51
|
Ding WY, Liu L, Wang ZH, Tang MX, Ti Y, Han L, Zhang L, Zhang Y, Zhong M, Zhang W. FP-receptor gene silencing ameliorates myocardial fibrosis and protects from diabetic cardiomyopathy. J Mol Med (Berl) 2014; 92:629-40. [PMID: 24500109 DOI: 10.1007/s00109-013-1119-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED Prostaglandin F2(α)-F-prostanoid (PGF2(α)-FP) receptor is closely related to insulin resistance, which plays a causal role in the pathogenesis of diabetic cardiomyopathy (DCM). We sought to reveal whether PGF2(α)-FP receptor plays an important part in modulating DCM and the mechanisms involved. We established the type 2 diabetes rat model by high-fat diet and low-dose streptozotocin (STZ) and then evaluated its characteristics by metabolite tests, Western blot analysis for FP-receptor expression, histopathologic analyses of cardiomyocyte density and fibrosis area. Next, we used gene silencing to investigate the role of FP receptor in the pathophysiologic features of DCM. Our study showed elevated cholesterol, triglyceride, glucose, and insulin levels, severe insulin resistance, and FP-receptor overexpression in diabetic rats. The collagen volume fraction (CVF) and perivascular collagen area/luminal area (PVCA/LA) were higher in the diabetic group than the control group (CVF% 10.99 ± 0.99 vs 1.59 ± 0.18, P < 0.05; PVCA/LA% 17.07 ± 2.61 vs 2.86 ± 0.69, P < 0.05). We found that the silencing of FP receptor decreased cholesterol, triglyceride, glucose, and insulin levels and ameliorated insulin resistance. The CVF and PVCF/LA were significantly downregulated in FP-receptor short hairpin RNA (shRNA) treatment group (FP-receptor shRNA group vs vehicle group: CVF% 5.59 ± 0.92 vs 10.97 ± 1.33, P < 0.05, PVCA/LA% 4.74 ± 1.57 vs 14.79 ± 2.22, P < 0.05; FP-receptor shRNA + PGF2(α) group vs vehicle group : CVF% 5.19 ± 0.79 vs 10.97 ± 1.33, P < 0.05, PVCA/LA% 5.96 ± 1.15 vs 14.79 ± 2.22, P < 0.05, respectively). Furthermore, with FP-receptor gene silencing, the activated protein kinase C (PKC) and Rho kinase were significantly decreased, and the blunted phosphorylation of Akt was restored. FP-receptor gene silencing may exert a protective effect on DCM by improving myocardial fibrosis, suggesting a new therapeutic approach for human DCM. KEY MESSAGES FP-receptor gene silencing improves glucose tolerance and insulin resistance in type 2 diabetes (T2D). FP-receptor gene silencing modulates the activities of PKC/Rho and Akt signaling pathways in T2D. FP-receptor gene silencing decreases collagen expression and ameliorates myocardial fibrosis in T2D. FP-receptor gene silencing protects from diabetic cardiomyopathy in T2D.
Collapse
Affiliation(s)
- Wen-yuan Ding
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kasuga M, Ueki K, Tajima N, Noda M, Ohashi K, Noto H, Goto A, Ogawa W, Sakai R, Tsugane S, Hamajima N, Nakagama H, Tajima K, Miyazono K, Imai K. Report of the Japan Diabetes Society/Japanese Cancer Association Joint Committee on Diabetes and Cancer. Cancer Sci 2014; 104:965-76. [PMID: 23879470 DOI: 10.1111/cas.12203] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023] Open
Abstract
In recent years, diabetes has been shown to be associated with cancer risk, and this has led to a joint committee being formed, enlisting experts from the Japan Diabetes Society and the Japanese Cancer Association to address this issue. Epidemiological data in Japan provides evidence to demonstrate that diabetes is associated with increased risk for cancers, especially colorectal, liver, and pancreatic cancers. The mechanisms through which diabetes is assumed to promote oncogenesis include insulin resistance and associated hyperinsulinemia, hyperglycemia, and inflammation. Common risk factors for type 2 diabetes and cancer include aging, male sex, obesity, physical inactivity, inappropriate diet (excessive red/processed meat intake, inadequate vegetable/fruit/dietary fiber intake), excessive alcohol drinking, and smoking. Given that inappropriate diet/exercise, smoking and excessive alcohol drinking are common risk factors for diabetes and cancer, diet/exercise therapy, smoking cessation and alcohol moderation may be associated with decreased risk for cancer in diabetic patients. There is as yet limited evidence as to whether any particular antidiabetic agents may influence cancer risk.
Collapse
Affiliation(s)
- Masato Kasuga
- National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, Chakrabarti S. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 2014; 18:415-21. [PMID: 24428157 PMCID: PMC3955148 DOI: 10.1111/jcmm.12218] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/27/2013] [Indexed: 01/14/2023] Open
Abstract
Diabetic cardiomyopathy is a cascade of complex events leading to eventual failure of the heart and cardiac fibrosis being considered as one of its major causes. miR-133a is one of the most abundantly expressed microRNAs in the heart. We investigated the role of miR-133a during severe hyperglycaemia. And, our aim was to find out what role miR-133a plays during diabetes-induced cardiac fibrosis. We saw a drastic decrease in miR-133a expression in the hearts of streptozotocin-induced diabetic animals, as measured by RT-qPCR. This decrease was accompanied by an increase in the transcriptional co-activator EP300 mRNA and major markers of fibrosis [transforming growth factor-β1, connective tissue growth factor, fibronectin (FN1) and COL4A1]; in addition, focal cardiac fibrosis assessed by Masson's trichome stain was increased. Interestingly, in diabetic mice with cardiac-specific miR-133aa overexpression, cardiac fibrosis was significantly decreased, as observed by RT-qPCR and immunoblotting of COL4A1, ELISA for FN1 and microscopic examination. Furthermore, Cardiac miR-133a overexpression prevented ERK1/2 and SMAD-2 phosphorylation. These findings show that miR-133a could be a potential therapeutic target for diabetes-induced cardiac fibrosis and related cardiac dysfunction.
