared with females. Interestingly, male mice showed more cutaneous oxidative DNA damage than the females and lower antioxidant levels. These results show a gender bias in skin carcinogenesis and suggest that the gender difference in tumor development is more influenced by the extent of oxidative DNA damage and antioxidant capacities than by inflammatory response.
Collapse
|
57
|
Abstract
In humans, structural and functional changes attributable to aging are more visibly evident in the skin than in any other organ. Estrogens have significant effects on skin physiology and modulate epidermal keratinocytes, dermal fibroblasts and melanocytes, in addition to skin appendages including the hair follicle and the sebaceous gland. Importantly, skin aging can be significantly delayed by the administration of estrogen. This paper reviews the effects of estrogens on skin and the mechanisms by which estrogens can alleviate the changes due to aging that occur in human skin. The relevance of estrogen replacement therapy (HRT) in postmenopausal women and the potential value of selective estrogen receptor modulators (SERMs) as a therapy for diminishing skin aging are also highlighted.
Collapse
Affiliation(s)
| | - Julie Thornton
- Cutaneous Research, Medical Biosciences, School of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
58
|
Abstract
Optimal management of full-thickness wounds requires a thorough knowledge of wound-healing principles and practices. In the absence of underlying disease, almost every full-thickness wound will heal with minimal intervention; however, the process can be enhanced by judicious wound management. The first clinical decision to be made is whether to repair the wound or to allow it to heal by second intention. This decision is guided by a host of objective and subjective factors. Reconstruction options include primary closure, flaps, and grafts. Materials to aid reconstruction, including the introduction of tissue adhesives, continue to evolve. Both primary and secondary intention wounds are aided by occlusive dressings and adjutants. A plethora of wound-healing adjuncts have been developed to aid wound healing in diseased states, and a working knowledge of their use is beneficial in managing all full-thickness wounds.
Collapse
Affiliation(s)
- Albert E Rivera
- Department of Dermatology, Mt Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
59
|
Hasan W, Jama A, Donohue T, Wernli G, Onyszchuk G, Al-Hafez B, Bilgen M, Smith PG. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 2006; 1124:142-54. [PMID: 17084822 PMCID: PMC1769447 DOI: 10.1016/j.brainres.2006.09.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 12/12/2022]
Abstract
Sympathetic hyperinnervation occurs in human ventricular tissue after myocardial infarction and may contribute to arrhythmias. Aberrant sympathetic sprouting is associated with elevated nerve growth factor (NGF) in many contexts, including ventricular hyperinnervation. However, it is unclear whether cardiomyocytes or other cell types are responsible for increased NGF synthesis. In this study, left coronary arteries were ligated and ventricular tissue examined in rats 1-28 days post-infarction. Infarct and peri-infarct tissue was essentially devoid of sensory and parasympathetic nerves at all time points. However, areas of increased sympathetic nerve density were observed in the peri-infarct zone between post-ligation days 4-14. Hyperinnervation occurred in regions containing accumulations of macrophages and myofibroblasts. To assess whether these inflammatory cells synthesize NGF, sections were processed for NGF in situ hybridization and immunohistochemistry. Both macrophage1 antigen-positive macrophages and alpha-smooth muscle actin-immunoreactive myofibroblasts expressed NGF in areas where they were closely proximate to sympathetic nerves. To investigate whether NGF produced by peri-infarct cells induces sympathetic outgrowth, we co-cultured adult sympathetic ganglia with peri-infarct explants. Neurite outgrowth from sympathetic ganglia was significantly greater at post-ligation days 7-14 as compared to control tissue. Addition of an NGF function-blocking antibody prevented the increased neurite outgrowth induced by peri-infarct tissue. These findings provide evidence that inflammatory cell NGF synthesis plays a causal role in sympathetic hyperinnervation following myocardial infarction.
