51
|
Mu G, Ding Q, Li H, Zhang L, Zhang L, He K, Wu L, Deng Y, Yang D, Wu L, Xu M, Zhou J, Yu H. Gastrin stimulates pancreatic cancer cell directional migration by activating the Gα12/13-RhoA-ROCK signaling pathway. Exp Mol Med 2018; 50:1-14. [PMID: 29717112 PMCID: PMC5938061 DOI: 10.1038/s12276-018-0081-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanism by which gastrin promotes pancreatic cancer cell metastasis is unclear. The process of directing polarized cancer cells toward the extracellular matrix is principally required for invasion and distant metastasis; however, whether gastrin can induce this process and its underlying mechanism remain to be elucidated. In this study, we found that gastrin-induced phosphorylation of paxillin at tyrosine 31/118 and RhoA activation as well as promoted the metastasis of PANC-1 cancer cells. Depletion of Gα12 and Gα13 inhibited the phosphorylation of paxillin and downstream activation of GTP-RhoA, blocked the formation and aggregation of focal adhesions and facilitated polarization of actin filaments induced by gastrin. Suppression of RhoA and ROCK also exhibited identical results. Selective inhibition of the CCKBR-Gα12/13-RhoA-ROCK signaling pathway blocked the reoriented localization of the Golgi apparatus at the leading edge of migrated cancer cells. YM022 and Y-27632 significantly suppressed hepatic metastasis of orthotic pancreatic tumors induced by gastrin in vivo. Collectively, we demonstrate that gastrin promotes Golgi reorientation and directional polarization of pancreatic cancer cells by activation of paxillin via the CCKBR-Gα12/13-RhoA-ROCK signal pathway.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingli Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dongmei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
52
|
Bruche S, Zaccolo M. FRET-ting about RhoA signalling in heart and vasculature: a new tool in our cardiovascular toolbox. Cardiovasc Res 2018; 114:e25-e27. [DOI: 10.1093/cvr/cvy032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Susann Bruche
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
53
|
Müsch A. From a common progenitor to distinct liver epithelial phenotypes. Curr Opin Cell Biol 2018; 54:18-23. [PMID: 29505983 DOI: 10.1016/j.ceb.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
The vertebrate liver presents a fascinating case study for how cell form is optimized for function. To execute its duties the liver assembles two distinct lumen-forming epithelial phenotypes: Firstly, cords with a branched, capillary-like luminal network formed between hepatocytes (bile canaliculi); and secondly, tubular ducts formed by biliary epithelial cells arranged around a central cavity and connected to the bile canaliculi. How these remarkably different epithelial polarity phenotypes are generated and joined into a contiguous luminal network are major unresolved questions. Recent studies have characterized the divergence of the two epithelial lineages from common progenitors, described the coordination of bile canaliculi formation with bile duct branching during biliary tree morphogenesis and implicated RhoA-dependent E-cadherin adhesion in the decision to polarize with hepatocytic or biliary phenotype.
Collapse
Affiliation(s)
- Anne Müsch
- Department of Developmental and Molecular Biology at Albert-Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
54
|
Scarlett KA, White ESZ, Coke CJ, Carter JR, Bryant LK, Hinton CV. Agonist-induced CXCR4 and CB2 Heterodimerization Inhibits Gα13/RhoA-mediated Migration. Mol Cancer Res 2018; 16:728-739. [PMID: 29330286 DOI: 10.1158/1541-7786.mcr-16-0481] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/12/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential in vitro However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis. Activation of CXCR4 by its cognate ligand, CXCL12, stimulates Gα13 (GNA13), and subsequently, the small GTPase RhoA, which is required for directional cell migration and the metastatic potential of cancer cells. These studies in prostate cancer cells demonstrate decreased protein expression levels of Gα13 and RhoA upon simultaneous CXCR4/CB2 agonist stimulation. Furthermore, the agonist-induced heterodimer abrogated RhoA-mediated cytoskeletal rearrangement resulting in the attenuation of cell migration and invasion of an endothelial cell barrier. Finally, a reduction was observed in the expression of integrin α5 (ITGA5) upon heterodimerization, supported by decreased cell adhesion to extracellular matrices in vitro Taken together, the data identify a novel pharmacologic mechanism for the modulation of tumor cell migration and invasion in the context of metastatic disease.Implications: This study investigates a signaling mechanism by which GPCR heterodimerization inhibits cancer cell migration. Mol Cancer Res; 16(4); 728-39. ©2018 AACR.
