51
|
Yuan Z, Wang L, Chen C. Analysis of the prognostic, diagnostic and immunological role of HSP90α in malignant tumors. Front Oncol 2022; 12:963719. [PMID: 36158677 PMCID: PMC9499179 DOI: 10.3389/fonc.2022.963719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 90α (HSP90α) encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone HSP90, and was demonstrated as a promising hallmark to diagnose, prognosis in malignant tumors. This study is to evaluate the value of HSP90α in diagnosis, prognosis and immunotherapy of malignant tumors by investigating the expression of HSP90α in plasma of various tumors and analyzing the expression of HSP90α at gene and protein levels via pan-cancer database. We founded that levels of HSP90α in malignant tumors groups were significantly higher than healthy controls in serum. Pan-cancer analysis showed that HSP90AA1 was highly expressed in 27 of 33 tumors, but low in individual cancers (such as renal malignancies). The plasma HSP90α level was positively correlated with the stage of malignant tumor, but there was no significant difference between HSP90AA1 and the stage of most tumors. Cox regression analysis showed that HSP90AA1 expression was significantly correlated with OS in only 6 of the 32 cancers, including LIHC, KIRC, HNSC, LUAD, BRCA and MESO. Up-regulation of HSP90AA1 in most tumors was positively correlated with PDCD1LG2 and CD274 immune checkpoint genes. T cell CD8+ was positively correlated with HSP90AA1 in COAD, DLBC and UVM, and negatively correlated with HSP90AA1 in ESCA, GBM, HNSC, KIRC, KIRP, UCEC and STAD. The AUC of HSP90α are generally high in different tumor groups, which indicated its diagnostic value in malignant tumors. In conclusion, serum HSP90α in patients with malignant tumor is generally elevated, which is of positive significance as an independent diagnosis and combined diagnosis. However, we found that the expression level of HSP90AA1 gene in most tumors was not completely consistent with the serum level, and even down-regulated in some tumors. Plasma levels can be used as biomarkers of poor prognosis in some tumors, but it cannot be used as a biomarker for poor prognosis of all tumors, and more in-depth studies are needed.
Collapse
Affiliation(s)
- Zhimin Yuan
- Xi’an Jiaotong University, Xi’an, China
- Department of Clinical Laboratory, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Longhao Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Cheng Chen
- Department of General Dentistry/Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Cheng Chen,
| |
Collapse
|
52
|
Ma H, Guo X, Wang Z, Han M, Liu H. Therapeutic potential of WKYMVm in diseases. Front Pharmacol 2022; 13:986963. [PMID: 36120322 PMCID: PMC9479759 DOI: 10.3389/fphar.2022.986963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The synthetic hexapeptide WKYMVm, screened from a synthetic peptide library, has been identified as an agonist of FPRs with the strongest activating effect on FPR2. WKYMVm plays an anti-inflammatory role in most inflammatory diseases by increasing the chemotaxis of phagocytes and regulating the secretion of inflammatory factors. WKYMVm can inhibit or promote the progression of different types of tumors, which depends on the regulation of WKYMVm on various components such as immune cells, inflammatory factors, chemokines, and tumor epithelial cells. Another major function of WKYMVm is to promote angiogenesis, which is reflected in its therapeutic value in ischemic diseases, wound healing and bone repair. In addition to the above functions, this paper also reviews the effects of WKYMVm on fibrosis, insulin resistance, osteolytic diseases and neurodegenerative diseases. By summarizing related studies, this review can increase people’s comprehensive understanding of WKYMVm, promote its broad and in-depth research, and help to exert its therapeutic value as soon as possible.
Collapse
Affiliation(s)
- Huan Ma
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoming Guo
- Department of Endoscopy, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiguo Wang
- Department of Endoscopy, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mei Han
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Hui Liu, , Mei Han,
| | - Hui Liu
- Department of Gastroenterology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- *Correspondence: Hui Liu, , Mei Han,
| |
Collapse
|
53
|
Wei L, Zhang W, Li Y, Zhai J. The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence. Front Cell Dev Biol 2022; 10:986511. [PMID: 36081910 PMCID: PMC9448523 DOI: 10.3389/fcell.2022.986511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a common complication of many chronic diseases. It includes inflammation of the parenchyma and vascular systems. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, which can directly participate in the suppression of inflammation. It can also regulate the activity of other proteins. Among them, high mobility group box 1 (HMGB1) signaling can be inhibited by deacetylating four lysine residues (55, 88, 90, and 177) in quiescent endothelial cells. HMGB1 is a ubiquitous nuclear protein, once translocated outside the cell, which can interact with various target cell receptors including the receptor for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, and TLR4 and stimulates the release of pro-inflammatory cyto-/chemokines. And SIRT1 has been reported to inhibit the activity of HMGB1. Both are related to the occurrence and development of inflammation and associated diseases but show an antagonistic relationship in controlling inflammation. Therefore, in this review, we introduce how this signaling axis regulates the emergence of inflammation-related responses and tumor occurrence, providing a new experimental perspective for future inflammation research. In addition, it explores diverse upstream regulators and some natural/synthetic activators of SIRT1 as a possible treatment for inflammatory responses and tumor occurrence which may encourage the development of new anti-inflammatory drugs. Meanwhile, this review also introduces the potential molecular mechanism of the SIRT1-HMGB1 pathway to improve inflammation, suggesting that SIRT1 and HMGB1 proteins may be potential targets for treating inflammation.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenrui Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueyang Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Jinghui Zhai,
| |
Collapse
|
54
|
Liu X, Jia Y, Wang Z, Zhang Z, Fu W. A pan-cancer analysis reveals the genetic alterations and immunotherapy of Piezo2 in human cancer. Front Genet 2022; 13:918977. [PMID: 35991548 PMCID: PMC9386142 DOI: 10.3389/fgene.2022.918977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Piezo2 is a transmembrane-spanning ion channel protein implicated in multiple physiological processes, including cell proliferation and angiogenesis in many cell types. However, Piezo2 was recognized as representing a double-edged sword in terms of tumor growth. The prognostic and immunotherapeutic roles of Piezo2 in pan-cancer have not been reported. Methods: In this study, several databases available including the UCSC Xena database, HPA, TIDE, GSEA, and cBioportal were used to investigate the expression, alterations, associations with immune indicators, and prognostic roles of Piezo2 across pan-cancer. R software and Perl scripts were used to process the raw data acquired from the UCSC Xena database. Results: Based on processed data, our results suggested that Piezo2 expression levels were tissue-dependent in different tumor tissues. Meanwhile, the survival analysis reflected that patients suffering from KIRC, LUAD, and USC with high Piezo2 expression had good OS, while those suffering from KIRP and SARC with high Piezo2 expression had poor OS. In addition, our results showed that Piezo2 expression was associated with the infiltration of CD4+ T memory cells, mast cells, and dendritic cells. These results suggested that Piezo2 may involve tumor progression by influencing immune infiltration or regulating immune cell function. Further analysis indicated that Piezo2 could influence TME by regulating T-cell dysfunction. We also found that gene mutation was the most common genetic alteration of Piezo2. The GSEA analysis revealed that Piezo2 was associated with calcium ion transport, the activation of the immune response, antigen processing and presentation pathways. Conclusion: Our study showed the expression and prognostic features of Piezo2 and highlighted its associations with genetic alterations and immune signatures in pan-cancer. Moreover, we provided several novel insights for further research on the therapeutic potential of Piezo2.
Collapse
Affiliation(s)
- Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yangpu Jia
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastrointestinal Surgery, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxiong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Weihua Fu,
| |
Collapse
|
55
|
Xie R, Xie M, Zhu L, Chiu JWY, Lam W, Yap DYH. The Relationship of Pyroptosis-Related Genes, Patient Outcomes, and Tumor-Infiltrating Cells in Bladder Urothelial Carcinoma (BLCA). Front Pharmacol 2022; 13:930951. [PMID: 35928267 PMCID: PMC9343957 DOI: 10.3389/fphar.2022.930951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The role of pyroptosis and its effects on tumor-infiltrating cells (TICs) in the pathogenesis and treatment outcomes of patients with bladder urothelial carcinoma (BLCA) remains unclear. Methods: We conducted a bioinformatics analysis on the pyroptosis-related genes (PRGs) and TICs using data from public domains, and evaluated their impact on the pathogenesis and clinical outcomes of BLCA patients. A risk score based on PRGs and a prognostic risk model that incorporated patient demographics, tumor characteristics, and differentially expressed genes (DEGs) were developed. Results: Twenty-three DEGs of 52 PRGs were identified in BLCA and normal samples from the TCGA database. Missense mutations and single nucleotide polymorphisms in PRGs are the most common genetic abnormalities. Patients with high PRG risk scores showed an inferior survival compared to those with low risk scores. The prognostic risk model based on patient demographics, tumor characteristics, and DEGs showed good predictive values for patient survival at 1, 3, and 5 years in BLCA patients. Caspase-8 (CASP8) was the only intersection gene of the prognostic genes, DEGs, and different genes expressed in tissue. Patients with a high CASP8 expression had improved survival, and an increased CASP8 expression level was observed in activated CD4 memory T cells, follicular T helper cells, resting NK cells, M0 macrophages, and activated dendritic cells. CASP8 expression also showed a positive correlation with the IL7R expression—a key cell marker of CD4 memory T cells. CASP8 expression also showed correlations with immune checkpoints (PDCD1, CD274, and CTLA4) and response to immune checkpoint inhibitors. Conclusion: Our data suggest that PRGs, especially CASP8, showed strong associations with patient outcomes and TICs in BLCA. If validated, these results could potentially aid in the prognostication and guide treatment in BLCA patients.
Collapse
Affiliation(s)
- Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Litong Zhu
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joanne W. Y. Chiu
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wayne Lam
- Division of Urology, Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Desmond Y. H. Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Desmond Y. H. Yap,
| |
Collapse
|
56
|
Crame EE, Nourmohammadi S, Wardill HR, Coller JK, Bowen JM. Contribution of TLR4 to colorectal tumor microenvironment, etiology and prognosis. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04199-4. [PMID: 35841426 DOI: 10.1007/s00432-022-04199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Toll-like receptor 4 (TLR4) is increasingly recognized for its ability to govern the etiology and prognostic outcomes of colorectal cancer (CRC) due to its profound immunomodulatory capacity. Despite widespread interest in TLR4 and CRC, no clear analysis of current literature and data exists. Therefore, translational advances have failed to move beyond conceptual ideas and suggestions. METHODS We aimed to determine the relationship between TLR4 and CRC through a systematic review and analysis of published literature and datasets. Data were extracted from nine studies that reported survival, CRC staging and tumor progression data in relation to TLR4 expression. Primary and metastatic tumor samples with associated clinical data were identified through the Cancer Genome Atlas (TCGA) database. RESULTS Systematic review identified heterogeneous relationships between TLR4 and CRC traits, with no clear theme evident across studies. A total of 448 datasets were identified through the TCGA database. Analysis of TCGA datasets revealed TLR4 mRNA expression is decreased in advanced CRC stages (P < 0.05 for normal vs Stage II, Stage III and Stage IV). Stage-dependent impact of TLR4 expression on survival outcomes were also found, with high TLR4 expression associated with poorer prognosis (stage I vs III (HR = 4.2, P = 0.008) and stage I vs IV (HR = 11.3, P < 0.001)). CONCLUSION While TLR4 mRNA expression aligned with CRC staging, it appeared to heterogeneously regulate survival outcomes depending on the stage of disease. This underscores the complex relationship between TLR4 and CRC, with unique impacts dependent on disease stage.