Collapse
Affiliation(s)
- Wohaib Hasan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas 66160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Curran EM, Judy BM, Duru NA, Wang HQ, Vergara LA, Lubahn DB, Estes DM. Estrogenic regulation of host immunity against an estrogen receptor-negative human breast cancer. Clin Cancer Res 2006; 12:5641-7. [PMID: 17000652 DOI: 10.1158/1078-0432.ccr-05-1117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The risk of developing breast cancer is positively correlated with exposure to increased levels of estrogen and/or an increased duration of estrogen exposure. Many different mechanisms have been proposed to explain the association of estrogens with breast cancer risk; however, the well-documented immune modulatory properties of estrogen have received little attention. In part, this is due to a lack of suitable models for studying this relationship. EXPERIMENTAL DESIGN We have developed an animal model using estrogen receptor (ER)-negative human breast cancer cell line, MDA-MB-468, xenografted into severe combined immunodeficient (SCID) mice. We also generated the ER-alpha knockout (ER-alphaKO) mice on the SCID background and then tested the ability of 17beta-estradiol to stimulate growth of xenografted ER-negative human breast cancer tumors in wild-type and ER-alphaKO SCID mice. We quantified vascularization of tumors, macrophage recruitment to the tumor site by immunocytochemistry, and inflammatory cytokine production. RESULTS We show that estrogen treatment of C57BL/6/SCID mice promotes the growth of xenografted ER-negative tumors in wild-type mice and this estrogen-induced tumor growth is abrogated in ER-alphaKO mice. Tumor neovascularization of estrogen-treated mice was unchanged versus control; however, estrogen treatment of the C57BL/6/SCID host suppressed macrophage recruitment to and inflammatory cytokine production at the tumor site. CONCLUSIONS These data are consistent with estrogen modulation of the inflammatory response as a contributing factor in estrogen-stimulated growth of an ER-negative tumor. This effect on the host innate immune response was mediated by ER-alpha.
Collapse
Affiliation(s)
- Edward M Curran
- Department of Pediatrics, Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Chaovipoch P, Jelks KAB, Gerhold LM, West EJ, Chongthammakun S, Floyd CL. 17beta-estradiol is protective in spinal cord injury in post- and pre-menopausal rats. J Neurotrauma 2006; 23:830-52. [PMID: 16774470 DOI: 10.1089/neu.2006.23.830] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The neuroprotective effects of 17 beta -estradiol have been shown in models of central nervous system injury, including ischemia, brain injury, and more recently, spinal cord injury (SCI). Recent epidemiological trends suggest that SCIs in elderly women are increasing; however, the effects of menopause on estrogen-mediated neuroprotection are poorly understood. The objective of this study was to evaluate the effects of 17beta-estradiol and reproductive aging on motor function, neuronal death, and white matter sparing after SCI of post- and pre-menopausal rats. Two-month-old or 1- year-old female rats were ovariectomized and implanted with a silastic capsule containing 180 microg/mL of 17beta-estradiol or vehicle. Complete crush SCI at T8-9 was performed 1 week later. Additional animals of each age group were left ovary-intact but were spinal cord injured. The Basso, Beattie, Bresnahan (BBB) locomotor test was performed. Spinal cords were collected on post-SCI days 1, 7, and 21, and processed for histological markers. Administration of 17beta-estradiol to ovariectomized rats improved recovery of hind-limb locomotion, increased white matter sparing, and decreased apoptosis in both the post- and pre-menopausal rats. Also, ovary-intact 1-year-old rats did worse than ovary-intact 2-month-old rats, suggesting that endogenous estrogen confers neuroprotection in young rats, which is lost in older animals. Taken together, these data suggest that estrogen is neuroprotective in SCI and that the loss of endogenous estrogen-mediated neuroprotective seen in older rats can be attenuated with exogenous administration of 17beta-estradiol.
Collapse
Affiliation(s)
- Pimonporn Chaovipoch
- Department of Neurological Surgery, University of California, Davis, California 95616, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Estrogens have a profound influence on skin. The relative hypoestrogenism that accompanies menopause exacerbates the deleterious effects of both intrinsic and environmental aging. Estrogens clearly have a key role in skin aging homeostasis as evidenced by the accelerated decline in skin appearance seen in the perimenopausal years. Estrogens improve skin in many ways. Among these, they increase collagen content and skin thickness and improve skin moisture. However, despite the knowledge that estrogens have such important effects on skin, the cellular and subcellular sites and mechanisms of estrogen action are still poorly understood. Estrogen receptors (ERs) have been detected in skin, and recent studies suggest that estrogens exert their effect in skin through the same molecular pathways used in other non-reproductive tissues. Although systemic hormone replacement therapy (HRT) has been used for many years, recent trials have reported a significant increased risk of breast cancer and other pathologies with this treatment. This has led to reconsider the risks and benefits of HRT. For this reason, systemic HRT cannot be recommended today to treat skin aging. Currently, intensive research is conducted to develop new drugs called selective ER modulators (SERMs). These drugs exert mixed estrogenic and antiestrogenic effects depending on the tissue and cell type. One might expect in the future such a drug targeting specifically the skin without systemic side effects.
