51
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. New Perspectives in Food Allergy. Int J Mol Sci 2020; 21:E1474. [PMID: 32098244 PMCID: PMC7073187 DOI: 10.3390/ijms21041474] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
The improvement of the knowledge of the pathophysiological mechanisms underlying the tolerance and sensitization to food antigens has recently led to a radical change in the clinical approach to food allergies. Epidemiological studies show a global increase in the prevalence of food allergy all over the world and manifestations of food allergy appear increasingly frequent also in elderly subjects. Environmental and nutritional changes have partly changed the epidemiology of allergic reactions to foods and new food allergic syndromes have emerged in recent years. The deepening of the study of the intestinal microbiota has highlighted important mechanisms of immunological adaptation of the mucosal immune system to food antigens, leading to a revolution in the concept of immunological tolerance. As a consequence, new prevention models and innovative therapeutic strategies aimed at a personalized approach to the patient affected by food allergy are emerging. This review focuses on these new perspectives and their practical implications in the management of food allergy, providing an updated view of this complex pathology.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|
52
|
Cai XP, Zhao Q, Guo ZD, Lin SJ, Chen ZX, Chen MY, Zheng L, Zhao KW. Potential diagnostic value of PD-1 in peripheral blood mononuclear cells of postmenopausal osteoporosis patients. J Clin Lab Anal 2020; 34:e23223. [PMID: 32065479 PMCID: PMC7307364 DOI: 10.1002/jcla.23223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is an estrogen deficiency-induced skeletal disorder. Bone mineral density (BMD) testing is the gold standard for diagnosing osteoporosis. However, its sensitivity for fracture risk assessment is low. Programmed cell death protein 1 (PD-1) is a key immune checkpoint molecule implicated in the pathophysiology of bone remodeling, but its role in osteoporosis has not yet been explored. Thus, this study aimed to assess the expression and diagnostic utility of PD-1 in PMOP. METHODS A total of 56 patients with PMOP and 37 postmenopausal healthy controls (NC) were enrolled in the study. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll density gradient centrifugation, and PD-1 expression was measured by quantitative polymerase chain reaction (qPCR). Pearson's correlation test was performed to explore the associations between PD-1 level and clinical variables, while receiver operating characteristic (ROC) curve analysis was used to evaluate the potential diagnostic value of PD-1 in patients with PMOP. RESULTS We found that PD-1 level was significantly upregulated in the PBMCs of PMOP patients than those of NC (P = .016). PD-1 expression was positively correlated with C-reactive protein (CRP) levels. ROC curve analysis showed that PD-1 had certain diagnostic value for PMOP (area under the curve = 0.65, standard error = 0.06, 95% confidence interval [0.53,0.76], P = .016), with a sensitivity and specificity of 44.64% and 81.08%, respectively. CONCLUSION Programmed cell death protein 1 is significantly upregulated in the PBMCs of PMOP patients and has certain diagnostic value for PMOP.
Collapse
Affiliation(s)
- Xiu-Ping Cai
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Third Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Zhao
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao-Di Guo
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Jun Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Xiang Chen
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min-Yuan Chen
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Wei Zhao
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Third Clinical College of Guangzhou, University of Chinese Medicine, Guangzhou, China.,Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
53
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. IL-33/IL-31 Axis in Osteoporosis. Int J Mol Sci 2020; 21:E1239. [PMID: 32069819 PMCID: PMC7072890 DOI: 10.3390/ijms21041239] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The study of the immunoskeletal interface has led to the discovery of numerous cytokines involved in the regulation of bone remodeling, providing valuable information on the pathogenesis of osteoporosis. The role of inflammatory cytokines of the Th1 and Th17 profile in osteoporosis is well known. Here we focus on two newly discovered Th2 cytokines, IL-31 and IL-33, whose implications in osteoporosis are recently emerging. Clinical and experimental observations suggest an important role of the IL-33/IL-31 axis in osteoporosis. IL-33 induces IL-31 secretion by Th2 cells and inhibits RANKL-dependent osteoclastogenesis, thus counteracting bone loss. IL-31 influences Th1/Th17 osteoclastogenetic inflammation and limits Th2 osteoprotective processes, thus favoring osteoporosis. Better knowledge of the role of IL-31 and IL-33 and their receptor complexes in osteoporosis could provide an interesting perspective for the development of new and more effective therapies, possibly with less side effects.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|
54
|
Chen X, Wang M, Chen F, Wang J, Li X, Liang J, Fan Y, Xiao Y, Zhang X. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater 2020; 103:318-332. [PMID: 31857257 DOI: 10.1016/j.actbio.2019.12.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
Abstract
The host immune response is critical for in situ osteogenesis, but correlations between local inflammatory reactions and biomaterial osteoinduction are still poorly understood. This study used a murine intramuscular implantation model to demonstrate that calcium phosphate ceramics with different phase compositions exhibited divergent osteoinductivities. The osteoinductive potential of each ceramic was closely associated with the immunomodulatory capacity of the material, and especially with the regulation of macrophage polarization and functional status. Biphasic calcium phosphate (BCP) ceramics with superior osteoinductive potential enhanced the fraction of CD206+ M2 macrophages, up-regulated expression of M2 phenotypic markers in vitro, and increased the ARG+ M2 population in vivo. This suggested that BCP ceramics could ameliorate long-term inflammation and build a pro-osteogenic microenvironment. However, β-tricalcium phosphate (β-TCP) ceramics with no obvious osteoinductivity increased the fraction of CCR7+ M1 macrophages, promoted the secretion of M1 phenotypic markers in vitro, and maintained a high proportion of iNOS+ M1 macrophages in vivo. It indicated that β-TCP ceramics could exacerbate inflammation and inhibit ectopic bone formation. Hydroxyapatite ceramics with an intermediate osteoinductivity exhibited a moderate amount of both M1 and M2 macrophages. These