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
54
|
Treating Diabetes with Exercise - Focus on the Microvasculature. JOURNAL OF DIABETES & METABOLISM 2013; 4:308. [PMID: 24772374 PMCID: PMC4000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rising incidence of diabetes and the associated metabolic diseases including obesity, cardiovascular disease and hypertension have led to investigation of a number of drugs to treat these diseases. However, lifestyle interventions including diet and exercise remain the first line of defense. The benefits of exercise are typically presented in terms of weight loss, improved body composition and reduced fat mass, but exercise can have many other beneficial effects. Acute effects of exercise include major changes in blood flow through active muscle, an active hyperemia that increases the delivery of oxygen to the working muscle fibers. Longer term exercise training can affect the vasculature, improving endothelial health and possibly basal metabolic rates. Further, insulin sensitivity is improved both acutely after a single bout of exercise and shows chronic effects with exercise training, effectively reducing diabetes risk. Exercise-mediated improvements in endothelial function may also reduce complications associated with both diabetes and other metabolic disease. Thus, while drugs to improve microvascular function in diabetes continue to be investigated, exercise can also provide many similar benefits on endothelial function and should remain the first prescription when treating insulin resistance and diabetes. This review will investigate the effects of exercise on the blood vessel and the potential benefits of exercise on cardiovascular disease and diabetes.
Collapse
|
55
|
Kasuga M, Ueki K, Tajima N, Noda M, Ohashi K, Noto H, Goto A, Ogawa W, Sakai R, Tsugane S, Hamajima N, Nakagama H, Tajima K, Miyazono K, Imai K. Report of the JDS/JCA Joint Committee on Diabetes and Cancer. Diabetol Int 2013. [DOI: 10.1007/s13340-013-0121-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
56
|
Gadad PC, Matthews KH, Knott RM. Role of HIF1α and PKCβ in mediating the effect of oxygen and glucose in a novel wound assay. Microvasc Res 2013; 88:61-9. [DOI: 10.1016/j.mvr.2013.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/06/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
|
57
|
Kubota T, Kubota N, Kadowaki T. The role of endothelial insulin signaling in the regulation of glucose metabolism. Rev Endocr Metab Disord 2013; 14:207-16. [PMID: 23589150 DOI: 10.1007/s11154-013-9242-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The skeletal muscle is one of the major target organs of insulin and plays an essential role in insulin-induced glucose uptake. Some evidence indicates that insulin delivery to skeletal muscle interstitium through the endothelial cells is the rate-limiting step in insulin-stimulated glucose uptake. Researchers have also found that this process is impaired by insulin resistance in type 2 diabetes and obesity. A recent study of ours demonstrated that insulin signaling in the endothelial cells plays a pivotal role in the regulation of glucose uptake by the skeletal muscle. Specifically, impaired insulin signaling in the endothelial cells, with reduction of insulin-induced eNOS phosphorylation, causes attenuation of the insulin-induced capillary recruitment and insulin delivery, which, in turn reduces glucose uptake by the skeletal muscle in high-fat diet-fed mice. Moreover, restoration of the insulin-induced eNOS phosphorylation in the endothelial cells completely reverses the reduction in the capillary recruitment and insulin delivery, and as a result, significantly restores glucose uptake by the skeletal muscle. In the present review, we describe the recent progress in research on the physiological and pathophysiological roles of endothelial insulin signaling in the regulation of insulin-induced glucose uptake by the skeletal muscle.
Collapse
Affiliation(s)
- Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
58
|
Woods TC. Dysregulation of the Mammalian Target of Rapamycin and p27Kip1 Promotes Intimal Hyperplasia in Diabetes Mellitus. Pharmaceuticals (Basel) 2013; 6:716-27. [PMID: 24276258 PMCID: PMC3816729 DOI: 10.3390/ph6060716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) in the intima of an artery, known as intimal hyperplasia, is an important component of cardiovascular diseases. This is seen most clearly in the case of in-stent restenosis, where drug eluting stents are used to deliver agents that prevent VSMC proliferation and migration. One class of agents that are highly effective in the prevention of in-stent restenosis is the mammalian Target of Rapamycin (mTOR) inhibitors. Inhibition of mTOR blocks protein synthesis, cell cycle progression, and cell migration. Key to the effects on cell cycle progression and cell migration is the inhibition of mTOR-mediated degradation of p27Kip1 protein. p27Kip1 is a cyclin dependent kinase inhibitor that is elevated in quiescent VSMCs and inhibits the G1 to S phase transition and cell migration. Under normal conditions, vascular injury promotes degradation of p27Kip1 protein in an mTOR dependent manner. Recent reports from our lab suggest that in the presence of diabetes mellitus, elevation of extracellular signal response kinase activity may promote decreased p27Kip1 mRNA and produce a relative resistance to mTOR inhibition. Here we review these findings and their relevance to designing treatments for cardiovascular disease in the presence of diabetes mellitus.
Collapse
Affiliation(s)
- Thomas Cooper Woods
- Tulane Heart and Vascular Institute and the Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, SL-48, New Orleans, LA 70112, USA.