Collapse
|
63
|
Abstract
Aging in men is associated with a progressive decline in the production of several hormones, including androgens. The extent to which an age-dependent decline in androgen levels lead to health problems or can affect quality of life remains under debate. Clinical results on replacement therapy do not yet provide a definitive clue on the benefit/risk balance. A sexual dimorphism of the immune system is well established, and the differences between female and male immune responses under normal, as well as pathological, conditions are generally attributed to the influence of estrogens, progestins, and androgens. The suppressive effects of male sex hormones on immune functions have been observed in a wide variety of disease processes and appear to be testosterone-mediated. Endogenous testosterone inhibits skin wound healing response in males and is associated with an enhanced inflammatory response. Although there are no known gender-related differences in permeability barrier function in adults, estrogens accelerates--whereas testosterone retards--barrier development in fetal skin, and male fetuses demonstrate slower barrier development than female littermates.
Collapse
Affiliation(s)
- S Fimmel
- Department of Dermatology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
64
|
|
65
|
Abstract
Oestrogens have significant effects on different cell types important in skin physiology, including the epidermal keratinocytes, dermal fibroblasts and melanocytes. In addition, they can also modulate skin appendages such as the hair follicle, the sebaceous gland and the apocrine glands. Oestrogens may also have important modulatory roles in events such as skin ageing, pigmentation, hair growth, sebum production and skin cancer. It is now recognised that oestrogens can modulate their actions via two distinct intracellular receptors (ERalpha and ERbeta) or via cell surface receptors, which activate specific second messenger signalling pathways. This paper highlights the effects of oestrogens on different components of the skin and reviews some of the more recent developments in terms of receptor expression and cell signalling pathways.
Collapse
Affiliation(s)
- M J Thornton
- Department of Biomedical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
66
|
Kanda N, Watanabe S. 17beta-estradiol enhances heparin-binding epidermal growth factor-like growth factor production in human keratinocytes. Am J Physiol Cell Physiol 2005; 288:C813-23. [PMID: 15761212 DOI: 10.1152/ajpcell.00483.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) enhances reepithelialization in wounds. Estrogen is known to promote cutaneous wound repair. We examined the in vitro effects of 17beta-estradiol (E2) on HB-EGF production by human keratinocytes. E2 or membrane-impermeable BSA-conjugated E2 (E2-BSA) increased HB-EGF secretion, mRNA level, and promoter activity in keratinocytes. E2 or E2-BSA enhanced in vitro wound closure in keratinocytes, and the closure was suppressed by anti-HB-EGF antibody. Activator protein-1 (AP-1) and specificity protein 1 (Sp1) sites on HB-EGF promoter were responsible for the E2- or E2-BSA-induced transactivation. Antisense oligonucleotides against c-Fos, c-Jun, and Sp1 blocked E2- or E2-BSA-induced HB-EGF transactivation. E2 or E2-BSA enhanced DNA binding and transcriptional activity of AP-1 and generated c-Fos/c-Jun heterodimers by inducing c-Fos expression. E2 or E2-BSA enhanced DNA binding and transcriptional activity of Sp1 in parallel with the enhancement of Sp1 phosphorylation. These effects of E2 or E2-BSA were not blocked by the nuclear estrogen receptor antagonist ICI-182,780 or anti-estrogen receptor-alpha or -beta antibodies but were blocked by inhibitors of G protein, phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. These results suggest that E2 or E2-BSA may enhance HB-EGF production via activation of AP-1 and Sp1. These effects of E2 or E2-BSA may be dependent on membrane G protein-coupled receptors different from nuclear estrogen receptors and on the receptor-mediated activities of phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. E2 may enhance wound reepithelialization by promoting HB-EGF production in keratinocytes.
Collapse
Affiliation(s)
- Naoko Kanda
- Dept. of Dermatology, Teikyo Univ., School of Medicine, 11-1, Kaga-2, Itabashi-Ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
67
|
Hart DA, Kydd AS, Frank CB, Hildebrand KA. Tissue repair in rheumatoid arthritis: challenges and opportunities in the face of a systemic inflammatory disease. Best Pract Res Clin Rheumatol 2004; 18:187-202. [PMID: 15121039 DOI: 10.1016/j.berh.2004.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease that can elicit a variable disease course, can influence a variable number of joints, and can exhibit a variable response to treatment. All of these factors contribute to the degree and extent of damage to joint components, as well as the potential for repair of other injured joint tissues/components. Furthermore, some of the RA treatments/drugs themselves can influence repair and injury responses, as well as the outcome of surgical interventions for advanced disease. However, as treatments and interventions become more sophisticated and successful in patient populations, the opportunity to initiate the repair/replacement of the damaged joint tissues also becomes more of a reality. This review will address the current clinical findings in the literature, and then discuss the issues and opportunities to initiate repair of damaged or injured joint tissues in order to restore joint function. These include growth factors, gene therapy, and bioengineered tissues, alone or in combination to augment endogenous repair or replace tissue damaged beyond such repair capabilities.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, McCaig Centre for Joint Injury and Arthritis Research, University of Calagary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| | | | | | | |
Collapse
|