findings highlight the critical role of macrophage polarization in biomaterial-dependent osteoinduction, which not only deepens our understanding of osteoinductive mechanisms but also provides a strategy to design bone substitutes by endowing materials with the proper immunomodulatory abilities to achieve the desired clinic performance. STATEMENT OF SIGNIFICANCE: Calcium phosphate (CaP) ceramics with osteoinductive capacities are able to induce ectopic bone formation in non-osseous sites. However, its underlying mechanism is largely unknown. Previous studies have demonstrated an indispensable role of macrophages in osteogenesis, inspiring us that local inflammatory reaction may affect material-dependent osteoinduction. This study indicated that CaP ceramics with different phase composition could present divergent osteoinductive capacities through modulating polarization and functional status of macrophages, as biphasic calcium phosphate with potent osteoinductivity ameliorated long-term inflammation and induced a healing-associated M2 phenotype to initiate bone formation. These findings not only get an insight into the mechanism of CaP-involved osteoinduction, but also help the design of tissue-inducing implants by endowing biomaterials with proper immunomodulatory ability.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
55
|
Sirufo MM, Suppa M, Ginaldi L, De Martinis M. Does Allergy Break Bones? Osteoporosis and Its Connection to Allergy. Int J Mol Sci 2020; 21:E712. [PMID: 31973226 PMCID: PMC7037724 DOI: 10.3390/ijms21030712] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
: Osteoporosis and allergic diseases are important causes of morbidity, and traditionally their coexistence has been attributed to causality, to independent processes, and they were considered unrelated. However, the increasing knowledge in the field of osteoimmunology and an increasing number of epidemiological and biological studies have provided support to a correlation between bone and allergy that share pathways, cells, cytokines and mediators. If the link between allergic pathology and bone alterations appears more subtle, there are conditions such as mastocytosis and hypereosinophilic or hyper-IgE syndromes characterized by the proliferation of cells or hyper-production of molecules that play a key role in allergies, in which this link is at least clinically more evident, and the diseases are accompanied by frank skeletal involvement, offering multiple speculation cues. The pathophysiological connection of allergy and osteoporosis is currently an intriguing area of research. The aim of this review is to summarize and bring together the current knowledge and pursue an opportunity to stimulate further investigation.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| |
Collapse
|
56
|
Xu J, Liu J, Gan Y, Dai K, Zhao J, Huang M, Huang Y, Zhuang Y, Zhang X. High-Dose TGF-β1 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via Bmp2 Inhibition. J Bone Miner Res 2020; 35:167-180. [PMID: 31487395 DOI: 10.1002/jbmr.3871] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/03/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is a key factor in bone reconstruction. However, its pathophysiological role in non-union and bone repair remains unclear. Here we demonstrated that TGF-β1 was highly expressed in both C57BL/6 mice where new bone formation was impaired after autologous bone marrow mesenchymal stem cell (BMMSC) implantation in non-union patients. High doses of TGF-β1 inhibited BMMSC osteogenesis and attenuated bone regeneration in vivo. Furthermore, different TGF-β1 levels exhibited opposite effects on osteogenic differentiation and bone healing. Mechanistically, low TGF-β1 doses activated smad3, promoted their binding to bone morphogenetic protein 2 (Bmp2) promoter, and upregulated Bmp2 expression in BMMSCs. By contrast, Bmp2 transcription was inhibited by changing smad3 binding sites on its promoter at high TGF-β1 levels. In addition, high TGF-β1 doses increased tomoregulin-1 (Tmeff1) levels, resulting in the repression of Bmp2 and bone formation in mice. Treatment with the TGF-β1 inhibitor SB431542 significantly rescued BMMSC osteogenesis and accelerated bone regeneration. Our study suggests that high-dose TGF-β1 dampens BMMSC-mediated bone regeneration by activating canonical TGF-β/smad3 signaling and inhibiting Bmp2 via direct and indirect mechanisms. These data collectively show a previously unrecognized mechanism of TGF-β1 in bone repair, and TGF-β1 is an effective therapeutic target for treating bone regeneration disability. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinlong Liu
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaokai Gan
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjian Huang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Huang
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| | - Yifu Zhuang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
57
|
Irelli A, Sirufo MM, Scipioni T, De Pietro F, Pancotti A, Ginaldi L, De Martinis M. mTOR Links Tumor Immunity and Bone Metabolism: What are the Clinical Implications? Int J Mol Sci 2019; 20:ijms20235841. [PMID: 31766386 PMCID: PMC6928935 DOI: 10.3390/ijms20235841] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) plays a crucial role in the control of cellular growth, proliferation, survival, metabolism, angiogenesis, transcription, and translation. In most human cancers, alterations to this pathway are common and cause activation of other downstream signaling pathways linked with oncogenesis. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both tumor immunity and angiogenesis. Inflammation is a hallmark of cancer, playing a central role in the tumor dynamics, and immune cells can exert antitumor functions or promote the growth of cancer cells. In this context, mTOR may regulate the activity of macrophages and T cells by regulating the expression of cytokines/chemokines, such as interleukin (IL)-10 and transforming growth factor (TGF-β), and/or membrane receptors, such as cytotoxic T-Lymphocyte protein 4 (CTLA-4) and Programmed Death 1 (PD-1). Furthermore, inhibitors of mammalian target of rapamycin are demonstrated to actively modulate osteoclastogenesis, exert antiapoptotic and pro-differentiative activities in osteoclasts, and reduce the number of lytic bone metastases, increasing bone mass in tumor-bearing mice. With regard to the many actions in which mTOR is involved, the aim of this review is to describe its role in the immune system and bone metabolism in an attempt to identify the best strategy for therapeutic opportunities in the metastatic phase of solid tumors.
Collapse
Affiliation(s)
- Azzurra Irelli
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Teresa Scipioni
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Amedeo Pancotti
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy; (A.I.); (T.S.); (A.P.)