| |
Collapse
|
59
|
Mikus CR, Roseguini BT, Uptergrove GM, Morris EM, Rector RS, Libla JL, Oberlin DJ, Borengasser SJ, Taylor AM, Ibdah JA, Laughlin MH, Thyfault JP. Voluntary wheel running selectively augments insulin-stimulated vasodilation in arterioles from white skeletal muscle of insulin-resistant rats. Microcirculation 2013; 19:729-38. [PMID: 22804760 DOI: 10.1111/j.1549-8719.2012.00210.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/11/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Exercise (RUN) prevents declines in insulin-mediated vasodilation, an important component of insulin-mediated glucose disposal, in rats prone to obesity and insulin resistance. OBJECTIVE Determine whether RUN (1) improves insulin-stimulated vasodilation after insulin resistance has been established, and (2) differentially affects arterioles from red and white muscle. METHODS Insulin signaling and vasoreactivity to insulin (1-1000 μIU/mL) were assessed in 2A from the Gw and Gr of SED OLETF rats at 12 and 20 weeks of age (SED12, SED20) and those undergoing RUN (RUN20) or caloric restriction (CR20; to match body weight of RUN) from 12 to 20 weeks. RESULTS Glucose and insulin responses to i.p. glucose were reduced in RUN20, elevated in SED20 (p < 0.05 vs. SED12), and maintained in CR20. Insulin-stimulated vasodilation was greater in Gw but not Gr, 2As of RUN20 (p < 0.01 vs. all groups), and was improved by ET-1 receptor inhibition in Gw 2As from SED20 and CR20 (p < 0.05). There were no differences in microvascular insulin signaling among groups or muscle beds. CONCLUSIONS RUN selectively improved insulin-mediated vasodilation in Gw 2As, in part through attenuated ET-1 sensitivity/production, an adaptation that was independent of changes in adiposity and may contribute to enhanced insulin-stimulated glucose disposal.
Collapse
Affiliation(s)
- Catherine R Mikus
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Assessment of endothelial dysfunction in childhood obesity and clinical use. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:174782. [PMID: 23691262 PMCID: PMC3649697 DOI: 10.1155/2013/174782] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/06/2013] [Indexed: 12/11/2022]
Abstract
The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed.
Collapse
|
61
|
Tonks KT, Ng Y, Miller S, Coster ACF, Samocha-Bonet D, Iseli TJ, Xu A, Patrick E, Yang JYH, Junutula JR, Modrusan Z, Kolumam G, Stöckli J, Chisholm DJ, James DE, Greenfield JR. Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects. Diabetologia 2013; 56:875-85. [PMID: 23344726 DOI: 10.1007/s00125-012-2811-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/29/2012] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Muscle insulin resistance, one of the earliest defects associated with type 2 diabetes, involves changes in the phosphoinositide 3-kinase/Akt network. The relative contribution of obesity vs insulin resistance to perturbations in this pathway is poorly understood. METHODS We used phosphospecific antibodies against targets in the Akt signalling network to study insulin action in muscle from lean, overweight/obese and type 2 diabetic individuals before and during a hyperinsulinaemic-euglycaemic clamp. RESULTS Insulin-stimulated Akt phosphorylation at Thr309 and Ser474 was highly correlated with whole-body insulin sensitivity. In contrast, impaired phosphorylation of Akt substrate of 160 kDa (AS160; also known as TBC1D4) was associated with adiposity, but not insulin sensitivity. Neither insulin sensitivity nor obesity was associated with defective insulin-dependent phosphorylation of forkhead box O (FOXO) transcription factor. In view of the resultant basal hyperinsulinaemia, we predicted that this selective response within the Akt pathway might lead to hyperactivation of those processes that were spared. Indeed, the expression of genes targeted by FOXO was downregulated in insulin-resistant individuals. CONCLUSIONS/INTERPRETATION These results highlight non-linearity in Akt signalling and suggest that: (1) the pathway from Akt to glucose transport is complex; and (2) pathways, particularly FOXO, that are not insulin-resistant, are likely to be hyperactivated in response to hyperinsulinaemia. This facet of Akt signalling may contribute to multiple features of the metabolic syndrome.
Collapse
Affiliation(s)
- K T Tonks
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, 2010 NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 2013; 62:313-9. [PMID: 23349535 PMCID: PMC3554383 DOI: 10.2337/db12-0905] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two-thirds of adults in the U.S. are overweight or obese, and another 26 million have type 2 diabetes (T2D). Patients with diabetes and/or the metabolic syndrome have a significantly increased risk of heart attack and stroke compared with people with normal insulin sensitivity. Decreased insulin sensitivity in cardiovascular tissues as well as in traditional targets of insulin metabolic signaling, such as skeletal muscle, is an underlying abnormality in obesity, hypertension, and T2D. In the vasculature, insulin signaling plays a critical role in normal vascular function via endothelial cell nitric oxide production and modulation of Ca(2+) handling and sensitivity in vascular smooth muscle cells. Available evidence suggests that impaired vascular insulin sensitivity may be an early, perhaps principal, defect of vascular function and contributor to the pathogenesis of vascular disease in persons with obesity, hypertension, and T2D. In the overweight and obese individual, as well as in persons with hypertension, systemic and vascular insulin resistance often occur in concert with elevations in plasma aldosterone. Indeed, basic and clinical studies have demonstrated that elevated plasma aldosterone levels predict the development of insulin resistance and that aldosterone directly interferes with insulin signaling in vascular tissues. Furthermore, elevated plasma aldosterone levels are associated with increased heart attack and stroke risk. Conversely, renin-angiotensin-aldosterone system and mineralocorticoid receptor (MR) antagonism reduces cardiovascular risk in these patient populations. Recent and accumulating evidence in this area has implicated excessive Ser phosphorylation and proteosomal degradation of the docking protein, insulin receptor substrate, and enhanced signaling through hybrid insulin/IGF-1 receptor as important mechanisms underlying aldosterone-mediated interruption of downstream vascular insulin signaling. Prevention or restoration of these changes via blockade of aldosterone action in the vascular wall with MR antagonists (i.e., spironolactone, eplerenone) may therefore account for the clinical benefit of these compounds in obese and diabetic patients with cardiovascular disease. This review will highlight recent evidence supporting the hypothesis that aldosterone and MR signaling represent an ideal candidate pathway linking early promoters of diabetes, especially overnutrition and obesity, to vascular insulin resistance, dysfunction, and disease.
