51
|
Nonribosomal peptide synthetase genes pesL and pes1 are essential for Fumigaclavine C production in Aspergillus fumigatus. Appl Environ Microbiol 2012; 78:3166-76. [PMID: 22344643 DOI: 10.1128/aem.07249-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The identity of metabolites encoded by the majority of nonribosomal peptide synthetases in the opportunistic pathogen, Aspergillus fumigatus, remains outstanding. We found that the nonribosomal peptide (NRP) synthetases PesL and Pes1 were essential for fumigaclavine C biosynthesis, the end product of the complex ergot alkaloid (EA) pathway in A. fumigatus. Deletion of either pesL (ΔpesL) or pes1 (Δpes1) resulted in complete loss of fumigaclavine C biosynthesis, relatively increased production of fumitremorgins such as TR-2, fumitremorgin C and verruculogen, increased sensitivity to H(2)O(2), and increased sensitivity to the antifungals, voriconazole, and amphotericin B. Deletion of pesL resulted in severely reduced virulence in an invertebrate infection model (P < 0.001). These findings indicate that NRP synthesis plays an essential role in mediating the final prenylation step of the EA pathway, despite the apparent absence of NRP synthetases in the proposed EA biosynthetic cluster for A. fumigatus. Liquid chromatography/diode array detection/mass spectrometry analysis also revealed the presence of fumiquinazolines A to F in both A. fumigatus wild-type and ΔpesL strains. This observation suggests that alternative NRP synthetases can also function in fumiquinazoline biosynthesis, since PesL has been shown to mediate fumiquinazoline biosynthesis in vitro. Furthermore, we provide here the first direct link between EA biosynthesis and virulence, in agreement with the observed toxicity associated with EA exposure. Finally, we demonstrate a possible cluster cross-talk phenomenon, a theme which is beginning to emerge in the literature.
Collapse
|
52
|
Stec E, Li SM. Mutagenesis and biochemical studies on AuaA confirmed the importance of the two conserved aspartate-rich motifs and suggested difference in the amino acids for substrate binding in membrane-bound prenyltransferases. Arch Microbiol 2012; 194:589-95. [PMID: 22311133 DOI: 10.1007/s00203-012-0795-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
Abstract
AuaA is a membrane-bound farnesyltransferase from the myxobacterium Stigmatella aurantiaca involved in the biosynthesis of aurachins. Like other known membrane-bound aromatic prenyltransferases, AuaA contains two conserved aspartate-rich motifs. Several amino acids in the first motif NXxxDxxxD were proposed to be responsible for prenyl diphosphate binding via metal ions like Mg(2+). Site-directed mutagenesis experiments demonstrated in this study that asparagine, but not the arginine residue in NRxxDxxxD, is important for the enzyme activity of AuaA, differing from the importance of NQ or ND residues in the NQxxDxxxD or NDxxDxxxD motifs observed in some membrane-bound prenyltransferases. The second motif of known membrane-bound prenyltransferases was proposed to be involved in the binding of their aromatic substrates. KDIxDxEGD, also found in AuaA, had been previously speculated to be characteristic for binding of flavonoids or homogenisate. Site-directed mutagenesis experiments with AuaA showed that KDIxDxEGD was critical for the enzyme activity. However, this motif is very likely not specific for flavonoid or homogenisate prenyltransferases, because none of the tested flavonoids was accepted by AuaA or its mutant R53A in the presence of farnesyl, geranyl or dimethylallyl diphosphate.
Collapse
Affiliation(s)
- Edyta Stec
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037, Marburg, Germany
| | | |
Collapse
|
53
|
|
54
|
Bonitz T, Alva V, Saleh O, Lupas AN, Heide L. Evolutionary relationships of microbial aromatic prenyltransferases. PLoS One 2011; 6:e27336. [PMID: 22140437 PMCID: PMC3227686 DOI: 10.1371/journal.pone.0027336] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022] Open
Abstract
The linkage of isoprenoid and aromatic moieties, catalyzed by aromatic prenyltransferases (PTases), leads to an impressive diversity of primary and secondary metabolites, including important pharmaceuticals and toxins. A few years ago, a hydroxynaphthalene PTase, NphB, featuring a novel ten-stranded β-barrel fold was identified in Streptomyces sp. strain CL190. This fold, termed the PT-barrel, is formed of five tandem ααββ structural repeats and remained exclusive to the NphB family until its recent discovery in the DMATS family of indole PTases. Members of these two families exist only in fungi and bacteria, and all of them appear to catalyze the prenylation of aromatic substrates involved in secondary metabolism. Sequence comparisons using PSI-BLAST do not yield matches between these two families, suggesting that they may have converged upon the same fold independently. However, we now provide evidence for a common ancestry for the NphB and DMATS families of PTases. We also identify sequence repeats that coincide with the structural repeats in proteins belonging to these two families. Therefore we propose that the PT-barrel arose by amplification of an ancestral ααββ module. In view of their homology and their similarities in structure and function, we propose to group the NphB and DMATS families together into a single superfamily, the PT-barrel superfamily.