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-08-6142-9548; Fax: +39-08-6121-1395
| |
Collapse
|
58
|
Mannucci C, Calapai G, Gangemi S. Commentary: Circulatory pattern of cytokines, adipokines and bone markers in postmenopausal women with low BMD. Front Immunol 2019; 10:2666. [PMID: 31798591 PMCID: PMC6868060 DOI: 10.3389/fimmu.2019.02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
59
|
De Martinis M, Sirufo MM, Viscido A, Ginaldi L. Food Allergies and Ageing. Int J Mol Sci 2019; 20:E5580. [PMID: 31717303 PMCID: PMC6888073 DOI: 10.3390/ijms20225580] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
All over the world, there is an increase in the overall survival of the population and the number of elderly people. The incidence of allergic reactions is also rising worldwide. Until recently, allergies, and in particular food allergies (FAs), was regarded as a pediatric problem, since some of them start in early childhood and may spontaneously disappear in adulthood. It is being discovered that, on the contrary, these problems are increasingly affecting even the elderly. Along with other diseases that are considered characteristics of advanced age, such as cardiovascular, dysmetabolic, autoimmune, neurodegenerative, and oncological diseases, even FAs are increasingly frequent in the elderly. An FA is a pleiomorphic and multifactorial disease, characterized by an abnormal immune response and an impaired gut barrier function. The elderly exhibit distinct FA phenotypes, and diagnosis is difficult due to frequent co-morbidities and uncertainty in the interpretation of in vitro and in vivo tests. Several factors render the elderly susceptible to FAs, including the physiological changes of aging, a decline in gut barrier function, the skewing of adaptive immunity to a Th2 response, dysregulation of innate immune cells, and age-related changes of gut microbiota. Aging is accompanied by a progressive remodeling of immune system functions, leading to an increased pro-inflammatory status where type 1 cytokines are quantitatively dominant. However, serum Immunoglobulin E (IgE) levels and T helper type 2 (Th2 cytokine production have also been found to be increased in the elderly, suggesting that the type 2 cytokine pattern is not necessarily defective in older age. Dysfunctional dendritic cells in the gut, defects in secretory IgA, and decreased T regulatory function in the elderly also play important roles in FA development. We address herein the main immunologic aspects of aging according to the presence of FAs.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, AUSL 04 Teramo, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, AUSL 04 Teramo, Italy
| |
Collapse
|
60
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
61
|
Gao K, Zhu W, Liu W, Ma D, Li H, Yu W, Li Q, Cao Y. The predictive role of monocyte-to-lymphocyte ratio in osteoporosis patient. Medicine (Baltimore) 2019; 98:e16793. [PMID: 31441851 PMCID: PMC6716725 DOI: 10.1097/md.0000000000016793] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Osteoporosis is a chronic, progressive disease in which early diagnosis is very important. The neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) have been reported as new predictors in inflammatory and immune diseases including osteoporosis. No studies have reported the relationship between monocyte-to-lymphocyte ratio (MLR) and osteoporosis patients.To investigated the ability of MLR to predict osteoporosis.Three hundred sixteen osteoporosis patients and 111 healthy control subjects were enrolled. Patients' laboratory and clinical characteristics were recorded. MLR, NLR, and PLR levels were calculated. The differences were compared and the diagnostic values of MLR were analyzed.There were 76 male and 105 female patients included, with a mean age of 56.57 ± 9.95 years. The levels of MLR, NLR, and PLR in osteoporosis patients were all higher than those in healthy control subjects. The area under the curve of MLR was higher than those of NLR and PLR. Multivariate linear regression analysis showed that T-score was affected by age and MLR. MLR was positively correlated with C-reactive protein, erythrocyte sedimentation rate, red blood cell distribution width, age, sex, and inversely with hemoglobin. MLR and PLR levels were significantly higher in osteoporosis patients than in osteopenia patients (P < .05).The present study shows that MLR had a higher diagnostic value for osteoporosis. MLR may be a reliable, inexpensive, and novel potential predictor of osteoporosis.
Collapse
Affiliation(s)
- Kun Gao
- Shenzhen Traditional Chinese Medicine Hospital
| | - Wenxiu Zhu
- Shenzhen Longgang Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weidong Liu
- Shenzhen Traditional Chinese Medicine Hospital
| | - Dujun Ma
- Shenzhen Traditional Chinese Medicine Hospital
| | - Heng Li
- Shenzhen Traditional Chinese Medicine Hospital
| | - Weiji Yu
- Shenzhen Traditional Chinese Medicine Hospital
| | - Quan Li
- Shenzhen Traditional Chinese Medicine Hospital
| | - Yafei Cao
- Shenzhen Traditional Chinese Medicine Hospital
| |
Collapse
|
62
|
Ilesanmi-Oyelere BL, Schollum L, Kuhn-Sherlock B, McConnell M, Mros S, Coad J, Roy NC, Kruger MC. Inflammatory markers and bone health in postmenopausal women: a cross-sectional overview. IMMUNITY & AGEING 2019; 16:15. [PMID: 31333751 PMCID: PMC6621960 DOI: 10.1186/s12979-019-0155-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Background Cytokines, chemokines, C-reactive proteins (CRP) and ferritin are known inflammatory markers. However, cytokines such as interleukin (IL-1β), (IL-6) and tumour necrosis factor (TNF-α) have been reported to interfere with both the bone resorption and bone formation processes. Similarly, immune cell cytokines are known to contribute to inflammation of the adipose tissue especially with obesity. IL-10 but not IL-33 has been linked to lower ferritin levels and anemia. In this study, we hypothesized that specific cytokine levels in the plasma of women with low bone mineral density (BMD) would be higher than those in the plasma of healthy women due to the actions of elevated levels of pro-inflammatory cytokines in inducing osteoclast formation and differentiation during senescence. Results Levels of cytokines (IFNα2, IFN-γ, IL-12p70, IL-33) and monocyte chemoattractant protein-1 (MCP-1) were significantly higher in the plasma of the osteoporotic group compared to the osteopenic and/or healthy groups. Meanwhile CRP levels were significantly lower in women with osteoporosis (P = 0.040) than the osteopenic and healthy groups. Hip BMD values were significantly lower in women with high/detectable values of IL-1β (P = 0.020) and IL-6 (P = 0.030) compared to women where these were not detected. Similarly, women with high/detectable values of IL-1β had significantly lower spine BMD than those where IL-1β was not detected (P = 0.030). Participants’ CRP levels were significantly positively correlated with BMI, fat mass and fat percentage (P < 0.001). In addition, ferritin levels of women with high/detectable values of anti-osteoclastogenic IL-10 (P = 0.012) and IL-33 (P = 0.017) were significantly lower than those where these were not detected. There was no statistically significant association between TNF-α and BMD of the hip and lumbar spine. Conclusions High levels of cytokines (IFNα2, IFN-γ, IL-12p70, IL-33) and MCP-1 in apparently healthy postmenopausal women are associated with bone health issues. In addition, an increase in levels of IL-10 and IL-33 may be associated with low ferritin levels in this age group. Trial registration ANZCTR, ACTRN12617000802303. Registered May 31st, 2017, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373020