Collapse
Affiliation(s)
- Shawn B Bender
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri, USA.
| | | | | | | |
Collapse
|
63
|
Lin CC, Hsieh HL, Shih RH, Chi PL, Cheng SE, Yang CM. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal 2013; 11:8. [PMID: 23343326 PMCID: PMC3560266 DOI: 10.1186/1478-811x-11-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is a proinflammatory mediator and elevated in the regions of several brain injury and inflammatory diseases. The deleterious effects of ET-1 on endothelial cells may aggravate brain inflammation mediated through the regulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various cell types. However, the signaling mechanisms underlying ET-1-induced COX-2 expression in brain microvascular endothelial cells remain unclear. Herein we investigated the effects of ET-1 in COX-2 regulation in mouse brain microvascular endothelial (bEnd.3) cells. Results The data obtained with Western blotting, RT-PCR, and immunofluorescent staining analyses showed that ET-1-induced COX-2 expression was mediated through an ETB-dependent transcriptional activation. Engagement of Gi- and Gq-protein-coupled ETB receptors by ET-1 led to phosphorylation of ERK1/2, p38 MAPK, and JNK1/2 and then activated transcription factor NF-κB. Moreover, the data of chromatin immunoprecipitation (ChIP) and promoter reporter assay demonstrated that the activated NF-κB was translocated into nucleus and bound to its corresponding binding sites in COX-2 promoter, thereby turning on COX-2 gene transcription. Finally, up-regulation of COX-2 by ET-1 promoted PGE2 release in these cells. Conclusions These results suggested that in mouse bEnd.3 cells, activation of NF-κB by ETB-dependent MAPK cascades is essential for ET-1-induced up-regulation of COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 release regulated by ET-1/ETB system on brain microvascular endothelial cells may provide rationally therapeutic interventions for brain injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road Kwei-San, Tao-Yuan, Taiwan.
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
In patients with diabetes, atherosclerosis is the main reason for impaired life expectancy, and diabetic nephropathy and retinopathy are the largest contributors to end-stage renal disease and blindness, respectively. An improved therapeutic approach to combat diabetic vascular complications might include blocking mechanisms of injury as well as promoting protective or regenerating factors, for example by enhancing the action of insulin-regulated genes in endothelial cells, promoting gene programs leading to induction of antioxidant or anti-inflammatory factors, or improving the sensitivity to vascular cell survival factors. Such strategies could help prevent complications despite suboptimal metabolic control.
Collapse
|
65
|
Abstract
A substantial body of evidence has reported that insulin has direct actions on the cardiovascular system independent of its systemic effects on plasma glucose or lipids. In particular, insulin regulates endothelial synthesis of the vasoactive mediators nitric oxide and endothelin-1, yet the importance of this in the maintenance of cardiovascular health remains poorly understood. Recent studies using animals with targeted downregulation of insulin signaling in vascular tissues are improving our understanding of the role of insulin in vascular health. This article focuses on the direct actions of insulin in cardiovascular tissues, with particular emphasis on the molecular mechanisms of insulin action on endothelial function. The potential contribution of impaired vascular insulin action to the cardiovascular complications of diabetes will also be discussed.
Collapse
Affiliation(s)
- Ian P Salt
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
66
|
Huang A, Yang YM, Yan C, Kaley G, Hintze TH, Sun D. Altered MAPK signaling in progressive deterioration of endothelial function in diabetic mice. Diabetes 2012; 61:3181-8. [PMID: 22933112 PMCID: PMC3501862 DOI: 10.2337/db12-0559] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We aimed to investigate specific roles of mitogen-activated protein kinases (MAPK) in the deterioration of endothelial function during the progression of diabetes and the potential therapeutic effects of MAPK inhibitors and agonists in the amelioration of endothelial function. Protein expression and phosphorylation of p38, c-Jun NH(2)-terminal kinase (JNK), and extracellular signal-regulated kinase (Erk) were assessed in mesenteric arteries of 3- (3M) and 9-month-old (9M) male diabetic and control mice. The expression of p38, JNK, and Erk was comparable in all groups of mice, but the phosphorylation of p38 and JNK was increased in 3M and further increased in 9M diabetic mice, whereas the phosphorylation of Erk was substantially reduced in 9M diabetic mice. NADPH oxidase-dependent superoxide production was significantly increased in vessels of two ages of diabetic mice. Inhibition of either p38 with SB203580 or JNK with SP600125 reduced superoxide production and improved shear stress-induced dilation (SSID) in 3M, but not in 9M, diabetic mice. Treating the vessels of 9M diabetic mice with resveratrol increased Erk phosphorylation and shear stress-induced endothelial nitric oxide synthase (eNOS) phosphorylation and activity, but resveratrol alone did not improve SSID. Administration of resveratrol and SB203580 or resveratrol and SP600125 together significantly improved SSID in vessels of 9M diabetic mice. The improved response was prevented by U0126, an Erk inhibitor. Thus, p38/JNK-dependent increase in oxidative stress diminished nitric oxide-mediated dilation in vessels of 3M diabetic mice. Oxidative stress and impaired Erk-dependent activation of eNOS exacerbates endothelial dysfunction in the advanced stage of diabetes.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York
- Corresponding authors: An Huang, , and Dong Sun,
| | - Yang-Ming Yang
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Changdong Yan
- Department of Physiology, Xuzhou Medical College, China
| | - Gabor Kaley
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Thomas H. Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
- Department of Physiology, Xuzhou Medical College, China
- Corresponding authors: An Huang, , and Dong Sun,
| |
Collapse
|
67
|
Vascular disease in diabetic women: Why do they miss the female protection? EXPERIMENTAL DIABETES RESEARCH 2012; 2012:570598. [PMID: 22973304 PMCID: PMC3438753 DOI: 10.1155/2012/570598] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/02/2012] [Indexed: 02/06/2023]
Abstract
Gender plays a pivotal role in the onset as well as in the progression of the cardiovascular disease with a higher morbidity and mortality being detected in men with respect to women. Type 2 Diabetes Mellitus (T2DM) may reduce gender-related differences in the prevalence of cardiovascular disease by fading the vascular protective effects afforded by estrogen in females. This article will discuss the role of sex and sex hormones on the incidence and mechanisms involved in vascular dysfunction associated to T2DM, which might explain why women with T2DM lack the vascular protection.