Collapse
Affiliation(s)
- Kisha A Scarlett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - El-Shaddai Z White
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Christopher J Coke
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Jada R Carter
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia.,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Latoya K Bryant
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Cimona V Hinton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia. .,Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| |
Collapse
|
55
|
Tripathi BK, Grant T, Qian X, Zhou M, Mertins P, Wang D, Papageorge AG, Tarasov SG, Hunter KW, Carr SA, Lowy DR. Receptor tyrosine kinase activation of RhoA is mediated by AKT phosphorylation of DLC1. J Cell Biol 2017; 216:4255-4270. [PMID: 29114068 PMCID: PMC5716279 DOI: 10.1083/jcb.201703105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/26/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
A new common mechanism for increasing RhoA-GTP is identified in Tripathi et al. The increased RhoA-GTP results from signaling mechanisms that phosphorylate and attenuate the DLC1 tumor suppressor, which encodes RhoGAP. The potentially reversible nature of this attenuation may have therapeutic relevance in cancer. We report several receptor tyrosine kinase (RTK) ligands increase RhoA–guanosine triphosphate (GTP) in untransformed and transformed cell lines and determine this phenomenon depends on the RTKs activating the AKT serine/threonine kinase. The increased RhoA-GTP results from AKT phosphorylating three serines (S298, S329, and S567) in the DLC1 tumor suppressor, a Rho GTPase-activating protein (RhoGAP) associated with focal adhesions. Phosphorylation of the serines, located N-terminal to the DLC1 RhoGAP domain, induces strong binding of that N-terminal region to the RhoGAP domain, converting DLC1 from an open, active dimer to a closed, inactive monomer. That binding, which interferes with the interaction of RhoA-GTP with the RhoGAP domain, reduces the hydrolysis of RhoA-GTP, the binding of other DLC1 ligands, and the colocalization of DLC1 with focal adhesions and attenuates tumor suppressor activity. DLC1 is a critical AKT target in DLC1-positive cancer because AKT inhibition has potent antitumor activity in the DLC1-positive transgenic cancer model and in a DLC1-positive cancer cell line but not in an isogenic DLC1-negative cell line.
Collapse
Affiliation(s)
- Brajendra K Tripathi
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tiera Grant
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xiaolan Qian
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | - Dunrui Wang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alex G Papageorge
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sergey G Tarasov
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD
| | - Kent W Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Douglas R Lowy
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
56
|
Jerrell RJ, Leih MJ, Parekh A. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells. Small GTPases 2017. [PMID: 28650698 PMCID: PMC7053931 DOI: 10.1080/21541248.2017.1341366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.
Collapse
Affiliation(s)
- Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mitchell J Leih
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
57
|
Sinulariolide Suppresses Cell Migration and Invasion by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase through the PI3K/AKT/mTOR Signaling Pathway in Human Bladder Cancer Cells. Mar Drugs 2017; 15:md15080238. [PMID: 28767067 PMCID: PMC5577593 DOI: 10.3390/md15080238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Sinulariolide is a natural product extracted from the cultured-type soft coral Sinularia flexibilis, and possesses bioactivity against the movement of several types of cancer cells. However, the molecular pathway behind its effects on human bladder cancer remain poorly understood. Using a human bladder cancer cell line as an in vitro model, this study investigated the underlying mechanism of sinulariolide against cell migration/invasion in TSGH-8301 cells. We found that sinulariolide inhibited TSGH-8301 cell migration/invasion, and the effect was concentration-dependent. Furthermore, the protein expressions of matrix metalloproteinases (MMPs) MMP-2 and MMP-9, as well as urokinase, were significantly decreased after 24-h sinulariolide treatment. Meanwhile, the increased expression of tissue inhibitors of metalloproteinases (TIMPs) TIMP-1 and TIMP-2 were in parallel with an increased concentration of sinulariolide. Finally, the expressions of several key phosphorylated proteins in the mTOR signaling pathway were also downregulated by sinulariolide treatment. Our results demonstrated that sinulariolide has significant effects against TSGH-8301 cell migration/invasion, and its effects were associated with decreased levels of MMP-2/-9 and urokinase expression, as well as increased TIMP-1/TIMP-2 expression. The inhibitory effects were mediated by reducing phosphorylation proteins of the PI3K, AKT, and mTOR signaling pathway. The findings suggested that sinulariolide is a good candidate for advanced investigation with the aim of developing a new drug for the treatment of human bladder cancer.