Collapse
Affiliation(s)
- Elise E Crame
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA, 5000, Australia.
| | - Saeed Nourmohammadi
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA, 5000, Australia
| | - Hannah R Wardill
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA, 5000, Australia.,Precision Medicine (Cancer), The South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Janet K Coller
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Joanne M Bowen
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA, 5000, Australia
| |
Collapse
|
57
|
Precision Medicine in Solid Tumors: How Far We Traveled So Far? Cancers (Basel) 2022; 14:cancers14133202. [PMID: 35804974 PMCID: PMC9264970 DOI: 10.3390/cancers14133202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The future of disease management in solid tumors will rely heavily on how effectively we understand precision medicine and how successfully we can deliver personalized medicine [...]
Collapse
|
58
|
Huang Z, Wang H, Sun D, Liu J. Identification of Paxillin as a Prognostic Factor for Glioblastoma via Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7171126. [PMID: 35782068 PMCID: PMC9246607 DOI: 10.1155/2022/7171126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive type of brain tumor in the central nervous system. Clinical outcomes for patients with GBM are unsatisfactory. Here, we aimed to identify novel, reliable prognostic factors for GBM. Cox and interactive analyses were used to identify hub genes from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas datasets. After validation using various cohorts, survival analysis, meta-analysis, and prognostic analysis were performed. Coexpression and enrichment analyses were performed to elucidate the biological pathways of hub genes involved in GBM. ESTIMATE and CIBERSORT methods were applied to analyze the association of hub genes with the tumor microenvironment (TME). Paxillin (PXN) was identified as a hub gene with a high expression in GBM. PXN expression was negatively correlated with overall survival, progression-free survival, and disease-free survival in patients with GBM. Meta-analysis and Cox analysis revealed that PXN could act as an independent prognostic factor in GBM. In addition, PXN was significantly coexpressed with signal transducer and activator of transcription 3 and transforming growth factor β1 and participated in focal adhesion, extracellular matrix/receptor interactions, and the phosphatidylinositol 3-kinase/AKT signaling pathway. The results of ESTIMATE and CIBERSORT analyses revealed that PXN was implicated in TME alterations, particularly the infiltration of regulatory T cells, activated memory T cells, and activated natural killer cells. PXN may be a reliable prognostic factor for GBM. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hailiang Wang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongjie Sun
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jun Liu
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
59
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|
60
|
Tao L, Li D, Mu S, Tian G, Yan G. LncRNA MAPKAPK5_AS1 facilitates cell proliferation in hepatitis B virus -related hepatocellular carcinoma. J Transl Med 2022; 102:494-504. [PMID: 35264707 DOI: 10.1038/s41374-022-00731-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/09/2022] Open
Abstract
We explored the biological role of long non-coding RNA (lncRNA) MAPKAPK5_AS1 (MAAS) and the mechanism of its differential expression in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Differentially expressed lncRNAs in HBV-related HCC were determined using bioinformatics analysis. Gain-of-function experiments were conducted to evaluate the effect of MAAS on cell proliferation. A xenograft model was established for in vivo experiments. Dual-luciferase reporter assays, chromatin immunoprecipitation, co-immunoprecipitation, and methylated RNA immunoprecipitation were performed to elucidate the underlying molecular mechanisms. MAAS was upregulated in HBV-related HCC cancerous tissues and its high expression was closely related to the poor survival probability of patients. Functional assays revealed that MAAS overexpression facilitated the proliferation of HBV+HCC cells in vitro and in vivo. Mechanistically, MAAS promoted the MYC proto-oncogene (c-Myc)-induced transcriptional activation of cyclin-dependent kinase 4 (CDK4), CDK6, and S-phase kinase associated protein 2 via stabilizing c-Myc protein, thereby facilitating G1/S transition. The latter contributed to the paradoxical proliferation of HBV+HCC cells. Although MAAS was upregulated in HBV-related HCC cancerous tissues, it was highly expressed in M2 macrophages, a major phenotype of tumor-associated macrophages in HBV-related HCC, instead of in HBV+HCC cells. HBeAg, an HBV-associated antigen, further elevated the MAAS level in M2 macrophages by enhancing the methyltransferase-like 3-mediated N6-methyladenosine modification of MAAS. The increased MAAS in the M2 macrophages was then transferred to HBV+HCC cells through the M2 macrophage-derived exosomes, promoting cell proliferation. Our findings show that HBV+HCC cell-secreted HBeAg upregulates MAAS expression in M2 macrophages by affecting its m6A modification. The upregulated MAAS is then transferred to HBV+HCC cells via exosomes, facilitating the proliferation of HBV+HCC cells by targeting c-Myc.
Collapse
Affiliation(s)
- Lianyuan Tao
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.,Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
| | - Deyu Li
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China. .,Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China. .,Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Sengmao Mu
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Guanjing Tian
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Guoyi Yan
- Department of Hepatobiliary Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.,Henan Provincial Key Laboratory of Hepatobiliary and Pancreatic Diseases, Henan Provincial People's Hospital, Zhengzhou, China.,Zhengzhou Key Laboratory of Minimally Invasive Treatment for Liver Cancer, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
61
|
Kavaliauskas P, Opazo FS, Acevedo W, Petraitiene R, Grybaitė B, Anusevičius K, Mickevičius V, Belyakov S, Petraitis V. Synthesis, Biological Activity, and Molecular Modelling Studies of Naphthoquinone Derivatives as Promising Anticancer Candidates Targeting COX-2. Pharmaceuticals (Basel) 2022; 15:ph15050541. [PMID: 35631366 PMCID: PMC9144205 DOI: 10.3390/ph15050541] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-associated mortalities worldwide. Therefore, it is crucial to develop a novel therapeutic option targeting localized and metastatic NSCLC. In this paper, we describe the synthesis and biological activity characterization of naphthoquinone derivatives bearing selective anticancer activity to NSCLC via a COX-2 mediated pathway. The biological evaluation of compounds 9−16 showed promising structure-dependent anticancer activity on A549 cells in 2D and 3D models. Compounds were able to significantly (p < 0.05) reduce the A549 viability after 24 h of treatment in comparison to treated control. Compounds 9 and 16 bearing phenylamino and 4-hydroxyphenylamino substituents demonstrated the most promising anticancer activity and were able to induce mitochondrial damage and ROS formation. Furthermore, most promising compounds showed significantly lower cytotoxicity to non-cancerous Vero cells. The in silico ADMET properties revealed promising drug-like properties of compounds 9 and 16. Both compounds demonstrated favorable predicted GI absorption values, while only 16 was predicted to be permeable through the blood−brain barrier. Molecular modeling studies identified that compound 16 is able to interact with COX-2 in arachidonic acid site. Further studies are needed to better understand the safety and in vivo efficacy of compounds 9 and 16.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA; (R.P.); (V.P.)
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence:
| | - Felipe Stambuk Opazo
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso. Av. Universidad N° 330, Curauma, Valparaiso 2373223, Chile;
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso. Av. Universidad N° 330, Curauma, Valparaiso 2373223, Chile;
| | - Ruta Petraitiene
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Kazimieras Anusevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (K.A.); (V.M.)
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Laboratory of Physical Organic Chemistry, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Vidmantas Petraitis
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA; (R.P.); (V.P.)
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso. Av. Universidad N° 330, Curauma, Valparaiso 2373223, Chile;
| |
Collapse
|
62
|
Sousa AP, Costa R, Alves MG, Soares R, Baylina P, Fernandes R. The Impact of Metabolic Syndrome and Type 2 Diabetes Mellitus on Prostate Cancer. Front Cell Dev Biol 2022; 10:843458. [PMID: 35399507 PMCID: PMC8992047 DOI: 10.3389/fcell.2022.843458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PCa) remains the second most common type of cancer in men worldwide in 2020. Despite its low death rate, the need for new therapies or prevention strategies is critical. The prostate carcinogenesis process is complex and multifactorial. PCa is caused by a variety of mutations and carcinogenic events that constitutes the disease's multifactorial focus, capable of not only remodeling cellular activity, but also modeling metabolic pathways to allow adaptation to the nutritional requirements of the tumor, creating a propitious microenvironment. Some risk factors have been linked to the development of PCa, including Metabolic Syndrome (MetS) and Type 2 Diabetes Mellitus (T2DM). MetS is intrinsically related to PCa carcinogenic development, increasing its aggressiveness. On the other hand, T2DM has the opposite impact, although in other carcinomas its effect is similar to the MetS. Although these two metabolic disorders may share some developmental processes, such as obesity, insulin resistance, and dyslipidemia, their influence on PCa prognosis appears to have an inverse effect, which makes this a paradox. Understanding the phenomena behind this paradoxical behavior may lead to new concepts into the comprehension of the diseases, as well as to evaluate new therapeutical targets. Thus, this review aimed to evaluate the impact of metabolic disorders in PCa's aggressiveness state and metabolism.
Collapse
Affiliation(s)
- André P. Sousa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Raquel Costa
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marco G. Alves
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Raquel Soares
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine of Porto University, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Pilar Baylina
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| | - Rúben Fernandes
- LaBMI-Laboratório de Biotecnologia Médica e Industrial, Porto, Portugal
- I3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ESS-Escola Superior de Saúde, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
63
|
Yue T, Liu X, Zuo S, Zhu J, Li J, Liu Y, Chen S, Wang P. BCL2A1 and CCL18 Are Predictive Biomarkers of Cisplatin Chemotherapy and Immunotherapy in Colon Cancer Patients. Front Cell Dev Biol 2022; 9:799278. [PMID: 35265629 PMCID: PMC8898943 DOI: 10.3389/fcell.2021.799278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cisplatin enhances the antitumor T cell response, and the combination of PD-L1 blockade produces a synergistic therapeutic effect. However, the clinical correlation between cisplatin and immunotherapy in colon cancer (CC) is unknown. Methods: Using the “pRRophetic” package, we calculated the IC50 of cisplatin. The correlation between cisplatin IC50, cisplatin resistance–related genes (CCL18 and BCL2A1), and immunotherapy were preliminarily verified in TCGA and further validated in independent cohorts (GSE39582 and GSE17538), cisplatin-resistant CC cell line DLD1, and our own clinical specimens. Classification performance was evaluated using the AUC value of the ROC curve. Scores of immune signatures, autophagy, ferroptosis, and stemness were quantified using the ssGSEA algorithm. Results: Based on respective medians of three CC cohorts, patients were divided into high- and low-IC50 groups. Compared with the high IC50 group, the low-IC50 group had significantly higher tumor microenvironment (TME) scores and lower tumor purity. Most co-signaling molecules were upregulated in low IC50 group. CC patients with good immunotherapy efficacy (MSI, dMMR, and more TMB) were more attributable to the low-IC50 group. Among seven shared differentially expressed cisplatin resistance–related genes, CCL18 and BCL2A1 had the best predictive efficacy of the above immunotherapy biomarkers. For wet experimental verification, compared with cisplatin-resistant DLD1, similar to PD-L1, CCL18 and BCL2A1 were significantly upregulated in wild-type DLD1. In our own CC tissues, the mRNA expression of CCL18, BCL2A1, and PD-L1 in dMMR were significantly increased. The high group of CCL18 or BCL2A1 had a higher proportion of MSI, dMMR, and more TMB. IC50, CCL18, BCL2A1, and PD-L1 were closely related to scores of immune-related pathways, immune signatures, autophagy, ferroptosis, and stemness. The microRNA shared by BCL2A1 and PD-L1, hsa-miR-137, were significantly associated with CCL18, BCL2A1, and PD-L1, and downregulated in low-IC50 group. The activity of the TOLL-like receptor signaling pathway affected the sensitivity of CC patients to cisplatin and immunotherapy. For subtype analysis, immune C2, immune C6, HM-indel, HM-SNV, C18, and C20 were equally sensitive to cisplatin chemotherapy and immunotherapy. Conclusions: CC patients sensitive to cisplatin chemotherapy were also sensitive to immunotherapy. CCL18 and BCL2A1 were novel biomarkers for cisplatin and immunotherapy.