Collapse
Affiliation(s)
- Bolaji Lilian Ilesanmi-Oyelere
- 1Department of Nutritional Science, School of Food and Advanced Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand.,2Riddet Institute, Palmerston North, 4442 New Zealand.,3Food Nutrition & Health Team, AgResearch Grasslands, Palmerston North, 4442 New Zealand
| | - Linda Schollum
- Fonterra Research and Development Centre, Palmerston North, 4472 New Zealand
| | | | - Michelle McConnell
- 6Department of Microbiology and Immunology, University of Otago, Dunedin, 9054 New Zealand
| | - Sonya Mros
- 6Department of Microbiology and Immunology, University of Otago, Dunedin, 9054 New Zealand
| | - Jane Coad
- 1Department of Nutritional Science, School of Food and Advanced Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Nicole C Roy
- 2Riddet Institute, Palmerston North, 4442 New Zealand.,3Food Nutrition & Health Team, AgResearch Grasslands, Palmerston North, 4442 New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Marlena Cathorina Kruger
- 1Department of Nutritional Science, School of Food and Advanced Technology, College of Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand.,2Riddet Institute, Palmerston North, 4442 New Zealand.,8School of Health Sciences, College of Health, Massey University, Palmerston North, 4442 New Zealand
| |
Collapse
|
63
|
Vargas-Franco JW, Castaneda B, Gama A, Mueller CG, Heymann D, Rédini F, Lézot F. Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem Pharmacol 2019; 168:133-148. [PMID: 31260659 DOI: 10.1016/j.bcp.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
Abstract
Zoledronic acid (ZOL), a nitrogen bisphosphonate (N-BP), is currently used to treat and control pediatric osteolytic diseases. Variations in the intensity of the effects and side effects of N-BPs have been reported with no clear explanations regarding their origins. We wonder if such variations could be associated with different levels of RANKL signaling activity in growing bone during and after the treatment with N-BPs. To answer this question, ZOL was injected into neonate C57BL/6J mice with different genetically-determined RANKL signaling activity levels (Opg+/+\RankTg-, Opg+/+\RankTg+, Opg+/-\RankTg-, Opg+/-\RankTg+, Opg-/-\RankTg- and Opg-/-\RankTg+ mice) following a protocol (4 injections from post-natal day 1 to 7 at the dose of 50 μg/kg) that mimics those used in onco-pediatric patients. At the end of pediatric growth (1 and half months) and at an adult age (10 months), the bone morphometric and mineral parameters were measured using μCT in the tibia and skull for the different mice. A histologic analysis of the dental and periodontal tissues was also performed. At the end of pediatric growth, a delay in long bone and skull bone growth, a blockage of tooth eruption, some molar root alterations and a neoplasia-like structure associated with incisor development were found. Interestingly, the magnitude of these side effects was reduced by Opg deficiency (Opg-/-) but increased by Rank overexpression (RankTg). Analysis of the skeletal phenotype at ten months confirmed respectively the beneficial and harmful effects of Opg deficiency and Rank overexpression. These results validated the hypothesis that the RANKL signaling activity level in the bone microenvironment is implicated in the modulation of the response to ZOL. Further studies will be necessary to understand the underlying molecular mechanisms, which will help decipher the variability in the effects of N-BPs reported in the human population. SIGNIFICANT STATEMENTS: The present study establishes that in mice the RANKL signaling activity level is a major modulator of the effects and side-effects of bisphosphonates on the individual skeleton during growth. However, the modulatory actions are dependent on the ways in which this level of activity is increased. A decrease in OPG expression is beneficial to the skeletal phenotype observed at the end of growth, while RANK overexpression deteriorates it. Far removed from pediatric treatment, in adults, the skeletal phenotypes initially observed at the end of growth for the different levels of RANKL signaling activity were maintained, although significant improvement was associated only with reductions in OPG expression.
Collapse
Affiliation(s)
- Jorge William Vargas-Franco
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- Service d'Odontologie-Stomatologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris F-75013, France
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006, France; Odontology Center of District Federal Military Police, Brasília, Brazil; Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Christopher G Mueller
- CNRS, UPR 9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, University of Sheffield, Department of Oncology and Human Metabolism, Medical School, Sheffield S10 2RX, UK; INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, Saint-Herblain F-44805, France
| | - Françoise Rédini
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France
| | - Frédéric Lézot
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France.
| |
Collapse
|
64
|
Di Ceglie I, Blom AB, Davar R, Logie C, Martens JHA, Habibi E, Böttcher LM, Roth J, Vogl T, Goodyear CS, van der Kraan PM, van Lent PL, van den Bosch MH. The alarmin S100A9 hampers osteoclast differentiation from human circulating precursors by reducing the expression of RANK. FASEB J 2019; 33:10104-10115. [PMID: 31199668 DOI: 10.1096/fj.201802691rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The alarmin S100A8/A9 is implicated in sterile inflammation-induced bone resorption and has been shown to increase the bone-resorptive capacity of mature osteoclasts. Here, we investigated the effects of S100A9 on osteoclast differentiation from human CD14+ circulating precursors. Hereto, human CD14+ monocytes were isolated and differentiated toward osteoclasts with M-CSF and receptor activator of NF-κB (RANK) ligand (RANKL) in the presence or absence of S100A9. Tartrate-resistant acid phosphatase staining showed that exposure to S100A9 during monocyte-to-osteoclast differentiation strongly decreased the numbers of multinucleated osteoclasts. This was underlined by a decreased resorption of a hydroxyapatite-like coating. The thus differentiated cells showed a high mRNA and protein production of proinflammatory factors after 16 h of exposure. In contrast, at d 4, the cells showed a decreased production of the osteoclast-promoting protein TNF-α. Interestingly, S100A9 exposure during the first 16 h of culture only was sufficient to reduce osteoclastogenesis. Using fluorescently labeled RANKL, we showed that, within this time frame, S100A9 inhibited the M-CSF-mediated induction of RANK. Chromatin immunoprecipitation showed that this was associated with changes in various histone marks at the epigenetic level. This S100A9-induced reduction in RANK was in part recovered by blocking TNF-α but not IL-1. Together, our data show that S100A9 impedes monocyte-to-osteoclast differentiation, probably via a reduction in RANK expression.-Di Ceglie, I., Blom, A. B., Davar, R., Logie, C., Martens, J. H. A., Habibi, E., Böttcher, L.-M., Roth, J., Vogl, T., Goodyear, C. S., van der Kraan, P. M., van Lent, P. L., van den Bosch, M. H. The alarmin S100A9 hampers osteoclast differentiation from human circulating precursors by reducing the expression of RANK.