Collapse
|
68
|
Arab L, Sadeghi R, Walker DG, Lue LF, Sabbagh MN. Consequences of Aberrant Insulin Regulation in the Brain: Can Treating Diabetes be Effective for Alzheimer's Disease. Curr Neuropharmacol 2012; 9:693-705. [PMID: 22654727 PMCID: PMC3263463 DOI: 10.2174/157015911798376334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/22/2010] [Accepted: 07/21/2010] [Indexed: 12/25/2022] Open
Abstract
There is an urgent need for new ways to treat Alzheimer’s disease (AD), the most common cause of dementia in the elderly. Current therapies are modestly effective at treating the symptoms, and do not significantly alter the course of the disease. Over the years, a range of epidemiological and experimental studies have demonstrated interactions between diabetes mellitus and AD. As both diseases are leading causes of morbidity and mortality in the elderly and are frequent co-morbid conditions, it has raised the possibility that treating diabetes might be effective in slowing AD. This is currently being attempted with drugs such as the insulin sensitizer rosiglitazone. These two diseases share many clinical and biochemical features, such as elevated oxidative stress, vascular dysfunction, amyloidogenesis and impaired glucose metabolism suggesting common pathogenic mechanisms. The main thrust of this review will be to explore the evidence from a pathological point of view to determine whether diabetes can cause or exacerbate AD. This was supported by a number of animal models of AD that have been shown to have enhanced pathology when diabetic conditions were induced. The one drawback in linking diabetes and insulin to AD has been the postmortem studies of diabetic brains demonstrating that AD pathology was not increased; in fact decreased pathology has often been reported. In addition, diabetes induces its own distinct features of neuropathology different from AD. There are common pathological features to be considered including vascular abnormalities, a major feature arising from diabetes; there is increasing evidence that vascular abnormalities can contribute to AD. The most important common mechanism between insulin-resistant (type II) diabetes and AD could be impaired insulin signaling; a form of toxic amyloid can damage neuronal insulin receptors and affect insulin signaling and cell survival. It has even been suggested that AD could be considered as “type 3 diabetes” since insulin can be produced in brain. Another common feature of diabetes and AD are increased advanced glycation endproduct-modified proteins are found in diabetes and in the AD brain; the receptor for advanced glycation endproducts plays a prominent role in both diseases. In addition, a major role for insulin degrading enzyme in the degradation of Aβ peptide has been identified. Although clinical trials of certain types of diabetic medications for treatment of AD have been conducted, further understanding the common pathological processes of diabetes and AD are needed to determine whether these diseases share common therapeutic targets.
Collapse
Affiliation(s)
- L Arab
- The Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | |
Collapse
|
69
|
Cifarelli V, Lee S, Kim DH, Zhang T, Kamagate A, Slusher S, Bertera S, Luppi P, Trucco M, Dong HH. FOXO1 mediates the autocrine effect of endothelin-1 on endothelial cell survival. Mol Endocrinol 2012; 26:1213-24. [PMID: 22570335 DOI: 10.1210/me.2011-1276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia exerts a deleterious effect on endothelium, contributing to endothelial dysfunction and microvascular complications in poorly controlled diabetes. To understand the underlying mechanism, we studied the effect of endothelin-1 (ET-1) on endothelial production of Forkhead box O1 (FOXO1), a forkhead transcription factor that plays an important role in cell survival. ET-1 is a 21-amino acid peptide that is secreted primarily from endothelium. Using adenovirus-mediated gene transfer approach, we delivered FOXO1 cDNA into cultured human aorta endothelial cells. FOXO1 was shown to stimulate B cell leukemia/lymphoma 2-associated death promoter (BAD) production and promote cellular apoptosis. This effect was counteracted by ET-1. In response to ET-1, FOXO1 was phosphorylated and translocated from the nucleus to cytoplasm, resulting in inhibition of BAD production and mitigation of FOXO1-mediated apoptosis. Hyperglycemia stimulated FOXO1 O-glycosylation and promoted its nuclear localization in human aorta endothelial cells. This effect accounted for unbridled FOXO1 activity in the nucleus, contributing to augmented BAD production and endothelial apoptosis under hyperglycemic conditions. FOXO1 expression became deregulated in the aorta of both streptozotocin-induced diabetic mice and diabetic db/db mice. This hyperglycemia-elicited FOXO1 deregulation and its ensuing effect on endothelial cell survival was corrected by ET-1. Likewise, FoxO1 deregulation in the aorta of diabetic mice was reversible after the reduction of hyperglycemia by insulin therapy. These data reveal a mechanism by which FOXO1 mediated the autocrine effect of ET-1 on endothelial cell survival. FOXO1 deregulation, resulting from an impaired ability of ET-1 to control FOXO1 activity in endothelium, may contribute to hyperglycemia-induced endothelial lesion in diabetes.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Division of Immunogenetics, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:657103. [PMID: 22566994 PMCID: PMC3332074 DOI: 10.1155/2012/657103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) and ageing have well documented effects on every organ in the body. In T2D the autonomic nervous system is impaired due to damage to neurons, sensory receptors, synapses and the blood vessels. This paper will concentrate on how autonomic impairment alters normal daily activities. Impairments include the response of the blood vessels to heat, sweating, heat transfer, whole body heating, orthostatic intolerance, balance, and gait. Because diabetes is more prevalent in older individuals, the effects of ageing will be examined. Beginning with endothelial dysfunction, blood vessels have impairment in their ability to vasodilate. With this and synaptic damage, the autonomic nervous system cannot compensate for effectors such as pressure on and heating of the skin. This and reduced ability of the heart to respond to stress, reduces autonomic orthostatic compensation. Diminished sweating causes the skin and core temperature to be high during whole body heating. Impaired orthostatic tolerance, impaired vision and vestibular sensing, causes poor balance and impaired gait. Overall, people with T2D must be made aware and counseled relative to the potential consequence of these impairments.