Collapse
Affiliation(s)
- Taohua Yue
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xiangzheng Liu
- Department of Thoracic Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shuai Zuo
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Zhu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jichang Li
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
64
|
Wang J, Chi S. Characterization of the Immune Cell Infiltration Landscape and a New Prognostic Score in Glioblastoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4326728. [PMID: 35310188 PMCID: PMC8926547 DOI: 10.1155/2022/4326728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most aggressive, malignant primary brain tumor, which has abundant tumor-infiltrating immune cells and stroma in the tumor microenvironment (TME). So far, the TME landscape of GBM has not been elucidated. GBM samples were retrieved from TCGA and GEO databases. We used ESTIMATE and CIBERSORT algorithms to calculate risk score associated with TME, and immune cell infiltration (ICI) score of each patient is calculated by PCA. GSEA analysis is explored for each subgroup. Finally, the patient prognosis in different ICI score subgroup is determined. Two ICI clusters are determined in 208 GBM patients, and 207 differentially expressed genes (DGEs) are found between ICI clusters. And then, two gene clusters were determined. Finally, we obtained ICI score for each patient using principal component analysis (PCA). Patients were divided into high and low ICI score subgroups by setting the median as cutoff. Through GSEA, we found ECM-receptor interaction, mTOR signaling pathway, pathways in cancer, TGF-beta signaling pathway, and other immunosuppressive pathway related genes in the low ICI score group. Furthermore, patients with high ICI score group have more better prognosis. Targeting the stroma in GBM may be an effective new therapeutic approach, and the ICI score is an effective potential prognostic classifier of GBM.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumei Chi
- Department of Neurology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
65
|
Retinoblastoma Cell Growth In Vitro and Tumor Formation In Ovo—Influence of Different Culture Conditions. Methods Protoc 2022; 5:mps5020021. [PMID: 35314658 PMCID: PMC8938814 DOI: 10.3390/mps5020021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022] Open
Abstract
Retinoblastoma (RB) is a primary intraocular malignancy in childhood. Relapses may develop and cause secondary cancers during later development. This study was set up to identify optimal cell culture conditions for RB cell growth in vitro and to optimize tumor growth in an in vivo model. RB cell lines (Y79 and WERI-Rb1) were cultivated under three different in vitro conditions and apoptosis, proliferation and cell growth, as well as expression profiles of two epithelial-mesenchymal transition (EMT) markers, were analyzed. EMT gene expression profiles were not generally changed, whereas apoptosis levels, tumor cell proliferation, and in vitro growth were significantly influenced by different cell culture conditions. In order to optimize the time-limited chick chorioallantoic membrane (CAM) assay, we investigated two different time points of tumor cell inoculation (embryonic development day EDD8 and EDD10) as well as three different cell concentrations. We showed that inoculation at EDD8 led to decreased tumor formation and chicken viability, whereas different cell concentrations did not change size and weight of developing tumors. Our findings demonstrate that medium conditions in vitro as well as the starting point for CAM inoculation in ovo significantly influence the experimental outcome of investigations using RB cell lines.
Collapse
|
66
|
Mohammad Mirzaei N, Changizi N, Asadpoure A, Su S, Sofia D, Tatarova Z, Zervantonakis IK, Chang YH, Shahriyari L. Investigating key cell types and molecules dynamics in PyMT mice model of breast cancer through a mathematical model. PLoS Comput Biol 2022; 18:e1009953. [PMID: 35294447 PMCID: PMC8959189 DOI: 10.1371/journal.pcbi.1009953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
The most common kind of cancer among women is breast cancer. Understanding the tumor microenvironment and the interactions between individual cells and cytokines assists us in arriving at more effective treatments. Here, we develop a data-driven mathematical model to investigate the dynamics of key cell types and cytokines involved in breast cancer development. We use time-course gene expression profiles of a mouse model to estimate the relative abundance of cells and cytokines. We then employ a least-squares optimization method to evaluate the model's parameters based on the mice data. The resulting dynamics of the cells and cytokines obtained from the optimal set of parameters exhibit a decent agreement between the data and predictions. We perform a sensitivity analysis to identify the crucial parameters of the model and then perform a local bifurcation on them. The results reveal a strong connection between adipocytes, IL6, and the cancer population, suggesting them as potential targets for therapies.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Navid Changizi
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, Massachusetts, United States of America
| | - Alireza Asadpoure
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, Massachusetts, United States of America
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Dilruba Sofia
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Zuzana Tatarova
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Young Hwan Chang
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon, United States of America
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
67
|
Zhang X, Dai X, Zhao X, Wang J, Dou J, Zhuang H, Chen N, Zhao H. MiR-874-3p represses the migration and invasion yet promotes the apoptosis and cisplatin sensitivity via being sponged by long intergenic non-coding RNA 00922 (LINC00922) and targeting Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) in gastric cancer cells. Bioengineered 2022; 13:7082-7104. [PMID: 35282764 PMCID: PMC9208458 DOI: 10.1080/21655979.2022.2045831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Our study mainly reports the specific mechanisms of microRNA (miR)-874-3p on drug resistance in gastric cancer (GC). Clinical specimen was collected. The upstream long non-coding RNA (lncRNA) and the downstream gene of miR-874-3p were predicted using bioinformatic analysis with the results being ascertained with dual-luciferase reporter assay. The viability, apoptosis, migration and invasion of transfected GC cells with or without cisplatin (DDP) treatment were evaluated by Cell Counting Kit-8 (CCK-8), flow cytometric, Scratch, and Transwell assays. An animal xenograft model was constructed. Expressions of long intergenic non-coding RNA 00922 (LINC00922), miR-874-3p and potential target genes were quantified by quantitative real-time polymerase-chain reaction (qRT-PCR) and Western blot. MiR-874-3p, which was lower-expressed in drug-resistant GC tissues and cells, was upregulated to repress the viability, migration and invasion but enhance the apoptosis and sensitivity in GC cells with or without DDP resistance. Downregulation of miR-874-3p eliminated the effects of silenced LINC00922, a upstream lncRNA of miR-874-3p, on cell viability, apoptosis, migration and invasion, as well as the expressions of Glycerophosphodiester Phosphodiesterase Domain Containing 5 (GDPD5) and the downstream gene of miR-874-3p in DDP-resistant GC cells. GDPD5 silencing diminished the effects of miR-874-3p downregulation on GDPD5 expression, viability, migration and invasion of DDP-resistant GC cells. Additionally, LINC00922 silencing enhanced the inhibitory effect of DDP on tumor growth, whereas reversing the effects of DDP on LINC00922, miR-874-3p and GDPD5 expressions in tumors. MiR-874-3p, an miRNA, which is sponged by LINC00922 and targets GDPD5, inhibits the GC progression yet enhances the DDP sensitivity in GC.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Xudong Dai
- Department of General Surgery, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xin Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Jian Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Jin Dou
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Haiwen Zhuang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Ning Chen
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Haijian Zhao
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, China
| |
Collapse
|
68
|
An Z, Meng X, Fang P, Yu H, Yu L. Living experiences of patients with advanced cancer with low socioeconomic status: protocol for a systematic review of qualitative evidence. BMJ Open 2022; 12:e054606. [PMID: 35105586 PMCID: PMC8808456 DOI: 10.1136/bmjopen-2021-054606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION The number of patients with advanced cancer is rapidly increasing, and the disease burden among those with low socioeconomic status (SES) has accordingly become a global concern. Low SES can adversely impact patients with advanced cancer. The purpose of this systematic review is to shed light on the life experiences of patients with advanced cancer with low SES to help provide targeted and effective strategies to improve their quality of life. METHODS AND ANALYSIS We will include the following English databases: Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, PubMed, MEDLINE, Embase, Web of Science, Joanna Briggs Institute (JBI) Database of Systematic Reviews, PsycINFO and OpenGrey, and the following Chinese databases: China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals and Wanfang Data Knowledge Service Platform. A comprehensive search of qualitative studies on the experiences of patients with advanced cancer with low SES will be conducted from the above databases, with no age limit. Quality assessments of the studies will be independently performed by two reviewers using the JBI Critical Assessment Checklist, and any disagreements will be resolved through a discussion with a third reviewer. Relevant data will be extracted using the JBI standardised data extraction tools. The JBI meta-aggregation tool will be used to compare, analyse and summarise the original results. The reliability and credibility of the overall quality of the studies included will be evaluated using the JBI ConQual approach. ETHICS AND DISSEMINATION This study is based on existing public literature and therefore does not require a formal ethics review. The results of the study may be presented in peer-reviewed international journals and presented at scientific conferences. PROSPERO REGISTRATION NUMBER CRD42021250423.
Collapse
Affiliation(s)
- Zifen An
- School of Nursing, Wuhan University, Wuhan, Hubei, China
| | - Xianmei Meng
- School of Nursing, Wuhan University, Wuhan, Hubei, China
| | - Pei Fang
- School of Nursing, Wuhan University, Wuhan, Hubei, China
| | - Huidan Yu
- School of Nursing, Wuhan University, Wuhan, Hubei, China
| | - Liping Yu
- School of Nursing, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
69
|
Diaz-Ruiz A, Nader-Kawachi J, Calderón-Estrella F, Bermudez AM, Alvarez-Mejia L, Ríos C. Dapsone, More than an Effective Neuro and Cytoprotective Drug. Curr Neuropharmacol 2022; 20:194-210. [PMID: 34139984 PMCID: PMC9199557 DOI: 10.2174/1570159x19666210617143108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Dapsone (4,4'-diamino-diphenyl sulfone) is a synthetic derivative of sulfones, with the antimicrobial activity described since 1937. It is also a drug traditionally used in dermatological therapies due to its anti-inflammatory effect. In recent years its antioxidant, antiexcitotoxic, and antiapoptotic effects have been described in different ischemic damage models, traumatic damage, and models of neurodegenerative diseases, such as Parkinson's (PD) and Alzheimer's diseases (AD). Finally, dapsone has proven to be a safe and effective drug as a protector against heart, renal and pulmonary cells damage; that is why it is now employed in clinical trials with patients as a neuroprotective therapy by regulating the main mechanisms of damage that lead to cell death ObjectiveThe objective of this study is to provide a descriptive review of the evidence demonstrating the safety and therapeutic benefit of dapsone treatment, evaluated in animal studies and various human clinical trials Methods: We conducted a review of PubMed databases looking for scientific research in animals and humans, oriented to demonstrate the effect of dapsone on regulating and reducing the main mechanisms of damage that lead to cell death ConclusionThe evidence presented in this review shows that dapsone is a safe and effective neuro and cytoprotective treatment that should be considered for translational therapy.