Collapse
|
58
|
El Zowalaty AE, Li R, Zheng Y, Lydon JP, DeMayo FJ, Ye X. Deletion of RhoA in Progesterone Receptor-Expressing Cells Leads to Luteal Insufficiency and Infertility in Female Mice. Endocrinology 2017; 158:2168-2178. [PMID: 28498971 PMCID: PMC5505209 DOI: 10.1210/en.2016-1796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Ras homolog gene family, member A (RhoA) is widely expressed throughout the female reproductive system. To assess its role in progesterone receptor-expressing cells, we generated RhoA conditional knockout mice RhoAd/d (RhoAf/f-Pgr-Cre+/-). RhoAd/d female mice had comparable mating activity, serum luteinizing hormone, prolactin, and estradiol levels and ovulation with control but were infertile with progesterone insufficiency, indicating impaired steroidogenesis in RhoAd/d corpus luteum (CL). RhoA was highly expressed in wild-type luteal cells and conditionally deleted in RhoAd/d CL. Gestation day 3.5 (D3.5) RhoAd/d ovaries had reduced numbers of CL, less defined corpus luteal cord formation, and disorganized CL collagen IV staining. RhoAd/d CL had lipid droplet and free cholesterol accumulation, indicating the availability of cholesterol for steroidogenesis, but disorganized β-actin and vimentin staining, indicating disrupted cytoskeleton integrity. Cytoskeleton is important for cytoplasmic cholesterol movement to mitochondria and for regulating mitochondria. Dramatically reduced expression of mitochondrial markers heat shock protein 60 (HSP60), voltage-dependent anion channel, and StAR was detected in RhoAd/d CL. StAR carries out the rate-limiting step of steroidogenesis. StAR messenger RNA expression was reduced in RU486-treated D3.5 wild-type CL and tended to be induced in progesterone-treated D3.5 RhoAd/d CL, with parallel changes of HSP60 expression. These data demonstrated the in vivo function of RhoA in CL luteal cell cytoskeleton integrity, cholesterol transport, StAR expression, and progesterone synthesis, and a positive feedback on StAR expression in CL by progesterone signaling. These findings provide insights into mechanisms of progesterone insufficiency.
Collapse
Affiliation(s)
- Ahmed E. El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory/Pregnancy and Female Reproduction Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602
- Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
59
|
Zent CS, Elliott MR. Maxed out macs: physiologic cell clearance as a function of macrophage phagocytic capacity. FEBS J 2017; 284:1021-1039. [PMID: 27863012 PMCID: PMC5378628 DOI: 10.1111/febs.13961] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022]
Abstract
The phagocytic clearance of host cells is important for eliminating dying cells and for the therapeutic clearance of antibody-targeted cells. As ubiquitous, motile and highly phagocytic immune cells, macrophages are principal players in the phagocytic removal of host cells throughout the body. In recent years, great strides have been made in identifying the molecular mechanisms that control the recognition and phagocytosis of cells by macrophages. However, much less is known about the physical and metabolic constraints that govern the amount of cellular material macrophages can ingest and how these limitations affect the overall efficiency of host cell clearance in health and disease. In this review we will discuss, in the contexts of apoptotic cells and antibody-targeted malignant cells, how physical and metabolic factors associated with the internalization of host cells are relayed to the phagocytic machinery and how these signals can impact the overall efficiency of cell clearance. We also discuss how this information can be leveraged to increase cell clearance for beneficial therapeutic outcomes.
Collapse
Affiliation(s)
- Clive S. Zent
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael R. Elliott
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
60
|
Jamerson M, Schmoyer JA, Park J, Marciano-Cabral F, Cabral GA. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis. MICROBIOLOGY-SGM 2017; 163:322-332. [PMID: 28086072 DOI: 10.1099/mic.0.000428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis.