Collapse
Affiliation(s)
- Tobias Bonitz
- Pharmaceutical Institute, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Orwah Saleh
- Pharmaceutical Institute, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | - Andrei N. Lupas
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Lutz Heide
- Pharmaceutical Institute, Eberhard Karls-Universität Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
55
|
Yu X, Liu Y, Xie X, Zheng XD, Li SM. Biochemical characterization of indole prenyltransferases: filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus. J Biol Chem 2011; 287:1371-80. [PMID: 22123822 DOI: 10.1074/jbc.m111.317982] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with L-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of L-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. K(m) values of 5-dimethylallyltryptophan synthase were determined for L-tryptophan and DMAPP at 34 and 76 μM, respectively. Average turnover number (k(cat)) at 1.1 s(-1) was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for L-tryptophan at 25,588 s(-1)·M(-1) and for other 11 simple indole derivatives up to 1538 s(-1)·M(-1) provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Xia Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
56
|
Luk LYP, Qian Q, Tanner ME. A Cope Rearrangement in the Reaction Catalyzed by Dimethylallyltryptophan Synthase? J Am Chem Soc 2011; 133:12342-5. [DOI: 10.1021/ja2034969] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Louis Y. P. Luk
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Qian
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E. Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
57
|
Stec E, Pistorius D, Müller R, Li SM. AuaA, a Membrane-Bound Farnesyltransferase from Stigmatella aurantiaca, Catalyzes the Prenylation of 2-Methyl-4-hydroxyquinoline in the Biosynthesis of Aurachins. Chembiochem 2011; 12:1724-30. [DOI: 10.1002/cbic.201100188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Indexed: 01/05/2023]
|
58
|
|
59
|
Raju R, Piggott AM, Huang XC, Capon RJ. Nocardioazines: a novel bridged diketopiperazine scaffold from a marine-derived bacterium inhibits P-glycoprotein. Org Lett 2011; 13:2770-3. [PMID: 21513295 DOI: 10.1021/ol200904v] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An Australian marine sediment-derived isolate, Nocardiopsis sp. (CMB-M0232), yielded a new class of prenylated diketopiperazine, indicative of the action of a uniquely regioselective diketopiperazine indole prenyltransferase. The bridged scaffold of nocardioazine A proved to be a noncytotoxic inhibitor of the membrane protein efflux pump P-glycoprotein, reversing doxorubicin resistance in a multidrug resistant colon cancer cell.
Collapse
Affiliation(s)
- Ritesh Raju
- Institute for Molecular Bioscience, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | | | | | | |
Collapse
|
60
|
Sanchez JF, Entwistle R, Hung JH, Yaegashi J, Jain S, Chiang YM, Wang CCC, Oakley BR. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc 2011; 133:4010-7. [PMID: 21351751 PMCID: PMC3119361 DOI: 10.1021/ja1096682] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Xanthones are a class of molecules that bind to a number of drug targets and possess a myriad of biological properties. An understanding of xanthone biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has been found to produce two prenylated xanthones, shamixanthone and emericellin, and we report the discovery of two more, variecoxanthone A and epishamixanthone. Using targeted deletions that we created, we determined that a cluster of 10 genes including a polyketide synthase gene, mdpG, is required for prenyl xanthone biosynthesis. mdpG was shown to be required for the synthesis of the anthraquinone emodin, monodictyphenone, and related compounds, and our data indicate that emodin and monodictyphenone are precursors of prenyl xanthones. Isolation of intermediate compounds from the deletion strains provided valuable clues as to the biosynthetic pathway, but no genes accounting for the prenylations were located within the cluster. To find the genes responsible for prenylation, we identified and deleted seven putative prenyltransferases in the A. nidulans genome. We found that two prenyltransferase genes, distant from the cluster, were necessary for prenyl xanthone synthesis. These genes belong to the fungal indole prenyltransferase family that had previously been shown to be responsible for the prenylation of amino acid derivatives. In addition, another prenyl xanthone biosynthesis gene is proximal to one of the prenyltransferase genes. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans xanthones.
Collapse
Affiliation(s)
- James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Junko Yaegashi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Sofina Jain
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| |
Collapse
|
61
|
Gao X, Chooi YH, Ames BD, Wang P, Walsh CT, Tang Y. Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 2011; 133:2729-41. [PMID: 21299212 PMCID: PMC3045477 DOI: 10.1021/ja1101085] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tremorgenic mycotoxins are a group of indole alkaloids which include the quinazoline-containing tryptoquivaline (2) that are capable of eliciting intermittent or sustained tremors in vertebrate animals. The biosynthesis of this group of bioactive compounds, which are characterized by an acetylated quinazoline ring connected to a 6-5-5 imidazoindolone ring system via a 5-membered spirolactone, has remained uncharacterized. Here, we report the identification of a gene cluster (tqa) from P. aethiopicum that is involved in the biosynthesis of tryptoquialanine (1), which is structurally similar to 2. The pathway has been confirmed to go through an intermediate common to the fumiquinazoline pathway, fumiquinazoline F, which originates from a fungal trimodular nonribosomal peptide synthetase (NRPS). By systematically inactivating every biosynthetic gene in the cluster, followed by isolation and characterization of the intermediates, we were able to establish the biosynthetic sequence of the pathway. An unusual oxidative opening of the pyrazinone ring by an FAD-dependent berberine bridge enzyme-like oxidoreductase has been proposed based on genetic knockout studies. Notably, a 2-aminoisobutyric acid (AIB)-utilizing NRPS module has been identified and reconstituted in vitro, along with two putative enzymes of unknown functions that are involved in the synthesis of the unnatural amino acid by genetic analysis. This work provides new genetic and biochemical insights into the biosynthesis of this group of fungal alkaloids, including the tremorgens related to 2.