Collapse
Affiliation(s)
- Araceli Diaz-Ruiz
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | | | - Francisco Calderón-Estrella
- Posgrado en Ciencias Biológicas de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alfonso Mata Bermudez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Ciudad de México, México
| | - Laura Alvarez-Mejia
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
| | - Camilo Ríos
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Ciudad de México, México
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, México
| |
Collapse
|
70
|
Zhang C, Chang L, Yao Y, Chao C, Ge Z, Fan C, Yu H, Wang B, Yang J. Role of the CBX Molecular Family in Lung Adenocarcinoma Tumorigenesis and Immune Infiltration. Front Genet 2021; 12:771062. [PMID: 34966411 PMCID: PMC8710700 DOI: 10.3389/fgene.2021.771062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The members of the Chromobox (CBX) family are important epigenetic regulatory molecules with critical biological roles in many tumors. However, no study has analyzed or verified their role in lung adenocarcinoma (LUAD). Methods: UALCAN and Oncomine databases were used to analyze CBX expression in LUAD, and the cBioPortal database was used to analyze CBX genetic variations. The Kaplan-Meier plotter and UALCAN databases were used to identify molecules with prognostic value. Gene Ontology pathway, receiver operating characteristic curves, and tumor-infiltrating immune cell analyses were used to clarify the biological function of the CBX hub molecules. Paired tumor samples and lung adenocarcinoma cell lines were collected for molecular functional assays to validate the results of the bioinformatics analysis. Results: CBX3/5 may have a cancer-promoting effect and its expression is associated with a poor patient prognosis, while CBX7 shows an opposite trend. CBX3/5/7 can regulate signaling pathways, regulate tumor immune cell infiltration, and has diagnostic value. Molecular biology experiments show that CBX3/5 is highly expressed in LUAD patients; in vitro it promotes the proliferation and migration of the LUAD cell line and can regulate the expression of the corresponding cytokines. CBX7 has opposite effects. Conclusion: Our bioinformatics analysis and subsequent experimental verification confirmed the CBX family members acted as hub signaling molecules in LUAD. The results provide new potential targets for the diagnosis and treatment of this cancer.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lisha Chang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yizhen Yao
- Department of Respiratory Medicine, Nanjing Yuhua Hospital, Yuhua Branch of Nanjing First Hospital, Nanjing, China
| | - Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhongchun Ge
- Department of Cardiology, People's Hospital of Xuyi, Xuyi, China
| | - Chengfeng Fan
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hualin Yu
- Department of Radiotherapy, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingsong Yang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
71
|
Liu D, Jin X, Yu G, Wang M, Liu L, Zhang W, Wu J, Wang F, Yang J, Luo Q, Cai L, Yang X, Ke X, Qu Y, Xu Z, Jia L, Chen WL. Oleanolic acid blocks the purine salvage pathway for cancer therapy by inactivating SOD1 and stimulating lysosomal proteolysis. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:107-123. [PMID: 34703880 PMCID: PMC8505360 DOI: 10.1016/j.omto.2021.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/24/2021] [Indexed: 12/28/2022]
Abstract
Metabolic reprogramming is a core hallmark of cancer and is key for tumorigenesis and tumor progression. Investigation of metabolic perturbation by anti-cancer compounds would allow a thorough understanding of the underlying mechanisms of these agents and identification of new anti-cancer targets. Here, we demonstrated that the administration of oleanolic acid (OA) rapidly altered cancer metabolism, particularly suppressing the purine salvage pathway (PSP). PSP restoration significantly opposed OA-induced DNA replication and cell proliferation arrest, underscoring the importance of this pathway for the anti-cancer activity of OA. Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and 5′-nucleotidase (5′-NT), two metabolic enzymes essential for PSP activity, were promptly degraded by OA via the lysosome pathway. Mechanistically, OA selectively targeted superoxide dismutase 1 (SOD1) and yielded reactive oxygen species (ROS) to activate the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex 1 (mTORC1)/macroautophagy pathway, thus eliciting lysosomal degradation of HGPRT and 5′-NT. Furthermore, we found that the PSP was overactivated in human lung and breast cancers, with a negative correlation with patient survival. The results of this study elucidated a new anti-cancer mechanism of OA by restraining the PSP via the SOD1/ROS/AMPK/mTORC1/macroautophagy/lysosomal pathway. We also identified the PSP as a new target for cancer treatment and highlighted OA as a potential therapeutic agent for cancers with high PSP activity.
Collapse
Affiliation(s)
- Dan Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guanzhen Yu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Mingsong Wang
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital of Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lei Liu
- Department of Thoracic Surgery, the Affiliated Tumor Hospital of Nantong University, Nantong 226361, China
| | - Wenjuan Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Fengying Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jing Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qin Luo
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xi Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xisong Ke
- Center for Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Qu
- Center for Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
72
|
Li Z, Liu C, Li C, Wang F, Liu J, Zheng Z, Wu J, Zhang B. Irinotecan/scFv co-loaded liposomes coaction on tumor cells and CAFs for enhanced colorectal cancer therapy. J Nanobiotechnology 2021; 19:421. [PMID: 34906155 PMCID: PMC8670172 DOI: 10.1186/s12951-021-01172-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.
Collapse
Affiliation(s)
- Zhaohuan Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, People's Republic of China
| | - Chenglei Li
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Fangqing Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Jianhao Liu
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Zengjuan Zheng
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China
| | - Jingliang Wu
- School of Bioscience and Technology, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University Weifang, Shandong, 261053, People's Republic of China.
| |
Collapse
|
73
|
Zhang L, Zhang M, Wang L, Li J, Yang T, Shao Q, Liang X, Ma M, Zhang N, Jing M, Song R, Fan J. Identification of CCL4 as an Immune-Related Prognostic Biomarker Associated With Tumor Proliferation and the Tumor Microenvironment in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:694664. [PMID: 34900664 PMCID: PMC8652234 DOI: 10.3389/fonc.2021.694664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
The last decade has witnessed revolutionary advances taken in immunotherapy for various malignant tumors. However, immune-related molecules and their characteristics in the prediction of clinical outcomes and immunotherapy response in clear cell renal cell carcinoma (ccRCC) remain largely unclear. C-C Motif Chemokine Ligand 4 (CCL4) was extracted from the intersection analysis of common differentially expressed genes (DEGs) of four microarray datasets from the Gene Expression Omnibus database and immune-related gene lists in the ImmPort database using Cytoscape plug-ins and univariate Cox regression analysis. Subsequential analysis revealed that CCL4 was highly expressed in ccRCC patients, and positively correlated with multiple clinicopathological characteristics, such as grade, stage and metastasis, while negatively with overall survival (OS). We performed gene set enrichment analysis (GSEA) and gene set variant analysis (GSVA) with gene sets coexpressed with CCL4, and observed that gene sets positively related to CCL4 were enriched in tumor proliferation and immune-related pathways while metabolic activities in the negatively one. To further explore the correlation between CCL4 and immune-related biological process, the CIBERSORT algorithm, ESTIMATE method, and tumor mutational burden (TMB) score were employed to evaluate the tumor microenvironment (TME) characteristics of each sample and confirmed that high CCL4 expression might give rise to high immune cell infiltration. Moreover, correlation analysis revealed that CCL4 was positively correlated with common immune checkpoint genes, such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and lymphocyte activating 3 (LAG3). Overall, this study demonstrated that CCL4 might serve as a potential immune-related prognostic biomarker to predict clinical outcomes and immunotherapy response in ccRCC. Moreover, CCL4 might contribute to TME modulation, indicating the mechanism CCL4 involved in tumor proliferation and metastasis, which could provide novel therapeutic perceptions for ccRCC patients.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengzhao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianlong Li
- Department of Urology, Xi'an NO.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Tao Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuya Shao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Liang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minghai Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rundong Song
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
74
|
Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021; 9:785937. [PMID: 34926430 PMCID: PMC8671936 DOI: 10.3389/fbioe.2021.785937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous strategies have been developed to treat cancer conventionally. Most importantly, chemotherapy shows its huge promise as a better treatment modality over others. Nonetheless, the very complex behavior of the tumor microenvironment frequently impedes successful drug delivery to the tumor sites that further demands very urgent and effective distribution mechanisms of anticancer drugs specifically to the tumor sites. Hence, targeted drug delivery to tumor sites has become a major challenge to the scientific community for cancer therapy by assuring drug effects to selective tumor tissue and overcoming undesired toxic side effects to the normal tissues. The application of nanotechnology to the drug delivery system pays heed to the design of nanomedicine for specific cell distribution. Aiming to limit the use of traditional strategies, the adequacy of drug-loaded nanocarriers (i.e., nanomedicine) proves worthwhile. After systemic blood circulation, a typical nanomedicine follows three levels of disposition to tumor cells in order to exhibit efficient pharmacological effects induced by the drug candidates residing within it. As a result, nanomedicine propounds the assurance towards the improved bioavailability of anticancer drug candidates, increased dose responses, and enhanced targeted efficiency towards delivery and distribution of effective therapeutic concentration, limiting toxic concentration. These aspects emanate the proficiency of drug delivery mechanisms. Understanding the potential tumor targeting barriers and limiting conditions for nanomedicine extravasation, tumor penetration, and final accumulation of the anticancer drug to tumor mass, experiments with in vivo animal models for nanomedicine screening are a key step before it reaches clinical translation. Although the study with animals is undoubtedly valuable, it has many associated ethical issues. Moreover, individual experiments are very expensive and take a longer time to conclude. To overcome these issues, nowadays, multicellular tumor spheroids are considered a promising in vitro model system that proposes better replication of in vivo tumor properties for the future development of new therapeutics. In this review, we will discuss how tumor spheroids could be used as an in vitro model system to screen nanomedicine used in targeted drug delivery, aiming for better therapeutic benefits. In addition, the recent proliferation of mathematical modeling approaches gives profound insight into the underlying physical principles and produces quantitative predictions. The hierarchical tumor structure is already well decorous to be treated mathematically. To study targeted drug delivery, mathematical modeling of tumor architecture, its growth, and the concentration gradient of oxygen are the points of prime focus. Not only are the quantitative models circumscribed to the spheroid, but also the role of modeling for the nanoparticle is equally inevitable. Abundant mathematical models have been set in motion for more elaborative and meticulous designing of nanomedicine, addressing the question regarding the objective of nanoparticle delivery to increase the concentration and the augmentative exposure of the therapeutic drug molecule to the core. Thus, to diffuse the dichotomy among the chemistry involved, biological data, and the underlying physics, the mathematical models play an indispensable role in assisting the experimentalist with further evaluation by providing the admissible quantitative approach that can be validated. This review will provide an overview of the targeted drug delivery mechanism for spheroid, using nanomedicine as an advantageous tool.