Collapse
|
71
|
Ding WY, Ti Y, Wang J, Wang ZH, Xie GL, Shang YY, Tang MX, Zhang Y, Zhang W, Zhong M. Prostaglandin F2α facilitates collagen synthesis in cardiac fibroblasts via an F-prostanoid receptor/protein kinase C/Rho kinase pathway independent of transforming growth factor β1. Int J Biochem Cell Biol 2012; 44:1031-9. [PMID: 22484488 DOI: 10.1016/j.biocel.2012.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/18/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023]
Abstract
Accumulation of collagen I and III in the myocardium is a prominent feature of interstitial fibrosis. Prostaglandin F(2α) (PGF(2α)) facilitates fibrosis by increasing collagen synthesis. However, the underlying mechanisms mediating the effect of PGF(2α) on collagen expression in cardiac fibroblasts are not yet fully elucidated. We measured the mRNA and protein levels of collagen I and III by quantitative real-time PCR and ELISA, respectively. Activation of signaling pathways was determined by western blot analysis. In primary rat cardiac fibroblasts, treatment with PGF(2α) stimulated both the mRNA and protein levels of collagen I and III, and pretreatment with the F-prostanoid (FP) receptor antagonist AL-8810, protein kinase C inhibitor LY-333531, and Rho kinase inhibitor Y-27632 significantly inhibited PGF(2α)-induced collagen I and III expression. FP receptor, protein kinase C, and Rho kinase were activated with PGF(2α) treatment. PGF(2α) may be an important regulator in the synthesis of collagen I and III via an FP receptor/protein kinase C/Rho kinase cascade in cardiac fibroblasts, which might be a new therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Wen-yuan Ding
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Pernow J, Shemyakin A, Böhm F. New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 2012; 91:507-16. [PMID: 22483688 DOI: 10.1016/j.lfs.2012.03.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) is a vasoconstrictor, proinflammatory and proliferative endothelial cell-derived peptide that is of significant importance in the regulation of vascular function. It is involved in the development of endothelial dysfunction including important interactions with nitric oxide. The expression and functional effects of ET-1 and its receptors are markedly altered during development of cardiovascular disease. Increased production of ET-1 and its receptors mediate many pathophysiological events contributing to the development of atherosclerosis and vascular complications in diabetes mellitus. The present review focuses on the pathophysiological role of ET-1 and the potential importance of ET receptors as a therapeutic target for treatment of these conditions.
Collapse
Affiliation(s)
- John Pernow
- Karolinska Institutet, Cardiology Unit, Department of Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden.
| | | | | |
Collapse
|
73
|
Huang A, Yang YM, Feher A, Bagi Z, Kaley G, Sun D. Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 2012; 302:R674-81. [PMID: 22262308 DOI: 10.1152/ajpregu.00699.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 μm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York, USA
| | | | | | | | | | | |
Collapse
|
74
|
Sun C, Sun L, Ma H, Peng J, Zhen Y, Duan K, Liu G, Ding W, Zhao Y. The phenotype and functional alterations of macrophages in mice with hyperglycemia for long term. J Cell Physiol 2012; 227:1670-9. [DOI: 10.1002/jcp.22891] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
75
|
Zhang H, Dellsperger KC, Zhang C. The link between metabolic abnormalities and endothelial dysfunction in type 2 diabetes: an update. Basic Res Cardiol 2011; 107:237. [PMID: 22189563 DOI: 10.1007/s00395-011-0237-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/30/2011] [Accepted: 12/05/2011] [Indexed: 01/06/2023]
Abstract
Despite abundant clinical evidence linking metabolic abnormalities to diabetic vasculopathy, the molecular basis of individual susceptibility to diabetic vascular complications is still largely undetermined. Endothelial dysfunction in diabetes-associated vascular complications is considered an early stage of vasculopathy and has attracted considerable research interests. Type 2 diabetes is characterized by metabolic abnormalities, such as hyperglycemia, excess liberation of free fatty acids (FFA), insulin resistance and hyperinsulinemia. These abnormalities exert pathological impact on endothelial function by attenuating endothelium-mediated vasomotor function, enhancing endothelial apoptosis, stimulating endothelium activation/endothelium-monocyte adhesion, promoting an atherogenic response and suppressing barrier function. There are multiple signaling pathways contributing to the adverse effects of glucotoxicity on endothelial function. Insulin maintains the normal balance for release of several factors with vasoactive properties. Abnormal insulin signaling in the endothelium does not affect the whole-body glucose metabolism, but impairs endothelial response to insulin and accelerates atherosclerosis. Excessive level of FFA is implicated in the pathogenesis of insulin resistance. FFA induces endothelial oxidative stress, apoptosis and inflammatory response, and inhibits insulin signaling. Although hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia independently contribute to endothelial dysfunction via various distinct mechanisms, the mutual interactions may synergistically accelerate their adverse effects. Oxidative stress and inflammation are predicted to be among the first alterations which may trigger other downstream mediators in diabetes associated with endothelial dysfunction. These mechanisms may provide insights into potential therapeutic targets that can delay or reverse diabetic vasculopathy.
Collapse
Affiliation(s)
- Hanrui Zhang
- Departments of Internal Medicine, Medical Pharmacology & Physiology and Nutritional Sciences, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
76
|
Cersosimo E, Xu X, Musi N. Potential role of insulin signaling on vascular smooth muscle cell migration, proliferation, and inflammation pathways. Am J Physiol Cell Physiol 2011; 302:C652-7. [PMID: 22094332 DOI: 10.1152/ajpcell.00022.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To investigate the role of insulin signaling pathways in migration, proliferation, and inflammation of vascular smooth muscle cells (VSMCs), we examined the expression of active components of the phosphatidyl inositol 3 (PI-3) kinase (p-Akt) and mitogen-activated protein kinase (MAPK) (p-Erk) in primary cultures of VSMCs from human coronary arteries. VSMCs were treated in a dose-response manner with insulin (0, 1, 10, and 100 nM) for 20 min, and Akt and Erk phosphorylation were measured by Western blot analysis. In separate experiments, we evaluated the effect of 200 μM palmitate, in the presence and absence of 8 μM pioglitazone, on insulin-stimulated (100 nM for 20 min) Akt and Erk phosphorylation. The phosphorylation of Akt and Erk in VSMCs exhibited a dose dependency with a three- to fourfold increase, respectively, at the highest dose (100 nM). In the presence of palmitate, insulin-induced Akt phosphorylation was completely abolished, and there was a threefold increase in p-Erk. With addition of pioglitazone, the phosphorylation of Akt by insulin remained unchanged, whereas insulin-stimulated Erk phosphorylation was reduced by pioglitazone. These data in VSMCs indicate that high palmitate decreases insulin-stimulated Akt phosphorylation and stimulates MAPK, whereas preexposure peroxisome proliferator-activated receptor-γ agonist pioglitazone preserves Akt phosphorylation and simultaneously attenuates MAPK signaling. Our results suggest that metabolic and mitogenic insulin signals have different sensitivity, are independently regulated, and may play a role in arterial smooth muscle cells migration, proliferation, and inflammation in conditions of acute hyperinsulinemia.