Collapse
Affiliation(s)
- Xue Gao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Yit-Heng Chooi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Brian D. Ames
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Peng Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| | - Christopher T. Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095
| |
Collapse
|
62
|
Fu Z, Shao H. An efficient synthesis of 3-substituted indole derivates under ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2011; 18:520-526. [PMID: 21044854 DOI: 10.1016/j.ultsonch.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/08/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
A solvent-free procedure for the synthesis of 3-substituted indole derivates from indoles and nitroalkenes under ultrasound irradiation is described. Control experiments disclosed besides mechanical effects, namely agitation, sonochemical effects are the main forces to drive the reaction. In the method, 2-chloroethanol was used to prepare a wide variety of 3-substituted indole derivates. This procedure only need equimolar amounts of reaction substrates and can be readily scaled up.
Collapse
Affiliation(s)
- Zhengyan Fu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | |
Collapse
|
63
|
Ding Y, de Wet JR, Cavalcoli J, Li S, Greshock TJ, Miller KA, Finefield JM, Sunderhaus JD, McAfoos TJ, Tsukamoto S, Williams RM, Sherman DH. Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived Aspergillus sp. J Am Chem Soc 2011; 132:12733-40. [PMID: 20722388 DOI: 10.1021/ja1049302] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stephacidin and notoamide natural products belong to a group of prenylated indole alkaloids containing a core bicyclo[2.2.2]diazaoctane ring system. These bioactive fungal secondary metabolites have a range of unusual structural and stereochemical features but their biosynthesis has remained uncharacterized. Herein, we report the first biosynthetic gene cluster for this class of fungal alkaloids based on whole genome sequencing of a marine-derived Aspergillus sp. Two central pathway enzymes catalyzing both normal and reverse prenyltransfer reactions were characterized in detail. Our results establish the early steps for creation of the prenylated indole alkaloid structure and suggest a scheme for the biosynthesis of stephacidin and notoamide metabolites. The work provides the first genetic and biochemical insights for understanding the structural diversity of this important family of fungal alkaloids.
Collapse
Affiliation(s)
- Yousong Ding
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Wallwey C, Li SM. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat Prod Rep 2011; 28:496-510. [DOI: 10.1039/c0np00060d] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
65
|
Jost M, Zocher G, Tarcz S, Matuschek M, Xie X, Li SM, Stehle T. Structure−Function Analysis of an Enzymatic Prenyl Transfer Reaction Identifies a Reaction Chamber with Modifiable Specificity. J Am Chem Soc 2010; 132:17849-58. [DOI: 10.1021/ja106817c] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Jost
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Georg Zocher
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sylwia Tarcz
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Marco Matuschek
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Xiulan Xie
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Shu-Ming Li
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Thilo Stehle
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Strasse 4, 72076 Tübingen, Germany, Institut für Pharmazeutische Biologie und Biotechnologie, Universität Marburg, Deutschhausstrasse 17a, 35037 Marburg, Germany, Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany, and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
66
|
Genome mining and biosynthesis of fumitremorgin-type alkaloids in ascomycetes. J Antibiot (Tokyo) 2010; 64:45-9. [PMID: 21063425 DOI: 10.1038/ja.2010.128] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes the recent progress on the biosynthesis of fumitremorgin-type alkaloids; that is, the identification of the biosynthetic gene clusters from genome sequences by genome mining and proof of gene function by molecular biological and biochemical investigations.