Collapse
Affiliation(s)
| | - Vrinda Garg
- Department of Physics, National Institute of Technology, Warangal, India
| | - Sourav Barman
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Chitrita Ghosh
- Department of Pharmacology, Burdwan Medical College and Hospital, Burdwan, India
| | | | - Surya K. Ghosh
- Department of Physics, National Institute of Technology, Warangal, India
| |
Collapse
|
75
|
Yamana K, Inoue J, Yoshida R, Sakata J, Nakashima H, Arita H, Kawaguchi S, Gohara S, Nagao Y, Takeshita H, Maeshiro M, Liu R, Matsuoka Y, Hirayama M, Kawahara K, Nagata M, Hirosue A, Toya R, Murakami R, Kuwahara Y, Fukumoto M, Nakayama H. Extracellular vesicles derived from radioresistant oral squamous cell carcinoma cells contribute to the acquisition of radioresistance via the miR-503-3p-BAK axis. J Extracell Vesicles 2021; 10:e12169. [PMID: 34894384 PMCID: PMC8665688 DOI: 10.1002/jev2.12169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Despite advancements in treatments, oral squamous cell carcinoma (OSCC) has not significantly improved in prognosis or survival rate primarily due to the presence of treatment-resistant OSCC. The intercellular communication between tumour cells is a molecular mechanism involved in acquiring OSCC treatment resistance. Extracellular vesicles (EVs) and encapsulated miRNAs are important mediators of intercellular communication. Here, we focused on EVs released from clinically relevant radioresistant (CRR) OSCC cells. Additionally, we evaluated the correlation between miRNA expression in the serum samples of patients who showed resistance to radiotherapy and in EVs released from CRR OSCC cells. We found that EVs released from CRR OSCC cells conferred radioresistance to radiosensitive OSCC cells via miR-503-3p contained in EVs. This miR-503-3p inhibited BAK and impaired the caspase cascade to suppress radiation-induced apoptosis. Furthermore, OSCC cells with BAK knockdown had increased radioresistance. Additionally, the expression of circulating miR-503-3p in patients with OSCC was correlated with a poor treatment response and prognosis of radiotherapy. Our results provide new insights into the relationship between EVs and the radioresistance of OSCC and suggest that the miR-503-3p-BAK axis may be a therapeutic target and that circulating miR-503-3p is a useful prognostic biomarker in the radiotherapy of OSCC.
Collapse
Affiliation(s)
- Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Manabu Maeshiro
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Rin Liu
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Ryo Toya
- Department of Radiation OncologyKumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Imaging, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of MedicineTohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Department of Molecular PathologyTokyo Medical University, Tokyo, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life SciencesKumamoto University, Kumamoto, Japan
| |
Collapse
|
76
|
Sadanandan N, Shear A, Brooks B, Saft M, Cabantan DAG, Kingsbury C, Zhang H, Anthony S, Wang ZJ, Salazar FE, Lezama Toledo AR, Rivera Monroy G, Vega Gonzales-Portillo J, Moscatello A, Lee JY, Borlongan CV. Treating Metastatic Brain Cancers With Stem Cells. Front Mol Neurosci 2021; 14:749716. [PMID: 34899179 PMCID: PMC8651876 DOI: 10.3389/fnmol.2021.749716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy may present an effective treatment for metastatic brain cancer and glioblastoma. Here we posit the critical role of a leaky blood-brain barrier (BBB) as a key element for the development of brain metastases, specifically melanoma. By reviewing the immunological and inflammatory responses associated with BBB damage secondary to tumoral activity, we identify the involvement of this pathological process in the growth and formation of metastatic brain cancers. Likewise, we evaluate the hypothesis of regenerating impaired endothelial cells of the BBB and alleviating the damaged neurovascular unit to attenuate brain metastasis, using the endothelial progenitor cell (EPC) phenotype of bone marrow-derived mesenchymal stem cells. Specifically, there is a need to evaluate the efficacy for stem cell therapy to repair disruptions in the BBB and reduce inflammation in the brain, thereby causing attenuation of metastatic brain cancers. To establish the viability of stem cell therapy for the prevention and treatment of metastatic brain tumors, it is crucial to demonstrate BBB repair through augmentation of vasculogenesis and angiogenesis. BBB disruption is strongly linked to metastatic melanoma, worsens neuroinflammation during metastasis, and negatively influences the prognosis of metastatic brain cancer. Using stem cell therapy to interrupt inflammation secondary to this leaky BBB represents a paradigm-shifting approach for brain cancer treatment. In this review article, we critically assess the advantages and disadvantages of using stem cell therapy for brain metastases and glioblastoma.
Collapse
Affiliation(s)
| | - Alex Shear
- University of Florida, Gainesville, FL, United States
| | - Beverly Brooks
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Madeline Saft
- University of Michigan, Ann Arbor, MI, United States
| | | | - Chase Kingsbury
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Henry Zhang
- University of Florida, Gainesville, FL, United States
| | - Stefan Anthony
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Zhen-Jie Wang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Felipe Esparza Salazar
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Alma R. Lezama Toledo
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Germán Rivera Monroy
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud (FCS), Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | | | - Alexa Moscatello
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
77
|
Wang K, Chen X. Autophagic tumor-associated macrophages promote the endothelial mesenchymal transition in lung adenocarcinomas through the FUT4/p-ezrin pathway. J Thorac Dis 2021; 13:5973-5985. [PMID: 34795945 PMCID: PMC8575842 DOI: 10.21037/jtd-21-1519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
Background Lung adenocarcinoma is one of the most common malignant tumors with high morbidity and mortality, but the effect of Tumor-associated macrophages (TAMs) on lung adenocarcinoma has not been studied clearly now. Methods In this study, TAMs were stably transfected with Atg5 silence or overexpression lentiviral vectors to inhibit or induce autophagy of TAMs. In addition, the expression of fucosyltransferase IV (FUT4) or Ezrin were interfered in TAMs with autophagy. The above treated TAMs were then co-cultured with A549 or H1299 cells. The expressions of genes were detected by qPCR, western blotting, cell immunofluorescence, and enzyme-linked immunosorbent assay. Meanwhile, cell migration and invasion were analyzed by Transwell assay and wound healing assay. Furthermore, the effects of TAMs with autophagy were explored in lung adenocarcinoma xenograft model of mice. Results The results showed that overexpression of autophagy-related gene 5 (ATG5) induced autophagy in TAMs, which increased the expression of FUT4, TGF-β1, and p-ezrin, and promoted epithelial-mesenchymal transition (EMT) in lung adenocarcinoma cells. However, FUT4 silencing partially reversed the effects of TAM autophagy, specifically, the expression of TGF-β1 and p-ezrin was inhibited and EMT in lung adenocarcinoma cells was suppressed. Notably, ezrin deletion in autophagic TAMs induced by rapamycin reduced TGF-β1 expression and suppressed EMT in lung adenocarcinoma cells. Consistently, in vivo experiments also revealed that autophagic TAMs increased the expression of FUT4, TGF-β1, and p-ezrin, and promoted EMT in lung adenocarcinomas. Similarly, FUT4 silencing partially reversed the effects of autophagic TAMs on EMT in lung adenocarcinomas. Conclusions In conclusion, autophagic TAMs promoted TGF-β1 secretion through the FUT4/p-ezrin pathway and induced EMT in co-cultured lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Kangwu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao Chen
- Department of Geriatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
78
|
Wang S, Yang X, Xie W, Fu S, Chen Q, Li Z, Zhang Z, Sun T, Gong B, Ma M. LncRNA GAPLINC Promotes Renal Cell Cancer Tumorigenesis by Targeting the miR-135b-5p/CSF1 Axis. Front Oncol 2021; 11:718532. [PMID: 34722262 PMCID: PMC8551964 DOI: 10.3389/fonc.2021.718532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are closely related to the occurrence and development of cancer. Gastric adenocarcinoma-associated, positive CD44 regulator, long intergenic noncoding RNA (GAPLINC) is a recently identified lncRNA that can actively participate in the tumorigenesis of various cancers. Here, we investigated the functional roles and mechanism of GAPLINC in renal cell carcinoma (RCC) development. Methods Differentially expressed lncRNAs between RCC tissues and normal kidney tissues were detected by using a microarray technique. RNA sequencing was applied to explore the mRNA expression profile changes after GAPLINC silencing. After gain- and loss-of-function approaches were implemented, the effect of GAPLINC on RCC in vitro and in vivo was assessed by cell proliferation and migration assays. Moreover, rescue experiments and luciferase reporter assays were used to study the interactions between GAPLINC, miR-135b-5p and CSF1. Results GAPLINC was significantly upregulated in RCC tissues and cell lines and was associated with a poor prognosis in RCC patients. Knockdown of GAPLINC repressed RCC growth in vitro and in vivo, while overexpression of GAPLINC exhibited the opposite effect. Mechanistically, we found that GAPLINC upregulates oncogene CSF1 expression by acting as a sponge of miR-135b-5p. Conclusion Taken together, our results suggest that GAPLINC is a novel prognostic marker and molecular therapeutic target for RCC.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
79
|
Jiang W, Zheng F, Yao T, Gong F, Zheng W, Yao N. IFI30 as a prognostic biomarker and correlation with immune infiltrates in glioma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1686. [PMID: 34988195 PMCID: PMC8667103 DOI: 10.21037/atm-21-5569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Increased evidence indicates that the tumour microenvironment (TME) plays an essential role in the development, treatment and prognosis of glioma. High expression of interferon-gamma-inducible protein 30 (IFI30) is associated with the malignant phenotype, but the effect of IFI30 on the tumour immune microenvironment and its potential role in the carcinogenesis of glioma remain unknown. METHODS The RNA sequencing (RNA-seq) data of 33 types of human cancer were obtained from The Cancer Genome Atlas (TCGA) Genomic Data Commons (GDC). R software was used to perform analyses, such as the expression of IFI30 in pan-cancer, evaluation of IFI30 as a prognostic biomarker in glioma, the relationship between IFI30 expression and clinical characteristics, and immune checkpoint. TIMER was used to analyse the correlation of IFI30 expression level with immune cell infiltration, and also to conduct survival analysis for immune cells and IFI30 in low grade glioma (LGG). DAVID was used for Gene Ontology (GO) functional annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway analysis of the genes similar to IFI30 in glioma. The differentially expressed genes (DEGs) between the high- and low-IFI30 expression groups were determined by DESeq2. Gene set enrichment analysis (GSEA) was then conducted to identify IFI30-related functional significance based on the hallmark gene set. RESULTS Dysregulated expression of IFI30 was associated with human cancers. High IFI30 expression was associated with poor overall survival (OS), disease-specific survival (DSS) and progression-free interval (PFI). Univariate and multivariate analyses identified IFI30 as an independent predictor for glioma. Meanwhile, IFI30 overexpression significantly correlated with high-grade tumours, poor OS, and immune infiltration. In addition, IFI30-associated genes significantly enriched the hallmark tumour progression-related clusters and cancer pathways. CONCLUSIONS IFI30 is a prognostic biomarker correlated with immune infiltrates and acts as an oncogene in glioma.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, the Second People’s Hospital of Wuxi, Wuxi, China
| | - Feifei Zheng
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Taotao Yao
- Rehabilitation Center, the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
80
|
Maiuolo J, Gliozzi M, Carresi C, Musolino V, Oppedisano F, Scarano F, Nucera S, Scicchitano M, Bosco F, Macri R, Ruga S, Cardamone A, Coppoletta A, Mollace A, Cognetti F, Mollace V. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021; 13:nu13113834. [PMID: 34836091 PMCID: PMC8619660 DOI: 10.3390/nu13113834] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annarita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
| | - Annachiara Mollace
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, Regina Elena National Cancer Institute, IRCCS, 00144 Rome, Italy; (A.M.); (F.C.)