Collapse
Affiliation(s)
- Irene Di Ceglie
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robab Davar
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Ehsan Habibi
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Lisa-Marie Böttcher
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
65
|
Bucher CH, Schlundt C, Wulsten D, Sass FA, Wendler S, Ellinghaus A, Thiele T, Seemann R, Willie BM, Volk HD, Duda GN, Schmidt-Bleek K. Experience in the Adaptive Immunity Impacts Bone Homeostasis, Remodeling, and Healing. Front Immunol 2019; 10:797. [PMID: 31031773 PMCID: PMC6474158 DOI: 10.3389/fimmu.2019.00797] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Bone formation as well as bone healing capacity is known to be impaired in the elderly. Although bone formation is outpaced by bone resorption in aged individuals, we hereby present a novel path that considerably impacts bone formation and architecture: Bone formation is substantially reduced in aged individual owing to the experience of the adaptive immunity. Thus, immune-aging in addition to chronological aging is a potential risk factor, with an experienced immune system being recognized as more pro-inflammatory. The role of the aging immune system on bone homeostasis and on the bone healing cascade has so far not been considered. Within this study mice at different age and immunological experience were analyzed toward bone properties. Healing was assessed by introducing an osteotomy, immune cells were adoptively transferred to disclose the difference in biological vs. chronological aging. In vitro studies were employed to test the interaction of immune cell products (cytokines) on cells of the musculoskeletal system. In metaphyseal bone, immune-aging affects bone homeostasis by impacting bone formation capacity and thereby influencing mass and microstructure of bone trabeculae leading to an overall reduced mechanical competence as found in bone torsional testing. Furthermore, bone formation is also impacted during bone regeneration in terms of a diminished healing capacity observed in young animals who have an experienced human immune system. We show the impact of an experienced immune system compared to a naïve immune system, demonstrating the substantial differences in the healing capacity and bone homeostasis due to the immune composition. We further showed that in vivo mechanical stimulation changed the immune system phenotype in young mice toward a more naïve composition. While this rescue was found to be significant in young individuals, aged mice only showed a trend toward the reconstitution of a more naïve immune phenotype. Considering the immune system's experience level in an individual, will likely allow one to differentiate (stratify) and treat (immune-modulate) patients more effectively. This work illustrates the relevance of including immune diagnostics when discussing immunomodulatory therapeutic strategies for the progressively aging population of the industrial countries.
Collapse
Affiliation(s)
- Christian H Bucher
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Schlundt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dag Wulsten
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F Andrea Sass
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wendler
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Thiele
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ricarda Seemann
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Department of Pediatric Surgery, Faculty of Medicine, McGill University, Shriners Hospital for Children, Montreal, QC, Canada
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
66
|
Ginaldi L, De Martinis M, Saitta S, Sirufo MM, Mannucci C, Casciaro M, Ciccarelli F, Gangemi S. Interleukin-33 serum levels in postmenopausal women with osteoporosis. Sci Rep 2019; 9:3786. [PMID: 30846811 PMCID: PMC6405990 DOI: 10.1038/s41598-019-40212-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
There are many cytokines involved in the pathogenesis of osteoporosis. So far IL-33 involvement in osteoporotic patients has not yet been studied. IL-33 is a pro-inflammatory cytokine which mediates several immune functions; its involvement in a wide range of diseases, such as atopic dermatitis, asthma, and rheumatoid arthritis, is now emerging. In view of the crucial role of this cytokine in inflammation and bone remodeling, we measured IL-33 levels in the serum of postmenopausal women with osteoporosis. In 50 postmenopausal osteoporotic patients and 28 healthy postmenopausal control women, serum IL-33 levels were measured by enzyme linked immunosorbent assay. In both patients and controls the bone mineral density (BMD) was measured by double-energy X-ray absorptiometry (DXA). Vitamin D, calcium, alkaline phosphatase (ALP), parathyroid hormone (PTH) serum levels, as well as bone turnover markers, such as C-terminal telopeptide of type 1 collagen (CTX) and N-terminal propeptide of type 1 procollagen (P1NP) were also evaluated. In postmenopausal osteoporotic women IL-33 levels were significantly lower compared to healthy controls (3.53 ± 2.45 vs. 13.72 ± 5.39 pg/ml; P = 0.009) and positively correlated respectively with serum PTH (rho = 0.314; P = 0.026) and P1NP (rho = 0.373; P = 0.011) levels, while a statistically significant inverse correlation was observed between serum IL-33 and CTX levels (rho = -0.455; P = 0.002). Our results thus suggest that IL-33 represents an important bone-protecting cytokine which may be of therapeutic benefit in treating bone resorption.
Collapse
Affiliation(s)
- Lia Ginaldi
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy
| | - Massimo De Martinis
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy.
| | - Salvatore Saitta
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Maddalena Sirufo
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| | - Fedra Ciccarelli
- School of Allergy and Clinical Immunology, Department of Life, Health & Environmental Sciences, University of L'Aquila and Allergy and Clinical Immunology Unit "Mazzini" Hospital AUSL4, Teramo, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
67
|
Exosome-integrated titanium oxide nanotubes for targeted bone regeneration. Acta Biomater 2019; 86:480-492. [PMID: 30630122 DOI: 10.1016/j.actbio.2019.01.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular nanovesicles that play an important role in cellular communication. The modulatory effects of bone morphogenetic protein 2 (BMP2) on macrophages have encouraged the functionalization of scaffolds through the integration of the exosomes from the BMP2-stimulated macrophages to avoid ectopic bone formation and reduce adverse effects. To determine the functionality of exosomal nanocarriers from macrophages after BMP2 stimulation, we isolated the exosomes from Dulbecco's modified Eagle's medium (DMEM)- or BMP2-stimulated macrophages and evaluated their effects on osteogenesis. Morphological characterization of the exosomes derived from DMEM- or BMP2-treated macrophages revealed no significant differences, and the bone marrow-derived mesenchymal stromal cells showed similar cellular uptake patterns for both exosomes. In vitro study using BMP2/macrophage-derived exosomes indicated their beneficial effects on osteogenic differentiation. To improve the bio-functionality for titanium implants, BMP2/macrophage-derived exosomes were used to modify titanium nanotube implants to favor osteogenesis. The incorporation of BMP2/macrophage-derived exosomes dramatically increased the expression of early osteoblastic differentiation markers, alkaline phosphatase (ALP) and BMP2, indicative of the pro-osteogenic role of the titanium nanotubes incorporated with BMP2/macrophage-derived exosomes. The titanium nanotubes functionalized with BMP2/macrophage-derived exosomes activated autophagy during osteogenic differentiation. In conclusion, the exosome-integrated titanium nanotube may serve as an emerging functional material for bone regeneration. STATEMENT OF SIGNIFICANCE: The clinical application of bone morphogenetic protein 2 (BMP2) is often limited by its side effects. Exosomes are naturally secreted nanosized vesicles derived from cells and play an important role in intercellular communication. The contributions of this study include (1) the demonstration of the potential regulatory role of BMP2/macrophage-derived exosomes on the osteogenic differentiation of mesenchymal stromal cells (MSCs); (2) fabrication of titanium nanotubes incorporated with exosomes; (3) new insights into the application of titanium nanotube-based materials for the safe use of BMP2.