Collapse
|
67
|
Metzger U, Keller S, Stevenson CEM, Heide L, Lawson DM. Structure and mechanism of the magnesium-independent aromatic prenyltransferase CloQ from the clorobiocin biosynthetic pathway. J Mol Biol 2010; 404:611-26. [PMID: 20946900 DOI: 10.1016/j.jmb.2010.09.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/27/2022]
Abstract
CloQ is an aromatic prenyltransferase from the clorobiocin biosynthetic pathway of Streptomyces roseochromogenes var. oscitans. It is involved in the synthesis of the prenylated hydroxybenzoate moiety of the antibiotic, specifically catalyzing the attachment of a dimethylallyl moiety to 4-hydroxyphenylpyruvate. Herein, we report the crystal structure of CloQ and use it as a framework for interpreting biochemical data from both wild-type and variant proteins. CloQ belongs to the aromatic prenyltransferase family, which is characterized by an unusual core fold comprising five consecutive ααββ elements that form a central 10-stranded anti-parallel β-barrel. The latter delineates a solvent-accessible cavity where substrates bind and catalysis takes place. This cavity has well-defined polar and nonpolar regions, which have distinct roles in substrate binding and facilitate a Friedel-Crafts-type mechanism. We propose that the juxtaposition of five positively charged residues in the polar region circumvents the necessity for a Mg(2+), which, by contrast, is a strict requirement for the majority of prenyltransferases characterized to date. Our structure of CloQ complexed with 4-hydroxyphenylpyruvate reveals the formation of a covalent link between the substrate and Cys215 to yield a thiohemiketal species. Through site-directed mutagenesis, we show that this link is not essential for enzyme activity in vitro. Furthermore, we demonstrate that CloQ will accept alternative substrates and, therefore, has the capacity to generate a range of prenylated compounds. Since prenylation is thought to enhance the bioactivity of many natural products, CloQ offers considerable promise as a biocatalyst for the chemoenzymatic synthesis of novel compounds with therapeutic potential.
Collapse
Affiliation(s)
- Ute Metzger
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
68
|
Vougogiannopoulou K, Fokialakis N, Aligiannis N, Cantrell C, Skaltsounis AL. The raputindoles: novel cyclopentyl bisindole alkaloids from Raputia simulans. Org Lett 2010; 12:1908-11. [PMID: 20394392 DOI: 10.1021/ol100584w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel class of bisindole alkaloids is established by the isolation and structural determination of raputindoles A-D (1-4) from the Amazonian plant Raputia simulans Kallunki (Rutaceae). Complete spectroscopic characterization was accomplished by means of NMR spectroscopy and APCI (+) HRMS. Raputindoles A-D possess a cyclopentyl moiety fused on the benzene part of the indole ring, originating from the combination of prenylated indole monomers.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimioupoli Zografou, Athens, Greece
| | | | | | | | | |
Collapse
|
69
|
Zou HX, Xie XL, Linne U, Zheng XD, Li SM. Simultaneous C7- and N1-prenylation of cyclo-L-Trp-L-Trp catalyzed by a prenyltransferase from Aspergillus oryzae. Org Biomol Chem 2010; 8:3037-44. [PMID: 20473424 DOI: 10.1039/c002850a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A putative prenyltransferase gene cTrpPT was amplified from Aspergillus oryzae DSM1147, cloned into pQE70 and overexpressed in Escherichia coli. The overproduced His(6)-CTrpPT was purified to near homogeneity and incubated with L-tryptophan or tryptophan-containing cyclic dipeptides in the presence of dimethylallyl diphosphate. The formation of the enzyme products was monitored with HPLC. It was shown that CTrpPT differed clearly from other known indole prenyltransferases in several aspects. This enzyme showed higher substrate specificity towards aromatic substrates, but lower regioselectivity regarding the prenylation position than other indole prenyltransferases. Cyclo-L-Trp-L-Trp was much better accepted than other cyclic dipeptides tested in this study. In comparison to other indole prenyltransferases with one dominant enzyme product, at least two product peaks were detected in the reaction mixtures of CTrpPT. (1)H- and (13)C-NMR analyses, including long-range (1)H-(13)C connectivities in Heteronuclear Multiple-Bond Correlation (HMBC) and Nuclear Overhauser Effect Spectroscopy (NOESY), proved the structures of the enzyme products as C7- and N1-prenylated derivatives with a ratio of 1:1.2 using cyclo-L-Trp-L-Trp as substrate. The K(M) values were determined at about 2.5 mM for dimethylallyl diphosphate and 0.3 mM for cyclo-L-Trp-L-Trp with a turnover number of 0.33 s(-1).
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang University, Department of Food Science and Nutrition, 310029 Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | |
Collapse
|
70
|
Haug-Schifferdecker E, Arican D, Brückner R, Heide L. A new group of aromatic prenyltransferases in fungi, catalyzing a 2,7-dihydroxynaphthalene 3-dimethylallyl-transferase reaction. J Biol Chem 2010; 285:16487-94. [PMID: 20351110 DOI: 10.1074/jbc.m110.113720] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five fungal genomes from the Ascomycota (sac fungi) were found to contain a gene with sequence similarity to a recently discovered small group of bacterial prenyltransferases that catalyze the C-prenylation of aromatic substrates in secondary metabolism. The genes from Aspergillus terreus NIH2624, Botryotinia fuckeliana B05.10 and Sclerotinia sclerotiorum 1980 were expressed in Escherichia coli, and the resulting His(8)-tagged proteins were purified and investigated biochemically. Their substrate specificity was found to be different from that of any other prenyltransferase investigated previously. Using 2,7-dihydroxynaphthalene (2,7-DHN) and dimethylallyl diphosphate as substrates, they catalyzed a regiospecific Friedel-Crafts alkylation of 2,7-DHN at position 3. Using the enzyme of A. terreus, the K(m) values for 2,7-DHN and dimethylallyl diphosphate were determined as 324 +/- 25 microM and 325 +/- 35 microM, respectively, and k(cat) as 0.026 +/- 0.001 s(-1). A significantly lower level of prenylation activity was found using dihydrophenazine-1-carboxylic acid as aromatic substrate, and only traces of products were detected with aspulvinone E, flaviolin, or 4-hydroxybenzoic acid. No product was formed with l-tryptophan, l-tyrosine, or 4-hydroxyphenylpyruvate. The genes for these fungal prenyltransferases are not located within recognizable secondary metabolic gene clusters. Their physiological function is yet unknown.