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (M.G.); (C.C.); (V.M.); (F.O.); (F.S.); (S.N.); (M.S.); (F.B.); (R.M.); (S.R.); (A.C.); (A.C.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
81
|
Development of Coriandrum sativum Oil Nanoemulgel and Evaluation of Its Antimicrobial and Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5247816. [PMID: 34671674 PMCID: PMC8523232 DOI: 10.1155/2021/5247816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022]
Abstract
This study is aimed at developing coriander oil into a nanoemulgel and evaluating its antimicrobial and anticancer effects. Coriander (Coriandrum sativum) oil was developed into a nanoemulgel by using a self-nanoemulsifying technique with Tween 80 and Span 80. Hydrogel material (Carbopol 940) was then incorporated into the nanoemulsion and mixed well. After this, we evaluated the particle size, polydispersity index (PDI), rheology, antimicrobial effect, and cytotoxic activity. The nanoemulsion had a PDI of 0.188 and a particle size of 165.72 nm. Interesting results were obtained with the nanoemulgel against different types of bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus (MRSA), with a minimum inhibitory concentration (MIC) of 2.3 μg/ml, 3.75 μg/ml, and 6.5 μg/ml, respectively. In addition, the half-maximal inhibitory concentration (IC50) of the nanoemulgel when applying it to human breast cancer cells (MCF-7), hepatocellular carcinoma cells (Hep3B), and human cervical epithelioid carcinoma cells (HeLa) was 28.84 μg/ml, 28.18 μg/ml, and 24.54 μg/ml, respectively, which proves that the nanoemulgel has anticancer effects. The development of C. sativum oil into a nanoemulgel by using a self-nanoemulsifying technique showed a bioactive property better than that in crude oil. Therefore, simple nanotechnology techniques are a promising step in the preparation of pharmaceutical dosage forms.
Collapse
|
82
|
Si C, Chen C, Guo Y, Kang Q, Sun Z. Effect, Mechanism, and Applications of Coding/Non-coding RNA m6A Modification in Tumor Microenvironment. Front Cell Dev Biol 2021; 9:711815. [PMID: 34660577 PMCID: PMC8514707 DOI: 10.3389/fcell.2021.711815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/30/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME), which includes immune cells, fibroblasts, and other components, is the site of tumor cell growth and metastasis and significantly impacts tumor development. Among them, N6-methyladenosine RNA modifications (m6A RNA modifications) are the most abundant internal modifications in coding and non-coding RNAs, which can significantly influence the cancer process and have potential as biomarkers and potential therapeutic targets for tumor therapy. This manuscript reviews the role of m6A RNA modifications in TME and their application in tumor therapy. To some extent, an in-depth understanding of the relationship between TME and m6A RNA modifications will provide new approaches and ideas for future cancer therapy.
Collapse
Affiliation(s)
- Chaohua Si
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
83
|
Poźniak M, Porębska N, Jastrzębski K, Krzyścik MA, Kucińska M, Zarzycka W, Barbach A, Zakrzewska M, Otlewski J, Miączyńska M, Opaliński Ł. Modular self-assembly system for development of oligomeric, highly internalizing and potent cytotoxic conjugates targeting fibroblast growth factor receptors. J Biomed Sci 2021; 28:69. [PMID: 34635096 PMCID: PMC8504119 DOI: 10.1186/s12929-021-00767-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Overexpression of FGFR1 is observed in numerous tumors and therefore this receptor constitutes an attractive molecular target for selective cancer treatment with cytotoxic conjugates. The success of cancer therapy with cytotoxic conjugates largely relies on the precise recognition of a cancer-specific marker by a targeting molecule within the conjugate and its subsequent cellular internalization by receptor mediated endocytosis. We have recently demonstrated that efficiency and mechanism of FGFR1 internalization are governed by spatial distribution of the receptor in the plasma membrane, where clustering of FGFR1 into larger oligomers stimulated fast and highly efficient uptake of the receptor by simultaneous engagement of multiple endocytic routes. Based on these findings we aimed to develop a modular, self-assembly system for generation of oligomeric cytotoxic conjugates, capable of FGFR1 clustering, for targeting FGFR1-overproducing cancer cells. METHODS Engineered FGF1 was used as FGFR1-recognition molecule and tailored for enhanced stability and site-specific attachment of the cytotoxic drug. Modified streptavidin, allowing for controlled oligomerization of FGF1 variant was used for self-assembly of well-defined FGF1 oligomers of different valency and oligomeric cytotoxic conjugate. Protein biochemistry methods were applied to obtain highly pure FGF1 oligomers and the oligomeric cytotoxic conjugate. Diverse biophysical, biochemical and cell biology tests were used to evaluate FGFR1 binding, internalization and the cytotoxicity of obtained oligomers. RESULTS Developed multivalent FGF1 complexes are characterized by well-defined architecture, enhanced FGFR1 binding and improved cellular uptake. This successful strategy was applied to construct tetrameric cytotoxic conjugate targeting FGFR1-producing cancer cells. We have shown that enhanced affinity for the receptor and improved internalization result in a superior cytotoxicity of the tetrameric conjugate compared to the monomeric one. CONCLUSIONS Our data implicate that oligomerization of the targeting molecules constitutes an attractive strategy for improvement of the cytotoxicity of conjugates recognizing cancer-specific biomarkers. Importantly, the presented approach can be easily adapted for other tumor markers.
Collapse
Affiliation(s)
- Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Mateusz Adam Krzyścik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marika Kucińska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Weronika Zarzycka
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Agnieszka Barbach
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
84
|
Key Factor Regulating Inflammatory Microenvironment, Metastasis, and Resistance in Breast Cancer: Interleukin-1 Signaling. Mediators Inflamm 2021; 2021:7785890. [PMID: 34602858 PMCID: PMC8486558 DOI: 10.1155/2021/7785890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the top-ranked cancers for incidence and mortality worldwide. The biggest challenges in breast cancer treatment are metastasis and drug resistance, for which work on molecular evaluation, mechanism studies, and screening of therapeutic targets is ongoing. Factors that lead to inflammatory infiltration and immune system suppression in the tumor microenvironment are potential therapeutic targets. Interleukin-1 is known as a proinflammatory and immunostimulatory cytokine, which plays important roles in inflammatory diseases. Recent studies have shown that interleukin-1 cytokines drive the formation and maintenance of an inflammatory/immunosuppressive microenvironment through complex intercellular signal crosstalk and tight intracellular signal transduction, which were found to be potentially involved in the mechanism of metastasis and drug resistance of breast cancer. Some preclinical and clinical treatments or interventions to block the interleukin-1/interleukin-1 receptor system and its up- and downstream signaling cascades have also been proven effective. This study provides an overview of IL-1-mediated signal communication in breast cancer and discusses the potential of IL-1 as a therapeutic target especially for metastatic breast cancer and combination therapy and current problems, aiming at enlightening new ideas in the study of inflammatory cytokines and immune networks in the tumor microenvironment.
Collapse
|
85
|
A Comprehensive Multiomics Analysis Identified Ubiquilin 4 as a Promising Prognostic Biomarker of Immune-Related Therapy in Pan-Cancer. JOURNAL OF ONCOLOGY 2021; 2021:7404927. [PMID: 34539785 PMCID: PMC8443395 DOI: 10.1155/2021/7404927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/28/2021] [Indexed: 01/02/2023]
Abstract
Recently, it was reported that ubiquilin 4 (UBQLN4) alteration was associated with genomic instability in some cancers. However, whether UBQLN4 is a valuable biomarker for the prognosis of immunotherapy in pan-cancer was not identified. We evaluated the biologic and oncologic significance of UBQLN4 in pan-cancer at multiomics level, such as expression, mutation, copy number variation (CNV), methylation, and N6-methyladenosine (m6A) methylation. These omics data were obtained from several public databases, including Oncomine, The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), the Genotype-Tissue Expression (GTEx), the Human Protein Atlas (HPA), Gene Set Cancer Analysis (GSCA), m6A-Atlas, CancerSEA, and RNAactDrug. We found that UBQLN4 mRNA and protein were overexpressed in most cancer types, and the expression, mutation, CNV, and methylation of UBQLN4 were associated with the prognosis of some cancers. Mechanistically, UBQLN4 was involved in angiogenesis, DNA damage, apoptosis, and the pathway of PI3K/AKT and TSC/mTOR. Moreover, UBQLN4 mRNA was significantly correlated with immune checkpoints, tumor mutational burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR). And, the correlation among UBQLN4 mRNA, CNV, and methylation and immune microenvironment was also identified. Furthermore, UBQLN4 was associated with the sensitivity of chemotherapy and targeted drugs at multiomics level. In conclusion, UBQLN4 was a promising prognostic biomarker of immune-related therapy in pan-cancer.
Collapse
|
86
|
Albertelli M, Dotto A, Nista F, Veresani A, Patti L, Gay S, Sciallero S, Boschetti M, Ferone D. "Present and future of immunotherapy in Neuroendocrine Tumors". Rev Endocr Metab Disord 2021; 22:615-636. [PMID: 33851319 PMCID: PMC8346388 DOI: 10.1007/s11154-021-09647-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Immunotherapy, so promising in many neoplasms, still does not have a precise role in the treatment of neuroendocrine neoplasms (NENs). In this article, we provide an overview on the current knowledge about immunotherapy with immune checkpoint inhibitors (ICIs) applied to NENs, evaluating future perspectives in this setting of tumors.Evidence so far available for ICIs in gastroenteropancreatic (GEP)-NENs is definitively not as robust as for other tumors such as Small Cell Lung Cancer or Merkel Cell Carcinoma. In fact, with regard to the well-differentiated forms of NENs (NETs), the results obtained nowadays have been disappointing. However, the near future, might reserve interesting results for ICIs in GEP-NEN from a total of nine different ICI drugs, used throughout 19 randomised controlled trials. Such numbers highlight the growing attention gathering around NENs and ICIs, in response to the need of stronger evidences supporting such therapy.For the future, the most important aspect will be to study strategies that can make NETs more susceptible to response to ICI and, thus, enhance the effectiveness of these treatments. Therefore, the combination of conventional therapy, target therapy and immunotherapy deserve attention and warrant to be explored. A sequential chemotherapy, possibly inducing an increase in tumor mutational burden and tested before immunotherapy, could be a hypothesis deserving more consideration. A radiation treatment that increases tumor-infiltrating lymphocytes, could be another approach to explore before ICIs in NENs. Equally essential will be the identification of biomarkers useful for selecting patients potentially responsive to this type of treatment.
Collapse
Affiliation(s)
- Manuela Albertelli
- Endocrinology Unit, IRCCS AOU San Martino, Genoa, Italy.