Collapse
Affiliation(s)
- Eugenio Cersosimo
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
77
|
Dysfunction of human subcutaneous fat arterioles in obesity alone or obesity associated with Type 2 diabetes. Clin Sci (Lond) 2011; 120:463-72. [PMID: 20979575 DOI: 10.1042/cs20100355] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to examine the effects of obesity alone and obesity associated with Type 2 diabetes on the structure, vascular reactivity and response to insulin of isolated human subcutaneous fat arterioles; these effects were correlated with the expression of insulin signalling proteins. Periumbilical subcutaneous adipose tissue was explanted during surgery, small arterioles (internal diameter 220 ± 40 μm) were dissected out and investigated by electron microscopy, myography and immunoblotting. Compared with the subcutaneous arterioles of lean subjects, obesity activated the endothelium, enhanced the accumulation of collagen within vascular wall and increased the sensitivity of adrenergic response; obesity also diminished eNOS (endothelial NO synthase) protein expression, NO production, and endothelium-dependent and insulin-induced vasodilatation, as well as the protein expression of both IRS (insulin receptor substrates)-1 and IRS-2 and of the downstream molecules in the insulin signalling pathway, such as PI3K (phosphoinositide 3-kinase), phospho-Akt and Akt. When obesity was associated with Type 2 diabetes, these changes were significantly augmented. In conclusion, obesity alone or obesity associated with Type 2 diabetes alters human periumbilical adipose tissue arterioles in terms of structure, function and biochemsitry, including diminished eNOS expression and reduced levels of IRS-1, IRS-2, PI3K and Akt in the insulin signalling pathway.
Collapse
|
78
|
Petrofsky JS. The effect of type-2-diabetes-related vascular endothelial dysfunction on skin physiology and activities of daily living. J Diabetes Sci Technol 2011; 5:657-67. [PMID: 21722580 PMCID: PMC3192631 DOI: 10.1177/193229681100500319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A common factor contributing to organ damage in type 2 diabetes mellitus (T2DM) is impaired tissue blood flow caused by damage to vascular endothelial cells (VECs). Damage can occur even before the clinical diagnosis of diabetes. It can be caused by both a high average blood glucose concentration and/or large daily spikes in blood glucose. While much of the present literature focuses on the damage to VECs and organs from these large glucose excursions, this review will focus on the consequence of this damage, that is, how endothelial cell damage in diabetes affects normal daily activities (e.g., exercise, reaction to typical stimuli) and various treatment modalities (e.g.. contrast baths and electrical stimulation therapy). It is important to understand the effects of VEC damage such as poor skin blood flow, compromised thermoregulation, and altered response to skin pressure in designing diabetes technologies as simple as heating pads and as complex as continuous glucose monitors. At the simplest level, people with diabetes have poor circulation to the skin and other organs. In the skin, even the blood flow response to locally applied pressure, such as during standing, is different than for people who do not have T2DM. Simple weight bearing on the foot can occlude the skin circulation. This makes the skin more susceptible to damage. In addition, endothelial damage has far-reaching effects on the whole body during normal activities of daily living, including an impaired response to local heat, such as hot packs and contrast baths, and higher body temperatures during whole body heating due to impaired blood flow and a reduced ability to sweat. Finally, because of multiple organ damage, people with T2DM have poor balance and gait and impaired exercise performance.
Collapse
Affiliation(s)
- Jerrold Scott Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|
79
|
Lightell DJ, Moss SC, Woods TC. Loss of canonical insulin signaling accelerates vascular smooth muscle cell proliferation and migration through changes in p27Kip1 regulation. Endocrinology 2011; 152:651-8. [PMID: 21190963 PMCID: PMC3037159 DOI: 10.1210/en.2010-0722] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin resistance is associated with an accelerated rate of atherosclerosis. Vascular smooth muscle cell (VSMC) migration and proliferation are important components of atherosclerosis. To elucidate the effects of the loss of normal insulin receptor (IR) signaling on VSMC function, we compared the proliferation and migration of murine VSMCs lacking the IR (L2-VSMCs) with wild type (WT-VSMCs). We also examined changes in the response of L2-VSMCs to insulin stimulation and to inhibition of the mammalian target of rapamycin (mTOR), a kinase critical in VSMC proliferation and migration. The L2-VSMCs exhibit greater proliferation and migration rates compared with WT-VSMCs. L2-VSMCs also exhibit a resistance to the effects of rapamycin, an mTOR inhibitor, on proliferation, migration, and cell cycle progression. The resistance to mTOR inhibition is coupled with a loss of effect on the cyclin-dependent kinase inhibitor p27(Kip1), an inhibitor of cell cycle progression and VSMC migration. In response to stimulation with physiological insulin, the L2-VSMCs exhibit a loss of Akt phosphorylation and a significantly increased activation of the ERK-1/2 compared with WT-VSMCs. Insulin stimulation also decreased p27(Kip1) mRNA in L2-VSMCs but not in WT-VSMCs. The effect of insulin on p27(Kip1) mRNA was blocked by pretreatment with an ERK-1/2 pathway inhibitor. We conclude that loss of canonical insulin signaling results in increased ERK-1/2 activation in response to physiological insulin that decreases p27(Kip1) mRNA. These data demonstrate a potential mechanism where changes in IR signaling could lead to a decrease in p27(Kip1), accelerating VSMC proliferation and migration.