Collapse
|
68
|
Yakar N, Guncu GN, Akman AC, Pınar A, Karabulut E, Nohutcu RM. Evaluation of gingival crevicular fluid and peri-implant crevicular fluid levels of sclerostin, TWEAK, RANKL and OPG. Cytokine 2019; 113:433-439. [DOI: 10.1016/j.cyto.2018.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
|
69
|
Anwar MA, Shah M, Kim J, Choi S. Recent clinical trends in Toll-like receptor targeting therapeutics. Med Res Rev 2018; 39:1053-1090. [PMID: 30450666 PMCID: PMC6587958 DOI: 10.1002/med.21553] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022]
Abstract
Toll‐like receptors (TLRs) are germline‐encoded receptors that are central to innate and adaptive immune responses. Owing to their vital role in inflammation, TLRs are rational targets in clinics; thus, many ligands and biologics have been reported to overcome the progression of various inflammatory and malignant conditions and support the immune system. For each TLR, at least one, and often many, drug formulations are being evaluated. Ligands reported as stand‐alone drugs may also be reported based on their use in combinatorial therapeutics as adjuvants. Despite their profound efficacy in TLR‐modulation in preclinical studies, multiple drugs have been terminated at different stages of clinical trials. Here, TLR modulating drugs that have been evaluated in clinical trials are discussed, along with their mode of action, suggestive failure reasons, and ways to improve the clinical outcomes. This review presents recent advances in TLR‐targeting drugs and provides directions for more successful immune system manipulation.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | | | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
70
|
Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018; 9:1508. [PMID: 30008722 PMCID: PMC6033972 DOI: 10.3389/fimmu.2018.01508] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoimmunology is the interdiscipline that focuses on the relationship between the skeletal and immune systems. They are interconnected by shared signal pathways and cytokines. Interferon-gamma (IFN-γ) plays important roles in immune responses and bone metabolism. IFN-γ enhances macrophage activation and antigen presentation. It regulates antiviral and antibacterial immunity as well as signal transduction. IFN-γ can promote osteoblast differentiation and inhibit bone marrow adipocyte formation. IFN-γ plays dual role in osteoclasts depending on its stage. Furthermore, IFN-γ is an important pathogenetic factor in some immune-mediated bone diseases including rheumatoid arthritis, postmenopausal osteoporosis, and acquired immunodeficiency syndrome. This review will discuss the contradictory findings of IFN-γ in osteoimmunology and its clinical application potential.
Collapse
Affiliation(s)
- Mengjia Tang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
71
|
Shukla P, Mansoori MN, Singh D. Efficacy of anti-IL-23 monotherapy versus combination therapy with anti-IL-17 in estrogen deficiency induced bone loss conditions. Bone 2018; 110:84-95. [PMID: 29414600 DOI: 10.1016/j.bone.2018.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/12/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022]
Abstract
Recent studies have identified that Interleukin (IL)-23/IL-17 axis plays crucial role in pathogenesis of inflammation and bone destruction. IL-23 is thought to promote joint destruction in arthritis by stimulating Th17 cells. IL-23 directly mediates bone loss by inducing osteoclastogenesis and receptor activator of kappa B ligand (RANKL) expression in T cells. IL-23 also promotes tartrate-resistant acid phosphatase (TRAP) activity of osteoclast in osteoblast-osteoclast co-culture. The role of IL-23 has not been studied in estrogen deficiency induced bone loss. Here, we study the effect of IL-23 neutralization in ovariectomized (Ovx) estrogen deficient mice on various immune and skeletal parameters. We also determine whether the combination of anti-IL-23 and anti-IL17 has enhanced osteoprotective effects compared to monotherapies. Treatment of anti-IL-23 and its combination with anti-IL-17 suppressed Th17 cell differentiation and promoted development of T regulatory cells. Anti-IL-23 and its combination with anti-IL-17 prevented bone loss. However, the individual monotherapies of anti-IL-23 and anti-IL-17 were more effective than combination therapy. Treatment of IL-17 and IL-23 cytokines to bone marrow stromal cells led to increased differentiation towards osteoblast lineage. Double neutralization of IL-23 and IL-17 might be inhibiting this phenomenon thus producing less potent effects. Our studies thus support bone protective effects of anti-IL-23 and that the monotherapies of neutralizing antibodies against IL-17 and IL-23 may be a more accepted mode of treatment in management of post-menopausal bone loss rather than combination therapy.
Collapse
Affiliation(s)
- Priyanka Shukla
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram, Lucknow, India
| | - Mohd Nizam Mansoori
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram, Lucknow, India
| | - Divya Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram, Lucknow, India.
| |
Collapse
|
72
|
Lechner J, Aschoff J, Rudi T. The vitamin D receptor and the etiology of RANTES/CCL-expressive fatty-degenerative osteolysis of the jawbone: an interface between osteoimmunology and bone metabolism. Int J Gen Med 2018; 11:155-166. [PMID: 29731660 PMCID: PMC5927352 DOI: 10.2147/ijgm.s152873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Recent research on vitamin D indicates that our current understanding of the factors leading to chronic inflammation should be revised. One of the key mechanisms by which microbial immunosuppression occurs is the suppression of one of the most common endogenous cell nucleus receptors: the vitamin D receptor (VDR). Autoimmune diseases may be correlated with VDR deactivation (VDR-deac) which occurs when the receptor is no longer able to transcribe antimicrobial agents. Excess 1,25-dihydroxyvitamin D (1,25D) is not converted to 25-hydroxyvitamin D (25D); thus, high 1,25D levels may be accompanied by low 25D values. PATIENTS AND METHODS Since 1,25D promotes osteoclast activity and may thereby cause osteoporosis, fatty-degenerative osteolysis of the jaw (FDOJ), as described by our team, may also be associated with VDR-deac. In 43 patients, vitamin D conversion, immune system function and the quality of bone resorption and formation in the jawbone were related factors that may enhance chronic inflammatory processes. Here, we examine the relationship between immunology and bone metabolism among 43 FDOJ patients and those with immune system diseases (ISDs). RESULTS We provide a link between FDOJ, RANTES/CCL5 overexpression and VDR-deac. CONCLUSION The clinical data demonstrate the interaction between VDR-deac and proinflammatory RANTES/CCL5 overexpression in FDOJ patients.