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Andrea Dotto
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Federica Nista
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessandro Veresani
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Luca Patti
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Stefano Gay
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | | | - Mara Boschetti
- Endocrinology Unit, IRCCS AOU San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Diego Ferone
- Endocrinology Unit, IRCCS AOU San Martino, Genoa, Italy
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DiMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
87
|
Hui Y, Tang T, Wang J, Zhao H, Yang HY, Xi J, Zhang B, Fang J, Gao K, Wu Y. Fusaricide is a Novel Iron Chelator that Induces Apoptosis through Activating Caspase-3. JOURNAL OF NATURAL PRODUCTS 2021; 84:2094-2103. [PMID: 34292737 DOI: 10.1021/acs.jnatprod.0c01322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonsmall cell lung cancer (NSCLC) has been a fatal and refractory disease worldwide. Novel therapeutic developments based on fundamental investigations of anticancer mechanisms underlie substantial foundations to win the fight against cancer diseases. In this study, we isolated a natural product fusaricide (FCD) from an endophytic fungus of Lycium barbarum, identified as Epicoccum sp. For the first time, we discovered that FCD potently inhibited proliferation in a variety of human NSCLC cell lines, with relatively less toxicity to normal cells. Our study exhibited that FCD induced apoptosis, caused DNA damage and cell cycle arrest in G0/G1 phase, and activated caspase-3 as well as other apoptosis-related factors in human NSCLC NCI-H460 cells. FCD was proven to be an iron chelator that actively decreased levels of cellular labile iron pool in NCI-H460 cells in our study. FeCl3 supplement reversed FCD-induced apoptosis. The upregulation of transferrin receptor 1 (TfR1) and downregulation of ferritin heavy chain (FTH) expression were observed after FCD treatment. In summary, our study highlighted the potential anticancer effects of FCD against human NSCLCs and demonstrated that the FCD-mediated apoptosis depended on binding to intracellular iron.
Collapse
Affiliation(s)
- Yaling Hui
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Ting Tang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jing Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Hong-Ying Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Junmin Xi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Yueting Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
88
|
Kouzu K, Tsujimoto H, Kishi Y, Ueno H, Shinomiya N. Role of Microbial Infection-Induced Inflammation in the Development of Gastrointestinal Cancers. MEDICINES 2021; 8:medicines8080045. [PMID: 34436224 PMCID: PMC8400127 DOI: 10.3390/medicines8080045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
There has been increasing evidence that a local inflammatory response stimulates tumor cells to acquire metastatic potential, and the concept of inflammatory oncotaxis has been spreading in recent years. However, the interaction between microbial inflammation and the development of gastrointestinal cancer is still unclear. This review summarizes the present knowledge on the role of microbial inflammation in the development of gastrointestinal cancers from the perspective of molecular biological findings. Chronic inflammation caused by bacterial infection is known to induce cancers as exemplified by Helicobacter pylori, which is associated with the development of gastric cancer via the activation of the TLR4 pathway by bacterial lipopolysaccharide followed by cancer growth through CagA-MET signaling. In addition, the development of inflammatory bowel diseases has been known to become a risk factor for colorectal cancers, where inflammation caused by certain bacterial infections plays a key role. It is also known that the cancer microenvironment is associated with cancer growth. Moreover, infectious complication after surgery for gastrointestinal cancers may promote tumor progression via the stimulation of pathogen-associated molecular patterns and various inflammatory mediators secreted by immunocytes. Further research on the link between microbial inflammation and cancer progression is needed to drive a paradigm shift in cancer treatment.
Collapse
Affiliation(s)
- Keita Kouzu
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
- Correspondence: ; Tel.: +81-4-2995-1637
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
| | | |
Collapse
|
89
|
Cao R, Wang M, Bin Y, Zheng C. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. PeerJ 2021; 9:e11906. [PMID: 34414035 PMCID: PMC8344685 DOI: 10.7717/peerj.11906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model's predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model's area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP.
Collapse
Affiliation(s)
- Ruifen Cao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, Fujian, China
| | - Meng Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, Fujian, China
| |
Collapse
|
90
|
LncRNA as a multifunctional regulator in cancer multi-drug resistance. Mol Biol Rep 2021; 48:1-15. [PMID: 34333735 DOI: 10.1007/s11033-021-06603-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Malignant tumors have become the most dangerous disease in recent years. Chemotherapy is the most effective treatment for this disease; however, the problem of drug resistance has become even more common, which leads to the poor prognosis of patients suffering from cancers. Thus, necessary measures should be taken to address these problems at the earliest. Many studies have demonstrated that drug resistance is closely related to the abnormal expressions of long non-coding RNAs (lncRNAs). METHODS AND RESULTS This review aimed to summarize the molecular mechanisms underlying the association of lncRNAs and the development of drug resistance and to find potential strategies for the clinical diagnosis and treatment of cancer drug resistance. Studies showed that lncRNAs can regulate the expression of genes through chromatin remodeling, transcriptional regulation, and post-transcriptional processing. Furthermore, lncRNAs have been reported to be closely related to the occurrence of malignant tumors. In summary, lncRNAs have gained attention in related fields during recent years. According to previous studies, lncRNAs have a vital role in several different types of cancers owing to their multiple mechanisms of action. Different mechanisms have different functions that could result in different consequences in the same disease. CONCLUSIONS LncRNAs closely participated in cancer drug resistance by regulating miRNA, signaling pathways, proteins, cancer stem cells, pro- and ant-apoptosis, and autophagy. lncRNAs can be used as biomarkers of the possible treatment target in chemotherapy, which could provide solutions to the problem of drug resistance in chemotherapy in the future.
Collapse
|
91
|
Li Q, Xu L, Li Y, Yang R, Qiao Q, Wang Y, Wang L, Guo Y, Guo C. P2RY14 Is a Potential Biomarker of Tumor Microenvironment Immunomodulation and Favorable Prognosis in Patients With Head and Neck Cancer. Front Genet 2021; 12:670746. [PMID: 34306014 PMCID: PMC8297391 DOI: 10.3389/fgene.2021.670746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) has a crucial role in tumor development, progression, and treatment response. Yet, the exact interaction between cancer biology and the TME is not fully understood. The following study analyzed the correlation between immune/stromal/estimate scores and survival prognosis in head and neck squamous cell carcinoma (HNSC) using a bioinformatic method. As a result, a predictive biomarker, UDP-glucose-specific G(i) protein-coupled P2Y receptor (P2RY14), was discovered. The potential role of P2RY14-driven signaling pathways in the immune-remodeling of TME was then investigated. Briefly, low immune scores were associated with unfavorable prognosis and clinical-stage, larger tumor size, and the down-regulation of P2RY14 in HNSC patients. In addition, the survival analysis showed that HNSC patients with high expression had longer survival than patients with low expression from both TCGA databases and our own patients. We further discovered that P2RY14 is involved in the immune activity in the TME of HNSC; a downregulation of P2RY14 resulted in being an indicator for the conversion of TME status (from immune-dominant to metabolic-dominant status). The intersection analysis of genes co-expressed with P2RY14 indicated that the T-cell receptor signaling pathway and PD-L1 expression and PD-1 checkpoint pathway were candidate signaling pathways driven by the P2RY14 gene in HNSC. Further investigation of immune-associated signaling pathways regulated by P2RY14 may help HNSC patients gain higher immunotherapy benefits.
Collapse
Affiliation(s)
- Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuke Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Rong Yang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
92
|
Song W, He X, Gong P, Yang Y, Huang S, Zeng Y, Wei L, Zhang J. Glycolysis-Related Gene Expression Profiling Screen for Prognostic Risk Signature of Pancreatic Ductal Adenocarcinoma. Front Genet 2021; 12:639246. [PMID: 34249078 PMCID: PMC8261051 DOI: 10.3389/fgene.2021.639246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Pancreatic ductal adenocarcinoma (PDAC) is highly lethal. Although progress has been made in the treatment of PDAC, its prognosis remains unsatisfactory. This study aimed to develop novel prognostic genes related to glycolysis in PDAC and to apply these genes to new risk stratification. Methods: In this study, based on the Cancer Genome Atlas (TCGA) PAAD cohort, the expression level of glycolysis-related gene at mRNA level in PAAD and its relationship with prognosis were analyzed. Non-negative matrix decomposition (NMF) clustering was used to cluster PDAC patients according to glycolytic genes. Prognostic glycolytic genes, screened by univariate Cox analysis and LASSO regression analysis were established to calculate risk scores. The differentially expressed genes (DEGs) in the high-risk group and the low-risk group were analyzed, and the signal pathway was further enriched to analyze the correlation between glycolysis genes. In addition, based on RNA-seq data, CIBERSORT was used to evaluate the infiltration degree of immune cells in PDAC samples, and ESTIMATE was used to calculate the immune score of the samples. Results: A total of 319 glycolysis-related genes were retrieved, and all PDAC samples were divided into two clusters by NMF cluster analysis. Survival analysis showed that PDAC patients in cluster 1 had shorter survival time and worse prognosis compared with cluster 2 samples (P < 0.001). A risk prediction model based on 11 glycolysis genes was constructed, according to which patients were divided into two groups, with significantly poorer prognosis in high-risk group than in low-risk group (P < 0.001). Both internal validation and external dataset validation demonstrate good predictive ability of the model (AUC = 0.805, P < 0.001; AUC = 0.763, P < 0.001). Gene aggregation analysis showed that DEGs highly expressed in high-risk group were mainly concentrated in the glycolysis level, immune status, and tumor cell proliferation, etc. In addition, the samples in high-risk group showed immunosuppressed status and infiltrated by relatively more macrophages and less CD8+T cell. Conclusions: These findings suggested that the gene signature based on glycolysis-related genes had potential diagnostic, therapeutic, and prognostic value for PDAC.
Collapse
Affiliation(s)
- Wenjing Song
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin He
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Pengju Gong
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yan Yang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sirui Huang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yifan Zeng
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingwei Zhang
- Department of Breast and Thyroid Surgery, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
93
|
Singh A, Chitalia R, Kontos D. Radiogenomics in brain, breast, and lung cancer: opportunities and challenges. J Med Imaging (Bellingham) 2021; 8:031907. [PMID: 34164563 PMCID: PMC8212946 DOI: 10.1117/1.jmi.8.3.031907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
The field of radiogenomics largely focuses on developing imaging surrogates for genomic signatures and integrating imaging, genomic, and molecular data to develop combined personalized biomarkers for characterizing various diseases. Our study aims to highlight the current state-of-the-art and the role of radiogenomics in cancer research, focusing mainly on solid tumors, and is broadly divided into four sections. The first section reviews representative studies that establish the biologic basis of radiomic signatures using gene expression and molecular profiling information. The second section includes studies that aim to non-invasively predict molecular subtypes of tumors using radiomic signatures. The third section reviews studies that evaluate the potential to augment the performance of established prognostic signatures by combining complementary information encoded by radiomic and genomic signatures derived from cancer tumors. The fourth section includes studies that focus on ascertaining the biological significance of radiomic phenotypes. We conclude by discussing current challenges and opportunities in the field, such as the importance of coordination between imaging device manufacturers, regulatory organizations, health care providers, pharmaceutical companies, academic institutions, and physicians for the effective standardization of the results from radiogenomic signatures and for the potential use of these findings to improve precision care for cancer patients.