Collapse
Affiliation(s)
- Elisa Haug-Schifferdecker
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
71
|
Schultz AW, Lewis CA, Luzung MR, Baran PS, Moore BS. Functional characterization of the cyclomarin/cyclomarazine prenyltransferase CymD directs the biosynthesis of unnatural cyclic peptides. JOURNAL OF NATURAL PRODUCTS 2010; 73:373-7. [PMID: 20055491 PMCID: PMC2846197 DOI: 10.1021/np9006876] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In vitro and in vivo characterization of the cyclomarin/cyclomarazine prenyltransferase CymD revealed its ability to prenylate tryptophan prior to incorporation into both cyclic peptides by the nonribosomal peptide synthetase CymA. This knowledge was utilized to bioengineer novel derivatives of these marine bacterial natural products by providing synthetic N-alkyl tryptophans to a prenyltransferase-deficient mutant of Salinispora arenicola CNS-205.
Collapse
Affiliation(s)
- Andrew W. Schultz
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, 92093-0204
| | - Chad A. Lewis
- Department of Chemistry, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, California 92037
| | - Michael R. Luzung
- Department of Chemistry, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, California 92037
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, California 92037
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, 92093-0204
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
72
|
Liu X, Wang L, Steffan N, Yin WB, Li SM. Ergot alkaloid biosynthesis in Aspergillus fumigatus: FgaAT catalyses the acetylation of fumigaclavine B. Chembiochem 2010; 10:2325-8. [PMID: 19672909 DOI: 10.1002/cbic.200900395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoqing Liu
- College of Life Science, Capital Normal University, Beijing 100048, China
| | | | | | | | | |
Collapse
|
73
|
Stöckigt J, Chen Z, Ruppert M. Enzymatic and Chemo-Enzymatic Approaches Towards Natural and Non-Natural Alkaloids: Indoles, Isoquinolines, and Others. NATURAL PRODUCTS VIA ENZYMATIC REACTIONS 2010; 297:67-103. [DOI: 10.1007/128_2010_80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
74
|
Yin WB, Yu X, Xie XL, Li SM. Preparation of pyrrolo[2,3-b]indoles carrying a β-configured reverse C3-dimethylallyl moiety by using a recombinant prenyltransferase CdpC3PT. Org Biomol Chem 2010; 8:2430-8. [DOI: 10.1039/c000587h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
75
|
Li SM. Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 2010; 27:57-78. [DOI: 10.1039/b909987p] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Suryavanshi PA, Sridharan V, Menéndez JC. Expedient, one-pot preparation of fused indoles via CAN-catalyzed three-component domino sequences and their transformation into polyheterocyclic compounds containing pyrrolo[1,2-a]azepine fragments. Org Biomol Chem 2010; 8:3426-36. [PMID: 20532396 DOI: 10.1039/c004703a] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Padmakar A Suryavanshi
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
77
|
Sundberg RJ. Electrophilic Substitution Reactions of Indoles. TOPICS IN HETEROCYCLIC CHEMISTRY 2010. [DOI: 10.1007/7081_2010_52] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Liu X, Walsh CT. Characterization of cyclo-acetoacetyl-L-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies. Biochemistry 2009; 48:11032-44. [PMID: 19877600 DOI: 10.1021/bi901597j] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The fungal neurotoxin alpha-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca(2+)-ATPase with a unique pentacyclic indole tetramic acid scaffold, is assembled by a three enzyme pathway CpaS, CpaD, and CpaO in Aspergillus sp. We recently characterized the first pathway-specific enzyme CpaS, a hybrid two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that generates cyclo-acetoacetyl-L-tryptophan (cAATrp). Here we report the characterization of the second pathway-specific enzyme CpaD that regiospecifically dimethylallylates cAATrp to form beta-cyclopiazonic acid. By exploring the tryptophan and tetramate moieties of cAATrp, we demonstrate that CpaD discriminates against free Trp but accepts tryptophan-containing thiohydantoins, diketopiperazines, and linear peptides as substrates for C4-prenylation and also acts as regiospecific O-dimethylallyltransferase (DMAT) on a tyrosine-derived tetramic acid. Comparative evaluation of CpaDs from A. oryzae RIB40 and A. flavus NRRL3357 indicated the importance of the N-terminal region for its activity. Sequence alignment of CpaD with 11 homologous fungal Trp-DMATs revealed five regions of conservation, suggesting the presense of critical motifs that could be diagonostic for discovering additional Trp-DMATs. Subsequent site-directed mutagenesis studies identified five polar/charged residues and five tyrosine residues within these motifs that are critical for CpaD activity.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
79
|
Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 2009; 192:127-34. [PMID: 20039019 DOI: 10.1007/s00203-009-0536-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
Ergot alkaloids are toxins and important pharmaceuticals which are produced biotechnologically on an industrial scale. A putative gene fgaDH has been identified in the biosynthetic gene cluster of fumigaclavine C, an ergot alkaloid of the clavine-type. The deduced gene product FgaDH comprises 261 amino acids with a molecular mass of about 27.8 kDa and contains the conserved motifs of classical short-chain dehydrogenases/reductases (SDRs), but shares no worth mentioning sequence similarity with SDRs and other known proteins. The coding region of fgaDH consisting of two exons was amplified by PCR from a cDNA library of Aspergillus fumigatus, cloned into pQE60 and overexpressed in E. coli. The soluble tetrameric His(6)-FgaDH was purified to apparent homogeneity and characterized biochemically. It has been shown that FgaDH catalyzes the oxidation of chanoclavine-I in the presence of NAD(+) resulting in the formation of chanoclavine-I aldehyde, which was unequivocally identified by NMR and MS analyzes. Therefore, FgaDH functions as a chanoclavine-I dehydrogenase and represents a new group of short-chain dehydrogenases. K (M) values for chanoclavine-I and NAD(+) were determined at 0.27 and 1.1 mM, respectively. The turnover number was 0.38 s(-1).