Collapse
Affiliation(s)
- Melissa Jamerson
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University School of Allied Health Professions, Richmond, VA 23298-0583, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | - Jacqueline A Schmoyer
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University School of Allied Health Professions, Richmond, VA 23298-0583, USA
| | - Jay Park
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA
| |
Collapse
|
61
|
Dasgupta SK, Le A, Vijayan KV, Thiagarajan P. Dasatinib inhibits actin fiber reorganization and promotes endothelial cell permeability through RhoA-ROCK pathway. Cancer Med 2017; 6:809-818. [PMID: 28316141 PMCID: PMC5387130 DOI: 10.1002/cam4.1019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 12/29/2016] [Indexed: 11/24/2022] Open
Abstract
Treatment with dasatinib, a tyrosine kinase inhibitor, is associated with edema, pleural effusion, and pulmonary edema. We investigated the effect of dasatinib on the barrier function of human microvascular endothelial cells‐1 (HMEC‐1) in vitro and in vivo. The permeability of HMEC‐1 to fluorescein isothiocyante (FITC)‐dextran increased in Transwell chambers within 5 min following the addition of therapeutic concentrations of dasatinib. The change in permeability was associated with increased activation of RhoA GTPase and its effector Rho‐associated coiled‐coil kinase 1(ROCK1). RhoA inhibitor C3 transferase almost completely inhibited dasatinib‐induced increase in permeability. Under similar conditions, imatinib had no effect on permeability or activation of RhoA. Since integrin‐induced cell spreading suppresses RhoA activation, we examined the effect of dasatinib on cell spreading on fibronectin substrate. Dasatinib impaired endothelial cell spreading in a concentration‐dependent manner and induced disorganization of actin fibers. Tyrosine kinases play an essential role in transmitting signals from integrins to RhoA and we examined tyrosine phosphorylation of several cytoskeletal proteins. Dasatinib markedly inhibited tyrosine phosphorylation of p130 Crk‐associated substrate (p130cas), paxillin and vinculin. These results suggest that the inhibition of tyrosine phosphorylation of the focal adhesion plaque components by dasatinib may alter the assembly of actin fibers resulting in the activation of RhoA/ROCK pathway. Consistent with these findings, dasatinib‐induced increase in the permeability was blocked by ROCK inhibitor y27632. In vivo administration of y27632, significantly inhibited the dasatinib‐induced extravasation of Evans blue in mice and dasatinib‐induced increase in microvascular permeability was attenuated in ROCK1‐deficient mice. These findings suggest that ROCK inhibitors could serve as therapeutic modalities to ameliorate the dasatinib‐induced pulmonary changes.
Collapse
Affiliation(s)
- Swapan K Dasgupta
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Anhquyen Le
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Pathology, Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
62
|
Priya R, Gomez GA, Budnar S, Acharya BR, Czirok A, Yap AS, Neufeld Z. Bistable front dynamics in a contractile medium: Travelling wave fronts and cortical advection define stable zones of RhoA signaling at epithelial adherens junctions. PLoS Comput Biol 2017; 13:e1005411. [PMID: 28273072 PMCID: PMC5362241 DOI: 10.1371/journal.pcbi.1005411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/22/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.
Collapse
Affiliation(s)
- Rashmi Priya
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Guillermo A. Gomez
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Srikanth Budnar
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Bipul R. Acharya
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Alpha S. Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
63
|
Zhang Y, Mao H, Gao C, Li S, Shuai Q, Xu J, Xu K, Cao L, Lang R, Gu Z, Akaike T, Yang J. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles. Adv Healthc Mater 2016; 5:1949-1959. [PMID: 27245478 DOI: 10.1002/adhm.201600114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications.
Collapse
Affiliation(s)
- Yan Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Hongli Mao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chao Gao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Suhua Li
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jianbin Xu
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ke Xu
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Toshihiro Akaike
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, 24-16, kasuga, 3-chome, Tsukuba, 305-0821, Japan
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| |
Collapse
|
64
|
Yang K, Wu Y, Cheng P, Zhang J, Yang C, Pi B, Ye Y, You H, Chen A, Xu T, Guo F, Qi J. YAP and ERK mediated mechanical strain-induced cell cycle progression through RhoA and cytoskeletal dynamics in rat growth plate chondrocytes. J Orthop Res 2016; 34:1121-9. [PMID: 26694636 DOI: 10.1002/jor.23138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023]
Abstract
Yes-associated protein (YAP) and extracellular signal-regulated kinase (ERK) have been considered as key regulators in tissue homeostasis, organ development, and tumor formation. However, the roles of YAP and ERK in the mediating strain mechanosensing in the growth plate cartilage have not been determined. In this study, chondrocytes obtained from the growth plate cartilage of 2-week-old Sprague-Dawley rats were subjected to the mechanical strain with different magnitudes and durations at a frequency of 0.5 Hz. We found that YAP and ERK activation in response to mechanical strain was time and magnitude dependent. Pretreatment with a RhoA inhibitor (C3 toxin) or a microfilament cytoskeleton disrupting reagent (cytochalasin D) could suppress their activation. In addition, activated YAP and ERK were able to induce cell cycle progression by up-regulating the expression of cell cycle-related genes. These results shed new light on the function of YAP and ERK in mechanical strain-promoted growth plate development. Our results also provided evidence that RhoA and cytoskeletal dynamics are required for this mechanotransduction. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1121-1129, 2016.