Collapse
Affiliation(s)
- Apurva Singh
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Rhea Chitalia
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Despina Kontos
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
94
|
Taniguchi S. In Situ Delivery and Production System ( iDPS) of Anti-Cancer Molecules with Gene-Engineered Bifidobacterium. J Pers Med 2021; 11:jpm11060566. [PMID: 34204302 PMCID: PMC8233750 DOI: 10.3390/jpm11060566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
To selectively and continuously produce anti-cancer molecules specifically in malignant tumors, we have established an in situ delivery and production system (iDPS) with Bifidobacterium as a micro-factory of various anti-cancer agents. By focusing on the characteristic hypoxia in cancer tissue for a tumor-specific target, we employed a gene-engineered obligate anaerobic and non-pathogenic bacterium, Bifidobacterium, as a tool for systemic drug administration. This review presents and discusses the anti-tumor effects and safety of the iDPS production of numerous anti-cancer molecules and addresses the problems to be improved by directing attention mainly to the hallmark vasculature and so-called enhanced permeability and retention effect of tumors.
Collapse
Affiliation(s)
- Shun'ichiro Taniguchi
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto City 390-8621, Japan
| |
Collapse
|
95
|
Feng ZY, Gao HY, Feng TD. Immune Infiltrates of m 6A RNA Methylation-Related lncRNAs and Identification of PD-L1 in Patients With Primary Head and Neck Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:672248. [PMID: 34178999 PMCID: PMC8220827 DOI: 10.3389/fcell.2021.672248] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The purpose of this study was to determine the association between m6A-modified lncRNAs, immune infiltration, and PD-L1 expression in patients with primary head and neck squamous cell carcinoma (HNSCC) and the prognostic value of m6A RNA methylation-related lncRNAs in HNSCC. Methods: We downloaded the RNA-seq transcriptome data and the clinical information for HNSCC from the TCGA databases and used consensus clustering analysis to divide the samples into two groups. To identify a risk signature, least absolute shrinkage and selection operator (LASSO) analyses were conducted. the association between m6A-modified lncRNAs, immune infiltration, and PD-L1 expression were detected by using the R packages. What is more, we used cBioPortal tools to identify genomic alterations and PD-L1 mutations and Gene set enrichment analysis (GSEA) was utilized to predict downstream access of two clusters. Results: Notably, lncRNAs play significant roles in tumorigenesis and development. In total, we identified two subtypes of HNSCC according to consensus clustering of the m6A RNA methylation-related lncRNAs, and the T, grade and age were proven to be related to the subtypes. The Cox regression and LASSO analyses identified a risk signature including GRHL3-AS1, AL121845.4, AC116914.2, AL513190.1. The prognostic value of the risk signature was then proven. The selected gene PD-L1 mutations and the immune infiltration in both groups were further explored. Conclusion: Collectively, our study elucidated the important role of m6A RNA methylation- related lncRNAs in tumor microenvironment of HNSCC. The proposed m6A RNA methylation- related lncRNAs might serve as crucial mediators of tumor microenvironment of HNSCC, representing promising therapeutic targets in improving immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao-Yu Gao
- Department of Students, The First Hospital of China Medical University, Shenyang, China
| | - Tian-Da Feng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
96
|
Zhang M, Gao F, Yu X, Zhang Q, Sun Z, He Y, Guo W. LINC00261: a burgeoning long noncoding RNA related to cancer. Cancer Cell Int 2021; 21:274. [PMID: 34022894 PMCID: PMC8141177 DOI: 10.1186/s12935-021-01988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), are transcripts longer than 200 nucleotides that are considered to be vital regulators of many cellular processes, particularly in tumorigenesis and cancer progression. long intergenic non-protein coding RNA 261 (LINC00261), a recently discovered lncRNA, is abnormally expressed in a variety of human malignancies, including pancreatic cancer, gastric cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, breast cancer, laryngeal carcinoma, endometrial carcinoma, esophageal cancer, prostate cancer, choriocarcinoma, and cholangiocarcinoma. LINC00261 mainly functions as a tumor suppressor that regulates a variety of biological processes in the above-mentioned cancers, such as cell proliferation, apoptosis, motility, chemoresistance, and tumorigenesis. In addition, the up-regulation of LINC00261 is closely correlated with both favorable prognoses and many clinical characteristics. In the present review, we summarize recent research documenting the expression and biological mechanisms of LINC00261 in tumor development. These findings suggest that LINC00261, as a tumor suppressor, has bright prospects both as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
97
|
Siddiqui RS, Sardar M. A Systematic Review of the Role of Chimeric Antigen Receptor T (CAR-T) Cell Therapy in the Treatment of Solid Tumors. Cureus 2021; 13:e14494. [PMID: 34007747 PMCID: PMC8122224 DOI: 10.7759/cureus.14494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy utilizes patients' own T lymphocytes that are engineered to attack cancer cells. It is Food and Drug Administration (FDA)-approved in various hematological malignancies and currently being evaluated in solid cancers in early phase studies. We did a systematic review consisting of 15 prospective clinical trials (n=159) evaluating CAR-T cells in solid cancers. Early phase trials showed promising response rates in ovarian epithelial cancer (100%), human epidermal growth factor receptor 2 (HER2)-positive sarcoma (67%), epidermal growth factor receptor (EGFR)-positive biliary tract cancer (65%), advanced gastric/pancreatic cancer (82%), hepatocellular carcinoma (67%), and colorectal cancer (70%). The median overall response across all malignancies was 62% (range 17%-100%). Median progression-free survival and overall survival were not reached in most trials. Cytokine release syndrome was seen in only one patient with cholangiocarcinoma who received EGFR-specific CAR-T cell therapy. Although survival data is still not mature, CAR-T cell therapy in solid malignancies did show encouraging response rates and was well-tolerated.
Collapse
Affiliation(s)
- Raheel S Siddiqui
- Internal Medicine, Icahn School of Medicine at Mount Sinai (New York City Health and Hospitals/Queens), Jamaica, USA
| | - Muhammad Sardar
- Internal Medicine, Monmouth Medical Center, Long Branch, USA
| |
Collapse
|
98
|
Saavedra-Leos MZ, Jordan-Alejandre E, López-Camarillo C, Pozos-Guillen A, Leyva-Porras C, Silva-Cázares MB. Nanomaterial Complexes Enriched With Natural Compounds Used in Cancer Therapies: A Perspective for Clinical Application. Front Oncol 2021; 11:664380. [PMID: 33869067 PMCID: PMC8047625 DOI: 10.3389/fonc.2021.664380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol and quercetin are natural compounds contained in many foods and beverages. Reports indicate implications for the health of the general population; on the other hand the use of both compounds has interesting results for the treatment of many diseases as cardiovascular affections, diabetes, Alzheimer's disease, viral and bacterial infections among others. Based on their capacities described as anti-inflammatory, antioxidant, and anti-aging, resveratrol and quercetin showed antiproliferative and anticancer activity specifically in maligned cells. These molecular characteristics trigger the pharmacological repurposing of both compounds and improved its research for treating different cancer types with interesting results at in vitro, in vivo, and clinical trial studies. Meanwhile, the development of different systems of drug release in specific sites as nanomaterials and specifically the nanoparticles, potentiates the personal treatment perspective in conjunct with the actual cancer therapies; regularly invasive and aggressive, the perspective of nanomedicine as higher effective and lower invasive has gained popularity. Knowledge of molecular interactions of resveratrol and quercetin in diseases confirms the evidence of multiple benefits, while the multiple analyses suggested a positive response for the treatment and diagnostics of cancer in different stages, including at metastatic stage. The present work reviews the reports related to the impact of resveratrol and quercetin in cancer treatment and its effects when the antioxidants are encapsulated in different nanoparticle systems, which improve the prospects of cancer treatment.
Collapse
Affiliation(s)
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Amaury Pozos-Guillen
- Laboratorio de Ciencias Básicas, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosi, Mexico
| | - César Leyva-Porras
- Laboratorio Nacional de Nanotecnología, Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Chihuahua, Mexico
| | | |
Collapse
|
99
|
Zhang E, Huang X, He J. Integrated bioinformatic analysis of HNF1A in human cancers. J Int Med Res 2021; 49:300060521997326. [PMID: 33752475 PMCID: PMC7995467 DOI: 10.1177/0300060521997326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Cancer is a threat to human health, and many molecules are involved in the transformation of malignant cells. Hepatocyte nuclear factor 1A (HNF1A) is an important transcription factor that regulates multiple biological processes. Our research focused on elucidating the expression and function of HNF1A in cancer through bioinformatic analysis. METHODS UALCAN, Kaplan-Meier plotter, COSMIC, Tumor IMmune Estimation Resource, and Cancer Regulome were used to obtain relevant data for HNF1A. RESULTS HNF1A was abnormally expressed in multiple cancers, and its expression was associated with differences in overall survival in patients with cancer. HNF1A mutations widely exist in tumors and interact with different genes involved in various processes. Additionally, we found that HNF1A was associated with the infiltration of immune cells, and it affected the prognostic value of these cells in some cancers. CONCLUSIONS HNF1A plays a crucial role in cancer, and it may represent a biomarker and target for future cancer immunotherapy.
Collapse
Affiliation(s)
- Enfan Zhang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| | - Xi Huang
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| | - Jingsong He
- Bone Marrow Transplantation Center, Department of Hematology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University, China
| |
Collapse
|
100
|
Welsh BT, Faucette R, Bilic S, Martin CJ, Schürpf T, Chen D, Nicholls S, Lansita J, Kalra A. Nonclinical Development of SRK-181: An Anti-Latent TGFβ1 Monoclonal Antibody for the Treatment of Locally Advanced or Metastatic Solid Tumors. Int J Toxicol 2021; 40:226-241. [PMID: 33739172 PMCID: PMC8135237 DOI: 10.1177/1091581821998945] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Checkpoint inhibitors offer a promising immunotherapy strategy for cancer treatment; however, due to primary or acquired resistance, many patients do not achieve lasting clinical responses. Recently, the transforming growth factor-β (TGFβ) signaling pathway has been identified as a potential target to overcome primary resistance, although the nonselective inhibition of multiple TGFβ isoforms has led to dose-limiting cardiotoxicities. SRK-181 is a high-affinity, fully human antibody that selectively binds to latent TGFβ1 and inhibits its activation. To support SRK-181 clinical development, we present here a comprehensive preclinical assessment of its pharmacology, pharmacokinetics, and safety across multiple species. In vitro studies showed that SRK-181 has no effect on human platelet function and does not induce cytokine release in human peripheral blood. Four-week toxicology studies with SRK-181 showed that weekly intravenous administration achieved sustained serum exposure and was well tolerated in rats and monkeys, with no treatment-related adverse findings. The no-observed-adverse-effect levels levels were 200 mg/kg in rats and 300 mg/kg in monkeys, the highest doses tested, and provide a nonclinical safety factor of up to 813-fold (based on Cmax) above the phase 1 starting dose of 80 mg every 3 weeks. In summary, the nonclinical pharmacology, pharmacokinetic, and toxicology data demonstrate that SRK-181 is a selective inhibitor of latent TGFβ1 that does not produce the nonclinical toxicities associated with nonselective TGFβ inhibition. These data support the initiation and safe conduct of a phase 1 trial with SRK-181 in patients with advanced cancer.
Collapse
Affiliation(s)
- Brian T Welsh
- 436132ToxStrategies, Research Blvd Building, Austin, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|