51
|
Vaitaitis GM, Rihanek M, Alkanani AK, Waid DM, Gottlieb PA, Wagner DH. Biomarker discovery in pre-Type 1 Diabetes; Th40 cells as a predictive risk factor. J Clin Endocrinol Metab 2019; 104:4127-4142. [PMID: 31063181 PMCID: PMC6685715 DOI: 10.1210/jc.2019-00364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/01/2019] [Indexed: 01/31/2023]
Abstract
CONTEXT The incidence of Type 1 Diabetes (T1D) is increasing worldwide. The quest to understand T1D etiology as well as how to predict diabetes is ongoing and, in many ways, those goals intertwine. While genetic components associate with T1D, not all T1D individuals have those components and not all subjects with those components develop disease. OBJECTIVE More robust methods for prediction of T1D are needed. Can high CD4+CD40+ T cell (Th40) levels be used as a biomarker in addition to other markers? METHODS Th40 levels were assessed along with other parameters in blood collected from prediabetic TrialNet subjects. RESULTS Pre-diabetic subjects, stratified according to their Th40 cell levels, demonstrate patterns that parallel those seen between control and T1D subjects. Cytokine patterns are significantly different between Th40-high and -low subjects and a CD4/CD8 double-positive population is more represented in Th40-high groups. Subjects experiencing impaired glucose tolerance present a significantly higher Th40 level than control subjects do. HLA DR4/DR4 and DQ8/DQ8, HLAs associated with T1D, are more likely found among Th40-high subjects. Interestingly, HLA DR4/DR4 subjects were significantly older compared with all other subjects, suggesting that this haplotype together with a high Th40 level may represent someone who will onset after age 30, which is reported for 42% of T1D cases. CONCLUSION Considering the differences found in relation to prediabetic Th40 cell level, it may be possible to devise methods that more accurately predicts who will proceed toward diabetes and, possibly, at what stage of prediabetes a subject is.
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marynette Rihanek
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aimon K Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dan M Waid
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David H Wagner
- Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Correspondence and Reprint Requests: David H. Wagner, Jr., PhD, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, Colorado 80045. E-mail:
| | | |
Collapse
|
52
|
Jamison BL, Haskins K. Tissue Crosstalk in T1D: Is Insulin Special? Immunity 2019; 49:394-396. [PMID: 30231981 DOI: 10.1016/j.immuni.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In a recent issue of Nature,Wan et al. (2018) show that glucose-stimulated β cells secrete insulin B chain peptides relevant to autoimmunity in type 1 diabetes. Peptides such as insulin B:12-20 are released into circulation, where they can be directly and broadly presented by antigen-presenting cells throughout the lymphatic system.
Collapse
Affiliation(s)
- Braxton L Jamison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
53
|
Mannering SI, Di Carluccio AR, Elso CM. Neoepitopes: a new take on beta cell autoimmunity in type 1 diabetes. Diabetologia 2019; 62:351-356. [PMID: 30402774 DOI: 10.1007/s00125-018-4760-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023]
Abstract
Type 1 diabetes is an autoimmune disease caused by T cell-mediated destruction of pancreatic insulin-producing beta cells. The epitopes recognised by pathogenic T cells in human type 1 diabetes are poorly defined; however, a growing body of evidence suggests that T cell responses against neoepitopes contribute to beta cell destruction in type 1 diabetes. Neoepitopes are formed when self-proteins undergo post-translational modification to create a new epitope that is recognised by T- or B cells. Here we review the role of human T cell responses against neoepitopes in the immune pathogenesis of type 1 diabetes. Specifically, we review the different approaches to identifying neoepitopes relevant to human type 1 diabetes and outline several advances in this field that have occurred over the past few years. We also discuss the application of neoepitopes to the development of antigen-specific therapies for type 1 diabetes and the unresolved challenges that need to be overcome before the full repertoire of neoepitopes recognised by pathogenic human T cells in type 1 diabetes can be determined. This information may then be used to develop antigen-specific therapies for type 1 diabetes and assays to monitor changes in pathogenic, beta cell-specific T cell responses.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia.
- Department of Medicine, University of Melbourne, Fitzroy, Melbourne, VIC, Australia.
| | - Anthony R Di Carluccio
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, University of Melbourne, Fitzroy, Melbourne, VIC, Australia
| |
Collapse
|
54
|
Wiles TA, Powell R, Michel C, Beard KS, Hohenstein A, Bradley B, Reisdorph N, Haskins K, Delong T. Identification of Hybrid Insulin Peptides (HIPs) in Mouse and Human Islets by Mass Spectrometry. J Proteome Res 2019; 18:814-825. [PMID: 30585061 DOI: 10.1021/acs.jproteome.8b00875] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We recently discovered hybrid insulin peptides (HIPs) as a novel class of post-translationally modified peptides in murine-derived beta cell tumors, and we demonstrated that these molecules are autoantigens in type 1 diabetes (T1D). A HIP consists of an insulin fragment linked to another secretory granule peptide via a peptide bond. We verified that autoreactive CD4 T cells in both mouse and human autoimmune diabetes recognize these modified peptides. Here, we use mass spectrometric analyses to confirm the presence of HIPs in both mouse and human pancreatic islets. We also present criteria for the confident identification of these peptides. This work supports the hypothesis that HIPs are autoantigens in human T1D and provides a foundation for future efforts to interrogate this previously unknown component of the beta cell proteome.
Collapse
Affiliation(s)
- T. Aaron Wiles
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Roger Powell
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Cole Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - K. Scott Beard
- Barbara Davis Center for Childhood Diabetes , Aurora , Colorado 80045 , United States
| | - Anita Hohenstein
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Brenda Bradley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| | - Thomas Delong
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045,
United States
| |
Collapse
|
55
|
Kroger CJ, Clark M, Ke Q, Tisch RM. Therapies to Suppress β Cell Autoimmunity in Type 1 Diabetes. Front Immunol 2018; 9:1891. [PMID: 30166987 PMCID: PMC6105696 DOI: 10.3389/fimmu.2018.01891] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is generally considered to be T cell-driven. Accordingly, most strategies of immunotherapy for T1D prevention and treatment in the clinic have targeted the T cell compartment. To date, however, immunotherapy has had only limited clinical success. Although certain immunotherapies have promoted a protective effect, efficacy is often short-term and acquired immunity may be impacted. This has led to the consideration of combining different approaches with the goal of achieving a synergistic therapeutic response. In this review, we will discuss the status of various T1D therapeutic strategies tested in the clinic, as well as possible combinatorial approaches to restore β cell tolerance.
Collapse
Affiliation(s)
- Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|