Collapse
Affiliation(s)
- Kaixiang Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Yingxing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Chengyuan Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Bin Pi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, Jiangsu Province, P. R. China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Anmin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| | - Jun Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P. R. China
| |
Collapse
|
65
|
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther 2016; 166:1-8. [PMID: 27343756 DOI: 10.1016/j.pharmthera.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
66
|
Speight P, Kofler M, Szászi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun 2016; 7:11642. [PMID: 27189435 PMCID: PMC4873981 DOI: 10.1038/ncomms11642] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/15/2016] [Indexed: 01/12/2023] Open
Abstract
Myocardin-related transcription factor (MRTF) and TAZ are major mechanosensitive transcriptional co-activators that link cytoskeleton organization to gene expression. Despite many similarities in their regulation, their physical and/or functional interactions are unknown. Here we show that MRTF and TAZ associate partly through a WW domain-dependent mechanism, and exhibit multilevel crosstalk affecting each other's expression, transport and transcriptional activity. Specifically, MRTF is essential for TAZ expression; TAZ and MRTF inhibit each other's cytosolic mobility and stimulus-induced nuclear accumulation; they antagonize each other's stimulatory effect on the α-smooth muscle actin (SMA) promoter, which harbours nearby cis-elements for both, but synergize on isolated TEAD-elements. Importantly, TAZ confers Smad3 sensitivity to the SMA promoter. Thus, TAZ is a context-dependent switch during mechanical versus mechano/chemical signalling, which inhibits stretch-induced but is indispensable for stretch+TGFβ-induced SMA expression. Crosstalk between these cytoskeleton-regulated factors seems critical for fine-tuning mechanical and mechanochemical transcriptional programmes underlying myofibroblast transition, wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8.,Department Surgery, University of Toronto, Toronto, Ontario, Canada M5P 1T5
| | - András Kapus
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8.,Department Surgery, University of Toronto, Toronto, Ontario, Canada M5P 1T5.,Department Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
67
|
Comparative Proteomics Analysis Reveals L-Arginine Activates Ethanol Degradation Pathways in HepG2 Cells. Sci Rep 2016; 6:23340. [PMID: 26983598 PMCID: PMC4794764 DOI: 10.1038/srep23340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/04/2016] [Indexed: 12/18/2022] Open
Abstract
L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.
Collapse
|
68
|
Scott DW, Tolbert CE, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell 2016; 27:1420-30. [PMID: 26985018 PMCID: PMC4850030 DOI: 10.1091/mbc.e15-12-0833] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
Forces on JAM-A activate RhoA to increase cell stiffness. Activation of RhoA requires GEF-H1 and p115 RhoGEF activation downstream of FAK/ERK and Src family kinases, respectively. Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.
Collapse
Affiliation(s)
- David W Scott
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caitlin E Tolbert
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
69
|
Uzer G, Fuchs RK, Rubin J, Thompson WR. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage. Stem Cells 2016; 34:1455-63. [PMID: 26891206 DOI: 10.1002/stem.2342] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/14/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
Abstract
Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463.