Collapse
|
80
|
Grant CD, Krische MJ. Protecting-group-free synthesis of 3-tert-prenylated oxindoles: contiguous all-carbon quaternary centers via tertiary neopentyl substitution. Org Lett 2009; 11:4485-7. [PMID: 19764718 DOI: 10.1021/ol9018562] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ruthenium-catalyzed tert-prenylation of isatin 1 occurs efficiently in the absence of N-protecting groups under the conditions of C-C bond-forming transfer hydrogenation employing 1,1-dimethylallene as the prenyl donor. The prenylated adduct, 3-hydroxy-3-tert-prenyl-oxindole 2, is converted to the tertiary neopentyl chloride 3, which participates in nucleophilic substitution by way of an aza-o-xylylene intermediate to furnish adducts 4a-4i. Through tertiary neopentyl substitution, two contiguous all-carbon quaternary centers are established.
Collapse
Affiliation(s)
- Christopher D Grant
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
81
|
Chang PK, Ehrlich KC, Fujii I. Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins (Basel) 2009; 1:74-99. [PMID: 22069533 PMCID: PMC3202784 DOI: 10.3390/toxins1020074] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/19/2022] Open
Abstract
Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by some of the same strains of A. flavus that produce aflatoxins and by some Aspergillus oryzae strains. Despite its discovery 40 years ago, few reviews of its toxicity and biosynthesis have been reported. This review examines what is currently known about the toxicity of CPA to animals and humans, both by itself or in combination with other mycotoxins. The review also discusses CPA biosynthesis and the genetic diversity of CPA production in A. flavus/oryzae populations.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA; (K.E.)
| | - Kenneth C. Ehrlich
- Southern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA; (K.E.)
| | - Isao Fujii
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan; (I.F.)
| |
Collapse
|
82
|
Li SM. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives. PHYTOCHEMISTRY 2009; 70:1746-1757. [PMID: 19398116 DOI: 10.1016/j.phytochem.2009.03.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/24/2009] [Accepted: 03/25/2009] [Indexed: 05/27/2023]
Abstract
A series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus and Neosartorya fischeri. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from different fungi. We have cloned and overexpressed seven of these genes, fgaPT1, fgaPT2, ftmPT1, ftmPT2, 7-dmats, cdpNPT and anaPT in Escherichia coli and Saccharomyces cerevisiae. The overproduced enzymes were characterised biochemically. Three additional indole prenyltransferases, DmaW-Cs, TdiB and MaPT were also identified and characterised in the last years. Sequence analysis and comparison with known aromatic prenyltransferases as well as biochemical investigation revealed that these enzymes belong to a group of aromatic prenyltransferases. The characterised prenyltransferases are soluble proteins, catalyse different prenyl transfer reactions on indole moieties of various substrates and do not require divalent metal ions for their prenyl transfer reactions. In addition, indole prenyltransferases carry tryptophan aminopeptidase activity, which strengths their relationship in the evolution. These properties differ clearly from membrane-bound aromatic prenyltransferases from different sources and soluble prenyltransferases from bacteria. All of the indole prenyltransferases accepted only dimethylallyl diphosphate as prenyl donor. On the other hand, they showed broad substrate specificity towards their aromatic substrates. Diverse simple tryptophan derivatives and tryptophan-containing cyclic dipeptides were accepted by these enzymes, providing a strategy for convenient production of biologically active substances, e.g. by chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Shu-Ming Li
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Marburg, Germany.
| |
Collapse
|
83
|
Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. PHYTOCHEMISTRY 2009; 70:1739-45. [PMID: 19819506 DOI: 10.1016/j.phytochem.2009.08.023] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 05/11/2023]
Abstract
Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (-)-glycinol was the native substrate yielding the direct precursor of glyceollin I. These enzymes are localized to plastids and the prenyl chain is derived from the MEP pathway. Further relevant genes involved in the prenylation of other types of polyphenol are expected to be cloned by utilizing the sequence information provided by the above studies.