Collapse
Affiliation(s)
- Daniel James Lightell
- Laboratory of Molecular Cardiology, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, USA
| | | | | |
Collapse
|
80
|
Xi L, Xiao C, Bandsma RHJ, Naples M, Adeli K, Lewis GF. C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases. Hepatology 2011; 53:127-35. [PMID: 20967757 DOI: 10.1002/hep.24011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/17/2010] [Indexed: 02/02/2023]
Abstract
UNLABELLED Plasma C-reactive protein (CRP) concentration is increased in the metabolic syndrome, which consists of a cluster of cardiovascular disease risk factors, including insulin resistance. It is not known, however, whether CRP is merely a marker of accompanying inflammation or whether it contributes causally to insulin resistance. The objective of this study is to investigate the role that CRP may play in the development of insulin resistance. We examined the effect of single-dose intravenous administration of purified human (h)CRP on insulin sensitivity in Sprague-Dawley rats using the euglycemic, hyperinsulinemic clamp technique. hCRP was associated with impaired insulin suppression of endogenous glucose production with no reduction in peripheral tissue glucose uptake, suggesting that hCRP mediated insulin resistance in the liver but not extrahepatic tissues. We further assessed components of the insulin signaling pathway and mitogen-activated protein kinases (MAPKs) in the liver. Liver tissues derived from hCRP-treated rats showed reduced insulin-stimulated insulin receptor substrate (IRS) tyrosine phosphorylation, IRS/phosphatidylinositol 3-kinase (PI3K) association, and Akt phosphorylation, consistent with hCRP-induced impairment of hepatic insulin signaling. Furthermore, hCRP enhanced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK as well as IRS-1 Ser(612) . Finally, we observed in primary cultured rat hepatocytes that U0126 (a selective inhibitor of MAPK/ERK kinase1/2) corrected hCRP-induced impairment of insulin signaling. CONCLUSIONS hCRP plays an active role in inducing hepatic insulin resistance in the rat, at least in part by activating ERK1/2, with downstream impairment in the insulin signaling pathway.
Collapse
Affiliation(s)
- Liang Xi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
81
|
Magkos F, Wang X, Mittendorfer B. Metabolic actions of insulin in men and women. Nutrition 2010; 26:686-93. [PMID: 20392600 DOI: 10.1016/j.nut.2009.10.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 10/24/2009] [Indexed: 12/31/2022]
Abstract
Insulin is an important regulator of glucose, lipid, and protein metabolism. It suppresses hepatic glucose and triglyceride production, inhibits adipose tissue lipolysis and whole-body and muscle proteolysis, and stimulates glucose uptake in muscle. In this review we discuss what is currently known about the control of substrate metabolism by insulin in men and women. The data available so far indicate that women are more sensitive to insulin with regards to glucose metabolism (both in the liver and in muscle), whereas there are no differences between men and women in insulin action on lipolysis. Potential differences exist in the regulation of plasma triglyceride concentration and protein metabolism by insulin and in changes in insulin action in response to stimuli (e.g., weight loss and exercise) that are known to alter insulin sensitivity. However, these areas have not been studied comprehensively enough to draw firm conclusions.
Collapse
Affiliation(s)
- Faidon Magkos
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
82
|
Kolka CM, Harrison LN, Lottati M, Chiu JD, Kirkman EL, Bergman RN. Diet-induced obesity prevents interstitial dispersion of insulin in skeletal muscle. Diabetes 2010; 59:619-26. [PMID: 19959760 PMCID: PMC2827487 DOI: 10.2337/db09-0839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Obesity causes insulin resistance, which has been interpreted as reduced downstream insulin signaling. However, changes in access of insulin to sensitive tissues such as skeletal muscle may also play a role. Insulin injected directly into skeletal muscle diffuses rapidly through the interstitial space to cause glucose uptake. When insulin resistance is induced by exogenous lipid infusion, this interstitial diffusion process is curtailed. Thus, the possibility exists that hyperlipidemia, such as that seen during obesity, may inhibit insulin action to muscle cells and exacerbate insulin resistance. Here we asked whether interstitial insulin diffusion is reduced in physiological obesity induced by a high-fat diet (HFD). RESEARCH DESIGN AND METHODS Dogs were fed a regular diet (lean) or one supplemented with bacon grease for 9-12 weeks (HFD). Basal insulin (0.2 mU x min(-1) x kg(-1)) euglycemic clamps were performed on fat-fed animals (n = 6). During clamps performed under anesthesia, five sequential doses of insulin were injected into the vastus medialis of one hind limb (INJ); the contralateral limb (NINJ) served as a control. RESULTS INJ lymph insulin showed an increase above NINJ in lean animals, but no change in HFD-fed animals. Muscle glucose uptake observed in lean animals did not occur in HFD-fed animals. CONCLUSIONS Insulin resistance induced by HFD caused a failure of intramuscularly injected insulin to diffuse through the interstitial space and failure to cause glucose uptake, compared with normal animals. High-fat feeding prevents the appearance of injected insulin in the interstitial space, thus reducing binding to skeletal muscle cells and glucose uptake.
Collapse
Affiliation(s)
- Cathryn M. Kolka
- From the Department of Physiology and Biophysics, University of Southern California, Los Angeles, California
| | - L. Nicole Harrison
- From the Department of Physiology and Biophysics, University of Southern California, Los Angeles, California
| | - Maya Lottati
- From the Department of Physiology and Biophysics, University of Southern California, Los Angeles, California
| | - Jenny D. Chiu
- From the Department of Physiology and Biophysics, University of Southern California, Los Angeles, California
| | - Erlinda L. Kirkman
- From the Department of Physiology and Biophysics, University of Southern California, Los Angeles, California
| | - Richard N. Bergman
- From the Department of Physiology and Biophysics, University of Southern California, Los Angeles, California
- Corresponding author: Richard N. Bergman,
| |
Collapse
|
83
|
Current literature in diabetes. Diabetes Metab Res Rev 2010; 26:i-xi. [PMID: 20474064 DOI: 10.1002/dmrr.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|