Collapse
Affiliation(s)
- Gunes Uzer
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robyn K Fuchs
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William R Thompson
- School of Health and Rehabilitation Sciences, Department of Physical Therapy, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
70
|
Kim HS, Kim YJ, Jang JH, Park JW. Surface Engineering of Nanostructured Titanium Implants with Bioactive Ions. J Dent Res 2016; 95:558-65. [DOI: 10.1177/0022034516638026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surface nanofeatures and bioactive ion chemical modification are centrally important in current titanium (Ti) oral implants for enhancing osseointegration. However, it is unclear whether the addition of bioactive ions definitively enhances the osteogenic capacity of a nanostructured Ti implant. We systematically investigated the osteogenesis process of human multipotent adipose stem cells triggered by bioactive ions in the nanostructured Ti implant surface. Here, we report that bioactive ion surface modification (calcium [Ca] or strontium [Sr]) and resultant ion release significantly increase osteogenic activity of the nanofeatured Ti surface. We for the first time demonstrate that ion modification actively induces focal adhesion development and expression of critical adhesion–related genes (vinculin, talin, and RHOA) of human multipotent adipose stem cells, resulting in enhanced osteogenic differentiation on the nanofeatured Ti surface. It is also suggested that fibronectin adsorption may have only a weak effect on early cellular events of mesenchymal stem cells (MSCs) at least in the case of the nanostructured Ti implant surface incorporating Sr. Moreover, results indicate that Sr overrides the effect of Ca and other important surface factors (i.e., surface area and wettability) in the osteogenesis function of various MSCs (derived from human adipose, bone marrow, and murine bone marrow). In addition, surface engineering of nanostructured Ti implants using Sr ions is expected to exert additional beneficial effects on implant bone healing through the proper balancing of the allocation of MSCs between adipogenesis and osteogenesis. This work provides insight into the future surface design of Ti dental implants using surface bioactive ion chemistry and nanotopography.
Collapse
Affiliation(s)
- H.-S. Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Y.-J. Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - J.-H. Jang
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - J.-W. Park
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
71
|
Marjoram RJ, Guilluy C, Burridge K. Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods 2016; 94:19-26. [PMID: 26427549 PMCID: PMC4761479 DOI: 10.1016/j.ymeth.2015.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/21/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers.
Collapse
Affiliation(s)
- R J Marjoram
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7295, United States.
| | - C Guilluy
- Inserm UMR_S1087, CNRS UMR_C6291, L'institut du Thorax, Nantes, France; Université de Nantes, Nantes, France
| | - K Burridge
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7295, United States; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, United States; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599-7295, United States
| |
Collapse
|
72
|
Lentivirus-Mediated RNA Interference Targeting RhoA Slacks the Migration, Proliferation, and Myelin Formation of Schwann Cells. Mol Neurobiol 2016; 54:1229-1239. [DOI: 10.1007/s12035-016-9733-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 10/24/2022]
|
73
|
Jerrell RJ, Parekh A. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials 2016; 84:119-129. [PMID: 26826790 DOI: 10.1016/j.biomaterials.2016.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/17/2023]
Abstract
ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis.
Collapse
Affiliation(s)
- Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
74
|
Steeves AJ, Atwal A, Schock SC, Variola F. Evaluation of the direct effects of poly(dopamine) on the in vitro response of human osteoblastic cells. J Mater Chem B 2016; 4:3145-3156. [DOI: 10.1039/c5tb02510a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional poly(dopamine) coatings promise to become an efficient strategy to endow biomaterials with enhanced bioactive properties.
Collapse
Affiliation(s)
- Alexander J. Steeves
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
| | - Aman Atwal
- Faculty of Science
- Department of Biopharmaceutical Sciences
- University of Ottawa
- Canada
| | - Sarah C. Schock
- The Children's Hospital of Eastern Ontario (CHEO) Research Institute
- Canada
- Faculty of Medicine
- Department of Cellular and Molecular Medicine
- University of Ottawa
| | - Fabio Variola
- Faculty of Engineering
- Department of Mechanical Engineering
- University of Ottawa
- Canada
- Faculty of Medicine
| |
Collapse
|
75
|
Zhang H, Cooper LF, Zhang X, Zhang Y, Deng F, Song J, Yang S. Titanium nanotubes induce osteogenic differentiation through the FAK/RhoA/YAP cascade. RSC Adv 2016. [DOI: 10.1039/c6ra04002k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
TNT topography restricts cell spreading, impairs the FAK recruitment in FAs, and thereby attenuates RhoA activity as well as cytoskeleton formation, which in turn expels YAP from that cell nucleus to the cytoplasm and initiates osteodifferentiation.