Collapse
Affiliation(s)
- Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan.
| | | | | |
Collapse
|
84
|
Brandt W, Bräuer L, Günnewich N, Kufka J, Rausch F, Schulze D, Schulze E, Weber R, Zakharova S, Wessjohann L. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. PHYTOCHEMISTRY 2009; 70:1758-1775. [PMID: 19878958 DOI: 10.1016/j.phytochem.2009.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
General thermodynamic calculations using the semiempiric PM3 method have led to the conclusion that prenyldiphosphate converting enzymes require at least one divalent metal cation for the activation and cleavage of the diphosphate-prenyl ester bond, or they must provide structural elements for the efficient stabilization of the intermediate prenyl cation. The most important common structural features, which guide the product specificity in both terpene synthases and aromatic prenyl transferases are aromatic amino acid side chains, which stabilize prenyl cations by cation-pi interactions. In the case of aromatic prenyl transferases, a proton abstraction from the phenolic hydroxyl group of the second substrate will enhance the electron density in the phenolic ortho-position at which initial prenylation of the aromatic compound usually occurs. A model of the structure of the integral transmembrane-bound aromatic prenyl transferase UbiA was developed, which currently represents the first structural insight into this group of prenylating enzymes with a fold different from most other aromatic prenyl transferases. Based on this model, the structure-activity relationships and mechanistic aspects of related proteins, for example those of Lithospermum erythrorhizon or the enzyme AuaA from Stigmatella aurantiaca involved in the aurachin biosynthesis, were elucidated. The high similarity of this group of aromatic prenyltransferases to 5-epi-aristolochene synthase is an indication of an evolutionary relationship with terpene synthases (cyclases). This is further supported by the conserved DxxxD motif found in both protein families. In contrast, there is no such relationship to the aromatic prenyl transferases with an ABBA-fold, such as NphB, or to any other known family of prenyl converting enzymes. Therefore, it is possible that these two groups might have different evolutionary ancestors.
Collapse
Affiliation(s)
- Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Halle (Saale), Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kremer A, Li SM. A tyrosine O-prenyltransferase catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. MICROBIOLOGY-SGM 2009; 156:278-286. [PMID: 19762440 DOI: 10.1099/mic.0.033886-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A putative prenyltransferase gene sirD has been identified in the gene cluster encoding the biosynthesis of the phytotoxin sirodesmin PL in Leptosphaeria maculans. The gene product was found to comprise 449 aa, with a molecular mass of 51 kDa. In this study, the coding region of sirD was amplified by PCR from cDNA, cloned into pQE70, and overexpressed in Escherichia coli. The overproduced protein was purified to apparent homogeneity, and characterized biochemically. The dimeric recombinant SirD was found to catalyse the O-prenylation of L-Tyr in the presence of dimethylallyl diphosphate; this was demonstrated unequivocally by isolation and structural elucidation of the enzymic product. Therefore, SirD catalyses the first pathway-specific step in the biosynthesis of sirodesmin PL. K(m) values for L-Tyr and dimethylallyl diphosphate were determined as 0.13 and 0.17 mM, respectively. Interestingly, SirD was found to share significant sequence similarity with indole prenyltransferases, which catalyse prenyl transfer reactions onto different positions of indole rings. In contrast to indole prenyltransferases, which accept indole derivatives, but not Tyr or structures derived thereof, as substrates, SirD also prenylated L-Trp, resulting in the formation of 7-dimethylallyltryptophan. A K(m) value of 0.23 mM was determined for L-Trp. Turnover numbers of 1.0 and 0.06 S(-1) were calculated for L-Tyr and L-Trp, respectively.
Collapse
Affiliation(s)
- Anika Kremer
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany
| | - Shu-Ming Li
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Deutschhausstrasse 17A, D-35037 Marburg, Germany
| |
Collapse
|
86
|
Ruan HL, Stec E, Li SM. Production of diprenylated indole derivatives by tandem incubation of two recombinant dimethylallyltryptophan synthases. Arch Microbiol 2009; 191:791-5. [DOI: 10.1007/s00203-009-0504-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 07/30/2009] [Accepted: 08/16/2009] [Indexed: 11/28/2022]
|
87
|
The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci U S A 2009; 106:14309-14. [PMID: 19706516 DOI: 10.1073/pnas.0904897106] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ergot alkaloids are toxins and important pharmaceuticals that are produced biotechnologically on an industrial scale. The first committed step of ergot alkaloid biosynthesis is catalyzed by dimethylallyl tryptophan synthase (DMATS; EC 2.5.1.34). Orthologs of DMATS are found in many fungal genomes. We report here the x-ray structure of DMATS, determined at a resolution of 1.76 A. A complex of DMATS from Aspergillus fumigatus with its aromatic substrate L-tryptophan and with an analogue of its isoprenoid substrate dimethylallyl diphosphate reveals the structural basis of this enzyme-catalyzed Friedel-Crafts reaction, which shows strict regiospecificity for position 4 of the indole nucleus of tryptophan as well as unusual independence of the presence of Mg(2+) ions. The 3D structure of DMATS belongs to a rare beta/alpha barrel fold, called prenyltransferase barrel, that was recently discovered in a small group of bacterial enzymes with no sequence similarity to DMATS. These bacterial enzymes catalyze the prenylation of aromatic substrates in the biosynthesis of secondary metabolites (i.e., a reaction similar to that of DMATS).