Collapse
Affiliation(s)
| | | | - Tatjana Rudi
- Statistics at Institute for Epidemiological Studies, Berlin, Germany
| |
Collapse
|
73
|
Vargas-Franco JW, Castaneda B, Rédiní F, Gómez DF, Heymann D, Lézot F. Paradoxical side effects of bisphosphonates on the skeleton: What do we know and what can we do? J Cell Physiol 2018; 233:5696-5715. [PMID: 29323712 DOI: 10.1002/jcp.26465] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
Bisphosphonates are considered the most effective drugs for controlling adult and pediatric osteolytic diseases. Although they have been used successfully for many years, several side effects, such as osteonecrosis of the jaw, delayed dental eruption, atypical femoral fracture, and alterations to the bone growth system, have been described. After an overview of nitrogenous bisphosphonate, the purpose of this article is to describe their mechanisms of action and current applications, review the preclinical and clinical evidence of their side effects in the skeleton ("what we know"), and describe current recommendations for preventing and managing these effects ("what we can do"). Finally, promising future directions on how to limit the occurrence of these side effects will be presented.
Collapse
Affiliation(s)
- Jorge W Vargas-Franco
- UMR-1238, INSERM, Equipe 1, Faculté de Médecine de l'Université de Nantes, Nantes, France.,Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris, France
| | - Françoise Rédiní
- UMR-1238, INSERM, Equipe 1, Faculté de Médecine de l'Université de Nantes, Nantes, France
| | - David F Gómez
- Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, Department of Oncology and Human Metabolism, Medical School, University of Sheffield, Sheffield, UK.,UMR-1232, Institut de Cancérologie de l'Ouest, Site René Gauducheau, INSERM, Boulevard Professeur Jacques Monod, Saint-Herblain, France
| | - Frédéric Lézot
- UMR-1238, INSERM, Equipe 1, Faculté de Médecine de l'Université de Nantes, Nantes, France
| |
Collapse
|
74
|
Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int 2018; 29:535-544. [PMID: 29110063 DOI: 10.1007/s00198-017-4255-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Osteoporosis is a bone disease characterized by reduced bone mass, which leads to increased risk of bone fractures, and poses a significant risk to public health, especially in the elderly population. The traditional Chinese medicinal herb Epimedii has been utilized for centuries to treat bone fracture and bone loss. Icariin is a prenylated flavonol glycoside isolated from Epimedium herb, and has been shown to be the main bioactive component. This review provides a comprehensive survey of previous studies on icariin, including its structure and function, effect on bone metabolism, and potential for clinical application. These studies show that icariin promotes bone formation by stimulating osteogenic differentiation of BMSCs (bone marrow-derived mesenchymal stem cells), while inhibiting osteoclastogenic differentiation and the bone resorption activity of osteoclasts. Furthermore, icariin has been shown to be more potent than other flavonoid compounds in promoting osteogenic differentiation and maturation of osteoblasts. A 24-month randomized double-blind placebo-controlled clinical trial reported that icariin was effective in preventing postmenopausal osteoporosis with relatively low side effects. In conclusion, icariin may represent a class of flavonoids with bone-promoting activity, which could be used as potential treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Z Wang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - D Wang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - D Yang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - W Zhen
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - J Zhang
- Department of Outpatient Clinics, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China.
| | - S Peng
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China.
| |
Collapse
|
75
|
Zhao H, Zhao N, Zheng P, Xu X, Liu M, Luo D, Xu H, Ju D. Prevention and Treatment of Osteoporosis Using Chinese Medicinal Plants: Special Emphasis on Mechanisms of Immune Modulation. J Immunol Res 2018; 2018:6345857. [PMID: 29675436 PMCID: PMC5838472 DOI: 10.1155/2018/6345857] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/05/2017] [Accepted: 12/06/2017] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have examined the pathogenesis of osteoporosis. The causes of osteoporosis include endocrine factors, nutritional status, genetic factors, physical factors, and immune factors. Recent osteoimmunology studies demonstrated that the immune system and immune factors play important regulatory roles in the occurrence of osteoporosis, and people should pay more attention to the relationship between immunity and osteoporosis. Immune and bone cells are located in the bone marrow and share numerous regulatory molecules, signaling molecules, and transcription factors. Abnormal activation of the immune system alters the balance between osteoblasts and osteoclasts, which results in an imbalance of bone remodeling and osteoporosis. The incidence of osteoporosis is also increasing with the aging of China's population, and traditional Chinese medicine has played a vital role in the prevention and treatment of osteoporosis for centuries. Chinese medicinal plants possess unique advantages in the regulation of the immune system and the relationships between osteoporosis and the immune system. In this review, we provide a general overview of Chinese medicinal plants in the prevention and treatment of osteoporosis, focusing on immunological aspects.