Collapse
Affiliation(s)
- He Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Lyndon F. Cooper
- Department Head
- Oral Biology
- University of Illinois at Chicago
- College of Dentistry
- Chicago
| | - Xiaonan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Yi Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Feng Deng
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| | - Sheng Yang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education
- College of Stomatology
- Chongqing Medical University
- Chongqing
| |
Collapse
|
76
|
Kutys ML, Yamada KM. Rho GEFs and GAPs: emerging integrators of extracellular matrix signaling. Small GTPases 2015; 6:16-9. [PMID: 25862162 DOI: 10.4161/21541248.2014.989792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigating cell migration in 3D settings has revealed that specific extracellular matrix environments require differential activities of the Rho GTPases for efficient migration. However, it is largely unknown how the activities of specific Rho GTPases are modulated to direct cell migration in response to different extracellular matrix cues. We have recently reported that extracellular matrix-dependent regulation of a specific Rho GEF is a fundamental mechanism governing cell migration in different microenvironments, providing a direct mechanism for extracellular matrix-specific regulation of Rho GTPase activity directing cell motility. We discovered that the Rho GEF βPix has a unique function during cell migration in fibrillar collagen environments by restraining RhoA signaling through a conserved signaling axis involving Cdc42 and the Rho GAP srGAP1. In this Commentary, we expand upon this new pathway and discuss potential mechanotransductive and therapeutic applications. Additionally, we speculate on a generalized role for Rho GEFs and GAPs in providing localized, context-dependent responses to the cellular microenvironment during cell migration and other cellular processes.
Collapse
Affiliation(s)
- Matthew L Kutys
- a Laboratory of Cell and Developmental Biology; National Institute of Dental and Craniofacial Research; National Institutes of Health
| | | |
Collapse
|
77
|
Gissen P, Arias IM. Structural and functional hepatocyte polarity and liver disease. J Hepatol 2015; 63:1023-37. [PMID: 26116792 PMCID: PMC4582071 DOI: 10.1016/j.jhep.2015.06.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease. A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases.
Collapse
Affiliation(s)
- Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; UCL Institute of Child Health, London, UK; Great Ormond Street Hospital, London, UK.
| | - Irwin M Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States
| |
Collapse
|
78
|
Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 2015; 17:955-63. [PMID: 26121555 DOI: 10.1038/ncb3191] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
During cell migration, the forces generated in the actin cytoskeleton are transmitted across transmembrane receptors to the extracellular matrix or other cells through a series of mechanosensitive, regulable protein-protein interactions termed the molecular clutch. In integrin-based focal adhesions, the proteins forming this linkage are organized into a conserved three-dimensional nano-architecture. Here we discuss how the physical interactions between the actin cytoskeleton and focal-adhesion-associated molecules mediate force transmission from the molecular clutch to the extracellular matrix.
Collapse
|
79
|
Yuseff MI, Lennon-Duménil AM. B Cells use Conserved Polarity Cues to Regulate Their Antigen Processing and Presentation Functions. Front Immunol 2015; 6:251. [PMID: 26074919 PMCID: PMC4445385 DOI: 10.3389/fimmu.2015.00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Maria-Isabel Yuseff
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile , Santiago , Chile
| | | |
Collapse
|
80
|
Han J, Shuvaev VV, Davies PF, Eckmann DM, Muro S, Muzykantov VR. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1. J Control Release 2015; 210:39-47. [PMID: 25966362 DOI: 10.1016/j.jconrel.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023]
Abstract
Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest.
Collapse
Affiliation(s)
- Jingyan Han
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA; Vascular Biology Section, Department of Medicine, Boston University, Boston, MA 02421, USA
| | - Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Peter F Davies
- Department of Pathology & Lab Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104, USA
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
81
|
Renart J, Carrasco-Ramírez P, Fernández-Muñoz B, Martín-Villar E, Montero L, Yurrita MM, Quintanilla M. New insights into the role of podoplanin in epithelial-mesenchymal transition. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:185-239. [PMID: 26008786 DOI: 10.1016/bs.ircmb.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Podoplanin is a small mucin-like transmembrane protein expressed in several adult tissues and with an important role during embryogenesis. It is needed for the proper development of kidneys and lungs as well as accurate formation of the lymphatic vascular system. In addition, it is involved in the physiology of the immune system. A wide variety of tumors express podoplanin, both in the malignant cells and in the stroma. Although there are exceptions, the presence of podoplanin results in poor prognosis. The main consequence of forced podoplanin expression in established and tumor-derived cell lines is an increase in cell migration and, eventually, the triggering of an epithelial-mesenchymal transition, whereby cells acquire a fibroblastoid phenotype and increased motility. We will examine the current status of the role of podoplanin in the induction of epithelial-mesenchymal transition as well as the different interactions that lead to this program.