Collapse
|
88
|
Steffan N, Grundmann A, Afiyatullov S, Ruan H, Li SM. FtmOx1, a non-heme Fe(II) and alpha-ketoglutarate-dependent dioxygenase, catalyses the endoperoxide formation of verruculogen in Aspergillus fumigatus. Org Biomol Chem 2009; 7:4082-7. [PMID: 19763315 DOI: 10.1039/b908392h] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Verruculogen is a tremorgenic mycotoxin and contains an endoperoxide bond. In this study, we describe the cloning, overexpression and purification of a non-heme Fe(ii) and alpha-ketoglutarate-dependent dioxygenase FtmOx1 from Aspergillus fumigatus, which catalyses the conversion of fumitremorgin B to verruculogen by inserting an endoperoxide bond between two prenyl moieties. Incubation with (18)O(2)-enriched atmosphere demonstrated that both oxygen atoms of the endoperoxide bond are derived from one molecule of O(2). FtmOx1 is the first endoperoxide-forming non-heme Fe(ii) and alpha-ketoglutarate-dependent dioxygenase reported so far. A mechanism of FtmOx1-catalysed verruculogen formation is postulated and discussed.
Collapse
Affiliation(s)
- Nicola Steffan
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | | | | | |
Collapse
|
89
|
Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products. Appl Microbiol Biotechnol 2009; 84:631-9. [DOI: 10.1007/s00253-009-2128-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 07/04/2009] [Accepted: 07/04/2009] [Indexed: 01/08/2023]
|
90
|
Genovese S, Curini M, Epifano F. Chemistry and biological activity of azoprenylated secondary metabolites. PHYTOCHEMISTRY 2009; 70:1082-1091. [PMID: 19660768 DOI: 10.1016/j.phytochem.2009.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 05/28/2023]
Abstract
N-Prenyl secondary metabolites (isopentenylazo-, geranylazo-, farnesylazo- and their biosynthetic derivatives) represent a family of extremely rare natural products. Only in recent years have these alkaloids been recognized as interesting and valuable biologically active secondary metabolites. To date about 35 alkaloids have been isolated from plants mainly belonging to the Rutaceae family, and from fungi, bacteria, and/or obtained by chemical synthesis. These metabolites comprise anthranilic acid derivatives, diazepinones, and indole, and xanthine alkaloids. Many of the isolated prenylazo secondary metabolites and their semisynthetic derivatives are shown to exert valuable in vitro and in vivo anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, and anti-fungal effects. The aim of this comprehensive review is to examine the different types of prenylazo natural products from a chemical, phytochemical and biological perspective.
Collapse
Affiliation(s)
- Salvatore Genovese
- Dipartimento di Scienze del Farmaco, Università "G. D'Annunzio" di Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Massimo Curini
- Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Organica, Università degli Studi di Perugia, Via del Liceo, 06123 Perugia, Italy
| | - Francesco Epifano
- Dipartimento di Scienze del Farmaco, Università "G. D'Annunzio" di Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
91
|
Heide L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr Opin Chem Biol 2009; 13:171-9. [PMID: 19299193 DOI: 10.1016/j.cbpa.2009.02.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Aromatic prenyltransferases catalyze the transfer of prenyl moieties to aromatic acceptor molecules and give rise to an astounding diversity of primary and secondary metabolites in plants, fungi and bacteria. Significant progress has been made in the biochemistry and genetics of this heterogeneous group of enzymes in the past years. After 30 years of extensive research on plant prenylflavonoid biosynthesis, finally the first aromatic prenyltransferases involved in the formation of these compounds have been cloned. In bacteria, investigations of the newly discovered family of ABBA prenyltransferases revealed a novel type of protein fold, the PT barrel. In fungi, a group of closely related indole prenyltransferase was found to carry out aromatic prenylations with different substrate specificity and regiospecificity, and to catalyze both regular and reverse prenylations.
Collapse
Affiliation(s)
- Lutz Heide
- Pharmazeutische Biologie, Pharmazeutisches Institut, Eberhard Karls-Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
92
|
Steffan N, Li SM. Increasing structure diversity of prenylated diketopiperazine derivatives by using a 4-dimethylallyltryptophan synthase. Arch Microbiol 2009; 191:461-6. [DOI: 10.1007/s00203-009-0467-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
|