Collapse
Affiliation(s)
- Hongyan Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Ning Zhao
- Institute of Clinical Basic Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Zheng
- Jilin Provincial Hospital of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiaohong Xu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Meijie Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Dan Luo
- Traditional Chinese Medicine Hospital of Changping District, Beijing 102200, China
| | - Huihui Xu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dahong Ju
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing 100700, China
| |
Collapse
|
76
|
Walsh MC, Takegahara N, Kim H, Choi Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol 2018; 14:146-156. [PMID: 29323344 DOI: 10.1038/nrrheum.2017.213] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoimmunology encompasses all aspects of the cross-regulation of bone and the immune system, including various cell types, signalling pathways, cytokines and chemokines, under both homeostatic and pathogenic conditions. A number of key areas are of increasing interest and relevance to osteoimmunology researchers. Although rheumatoid arthritis has long been recognized as one of the most common autoimmune diseases to affect bone integrity, researchers have focused increased attention on understanding how molecular triggers and innate signalling pathways (such as Toll-like receptors and purinergic signalling pathways) related to pathogenic and/or commensal microbiota are relevant to bone biology and rheumatic diseases. Additionally, although most discussions relating to osteoimmune regulation of homeostasis and disease have focused on the effects of adaptive immune responses on bone, evidence exists of the regulation of immune cells by bone cells, a concept that is consistent with the established role of the bone marrow in the development and homeostasis of the immune system. The active regulation of immune cells by bone cells is an interesting emerging component of investigations that seek to understand how to control immune-associated diseases of the bone and joints.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
77
|
Houseknecht KL, Bouchard CC, Black CA. Elucidating the Mechanism(s) Underlying Antipsychotic and Antidepressant-Mediated Fractures. ACTA ACUST UNITED AC 2017; 1:9-13. [PMID: 31008454 PMCID: PMC6469345 DOI: 10.29245/2578-2959/2018/1.1106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mood spectrum disorders and medications used to treat these disorders, such as atypical antipsychotic drugs (AA), are associated with metabolic and endocrine side effects including obesity, dyslipidemia, hyperglycemia and increased risk of fractures. Antidepressant medications, including selective serotonin reuptake inhibitors (SSRI), have also been reported to increase fracture risk in some patients. The pharmacology underlying the increased risk of fractures is currently unknown. Possible mechanisms include alternations in dopaminergic and/or serotonergic signaling pathways. As these medications distribute to the bone marrow as well as to the brain, it is possible that drug-induced fractures are due to both centrally mediated effects as well as direct effects on bone turnover. Given the growing patient population that is prescribed these medications for both on- and off-label indications, understanding the level of risk and the mechanisms underlying drug-induced fractures is important for informing both prescribing and patient monitoring practices.
Collapse
Affiliation(s)
- Karen L Houseknecht
- College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, USA.,College of Pharmacy, University of New England, 11 Hills Beach Road, Biddeford, ME 04005 USA
| | - C C Bouchard
- College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, USA
| | - C A Black
- College of Pharmacy, University of New England, 11 Hills Beach Road, Biddeford, ME 04005 USA
| |
Collapse
|
78
|
Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 148:21-31. [PMID: 29277342 DOI: 10.1016/j.pbiomolbio.2017.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disorder, and non-cartilage articular pathologies, e.g. subchondral bone disturbance, contribute substantially to the onset and progression of the disease. In the early stage of OA, abnormal mechanical loading leads to micro-cracks or micro-fractures that trigger a reparative process with angiogenesis and inflammatory response. With the progression of disease, cystic lesion, sclerosis and osteophytosis occur at tissue level, and osteoblast dysfunction at cellular level. Osteoblasts derived from OA sclerotic bone produce increased amount of type I collagen with aberrant Col1A1/A2 ratio and poor mineralization capability. The coupling mechanism of bone resorption with formation is also impaired with elevated osteoclastic activities. All these suggest a view that OA subchondral bone presents a defective fracture repair process in a chronic course. It has been found that T and B cells, the major effectors in the adaptive immunity, take part in the hard callus formation at fracture site in addition to the initial phase of haematoma and inflammation. Infiltration of lymphocytes could interplay with osteoclasts and osteoblasts via a direct physical cell-to-cell contact. Several lines of evidence have consistently shown the involvement of T and B cells in osteoclastogenesis and bone erosion in arthritic joints. Yet the biological link between immune cells and osteoblastic function remains ambiguous. This review will discuss the current knowledge regarding the role of immune cells in bone remodelling, and address its implications in emerging basic and clinical investigations into the pathogenesis and management of subchondral bone pathologies in OA.
Collapse
Affiliation(s)
- Adrian Weber
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Pok Man Boris Chan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
79
|
Ke K, Sul OJ, Chung SW, Suh JH, Choi HS. Lack of NOD2 attenuates ovariectomy-induced bone loss via inhibition of osteoclasts. J Endocrinol 2017; 235:85-96. [PMID: 28778866 DOI: 10.1530/joe-16-0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Nucleotide-binding oligomerization domain-2 (NOD2) is a pattern recognition receptor of the innate immune system. It interacts with serine-threonine kinases to induce activation of nuclear factor κB (NF-κB), which is important for receptor activator of nuclear factor kappa-B ligand (RANKL) signaling. We tested the idea that NOD2 modulates bone metabolism via an action on osteoclasts (OCs). The absence of NOD2 reduced ovariectomy-induced bone loss in mice, and lowered the area and the activity of OCs, by impairing RANKL signaling. It also reduced the level of reactive oxygen species (ROS), as well as of NF-κB-DNA binding upon RANKL exposure. NOD2 was found to physically interact with nicotinamide adenine dinucleotide phosphate oxidase 1, and this led to increased production of ROS in OCs. Our data suggest that NOD2 contributes to bone loss in estrogen deficiency by elevating ROS levels in OCs.
Collapse
Affiliation(s)
- Ke Ke
- Department of Biological SciencesUniversity of Ulsan, Ulsan, Korea
| | - Ok-Joo Sul
- Department of Biological SciencesUniversity of Ulsan, Ulsan, Korea
| | - Soo-Wol Chung
- Department of Biological SciencesUniversity of Ulsan, Ulsan, Korea
| | - Jae-Hee Suh
- Department of PathologyUlsan University Hospital, Ulsan, Korea
| | - Hye-Seon Choi
- Department of Biological SciencesUniversity of Ulsan, Ulsan, Korea
| |
Collapse
|
80
|
Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:1183-1226. [PMID: 29200988 PMCID: PMC5696504 DOI: 10.1007/s11101-017-9529-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/20/2017] [Indexed: 05/08/2023]
Abstract
For millennia, in the different cultures all over the world, plants have been extensively used as a source of therapeutic agents with wide-ranging medicinal applications, thus becoming part of a rational clinical and pharmacological investigation over the years. As bioactive molecules, plant-derived polyphenols have been demonstrated to exert many effects on human health by acting on different biological systems, thus their therapeutic potential would represent a novel approach on which natural product-based drug discovery and development could be based in the future. Many reports have provided evidence for the benefits derived from the dietary supplementation of polyphenols in the prevention and treatment of osteoporosis. Polyphenols are able to protect the bone, thanks to their antioxidant properties, as well as their anti-inflammatory actions by involving diverse signaling pathways, thus leading to bone anabolic effects and decreased bone resorption. This review is meant to summarize the research works performed so far, by elucidating the molecular mechanisms of action of polyphenols in a bone regeneration context, aiming at a better understanding of a possible application in the development of medical devices for bone tissue regeneration.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana, 26, 14037 Portacomaro, AT Italy
| |
Collapse
|