Collapse
Affiliation(s)
- Jaime Renart
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | | | | | - Ester Martín-Villar
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Lucía Montero
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María M Yurrita
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| |
Collapse
|
82
|
Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015; 20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ∼ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
Collapse
Affiliation(s)
- Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
83
|
DeMali KA, Sun X, Bui GA. Force transmission at cell-cell and cell-matrix adhesions. Biochemistry 2014; 53:7706-17. [PMID: 25474123 DOI: 10.1021/bi501181p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
All cells are subjected to mechanical forces throughout their lifetimes. These forces are sensed by cell surface adhesion receptors and trigger robust actin cytoskeletal rearrangements and growth of the associated adhesion complex to counter the applied force. In this review, we discuss how integrins and cadherins sense force and transmit these forces into the cell interior. We focus on the complement of proteins each adhesion complex recruits to bear the force and the signal transduction pathways activated to allow the cell to tune its contractility. A discussion of the similarities, differences, and crosstalk between cadherin- and integrin-mediated force transmission is also presented.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Biochemistry and Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine , Iowa City, Iowa 52242, United States
| | | | | |
Collapse
|
84
|
Welf ES, Danuser G. Using fluctuation analysis to establish causal relations between cellular events without experimental perturbation. Biophys J 2014; 107:2492-8. [PMID: 25468328 DOI: 10.1016/j.bpj.2014.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022] Open
Abstract
Experimental perturbations are commonly used to establish causal relationships between the molecular components of a pathway and their cellular functions; however, this approach suffers inherent limitations. Especially in pathways with a significant level of nonlinearity and redundancy among components, such perturbations induce compensatory responses that obscure the actual function of the targeted component in the unperturbed pathway. A complementary approach uses constitutive fluctuations in component activities to identify the hierarchy of information flow through pathways. Here, we review the motivation for using perturbation-free approaches and highlight recent advances made in using perturbation-free fluctuation analysis as a means to establish causality among cellular events.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
85
|
Ma S, Deng J, Li B, Li X, Yan Z, Zhu J, Chen G, Wang Z, Jiang H, Miao L, Li J. Development of Second-Generation Small-Molecule RhoA Inhibitors with Enhanced Water Solubility, Tissue Potency, and Significant in vivo Efficacy. ChemMedChem 2014; 10:193-206. [DOI: 10.1002/cmdc.201402386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 12/24/2022]
|
86
|
Lin JJ, Su JH, Tsai CC, Chen YJ, Liao MH, Wu YJ. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Mar Drugs 2014; 12:4783-98. [PMID: 25222667 PMCID: PMC4178498 DOI: 10.3390/md12094783] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/11/2014] [Accepted: 08/22/2014] [Indexed: 11/16/2022] Open
Abstract
Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Jen-Jie Lin
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan.
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Chi-Chu Tsai
- Kaohsiung District Agricultural Improvement Station, Pingtung 900, Taiwan.
| | - Yi-Jen Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 80761, Taiwan.
| | - Ming-Hui Liao
- Graduate Institute of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91202, Taiwan.
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan.
| |
Collapse
|
87
|
Müsch A. The unique polarity phenotype of hepatocytes. Exp Cell Res 2014; 328:276-83. [PMID: 24956563 DOI: 10.1016/j.yexcr.2014.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/11/2023]
Abstract
Hepatocytes, the main epithelial cell type of the liver, function like all epithelial cells to mediate the vectorial flow of macromolecules into and out of the organ they encompass. They do so by establishing polarized surface domains and by restricting paracellular flow via their tight junctions and cell-cell adhesion. Yet, the cell and tissue organization of hepatocytes differs profoundly from that of most other epithelia, including those of the digestive and urinary tracts, the lung or the breast. The latter form monolayered tissues in which the apical domains of individual cells align around a central continuous luminal cavity that constitutes the tubules and acini characteristic of these organs. Hepatocytes, by contrast, form capillary-sized lumina with multiple neighbors resulting in a branched, tree-like bile canaliculi network that spreads across the liver parenchyme. I will discuss some of the key molecular features that distinguish the hepatocyte polarity phenotype from that of monopolar, columnar epithelia.
Collapse
Affiliation(s)
- Anne Müsch
- Albert-Einstein College of Medicine, Department of Cell & Molecular Biology, The Bronx, USA.
| |
Collapse
|