51
|
Andrade CMB, Wink MR, Margis R, Borojevic R, Battastini AMO, Guma FCR. Changes in E-NTPDase 3 expression and extracellular nucleotide hydrolysis during the myofibroblast/lipocyte differentiation. Mol Cell Biochem 2010; 339:79-87. [PMID: 20058055 DOI: 10.1007/s11010-009-0371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 12/16/2009] [Indexed: 01/07/2023]
Abstract
Hepatic stellate cells (HSC) play a critical role in the development and maintenance of liver fibrosis. HSC are lipocytes that displayed the capacity to develop into myofibroblast-like cells. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate the concentration of extracellular nucleotides, signaling molecules that play a role in the pathogenesis of hepatic fibrosis. In the present study, we identified and compared the expressions of E-NTPDase family members in two different phenotypes of the mouse hepatic stellate cell line (GRX) and evaluated the nucleotide hydrolysis by these cells. We show that both phenotypes of GRX cell line expressed NTPDase 3 and 5. However, only activated cells expressed NTPDase 6. In quiescent-like cells, the hydrolysis of triphosphonucleosides was significantly higher, and was related to an increase in Entpd3 mRNA expression. The diphosphonucleosides were hydrolyzed at a similar rate by two phenotypes of GRX cells. We suggest that up-regulation of Entpd3 mRNA expression modulates the extracellular concentration of nucleotides/nucleosides and affect P2-receptor signaling differently in quiescent-like cells and may play a role in the regulation of HSC functions.
Collapse
Affiliation(s)
- Cláudia M B Andrade
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS CEP 90035-003, Brazil
| | | | | | | | | | | |
Collapse
|
52
|
Gonzales E, Julien B, Serrière-Lanneau V, Nicou A, Doignon I, Lagoudakis L, Garcin I, Azoulay D, Duclos-Vallée JC, Castaing D, Samuel D, Hernandez-Garcia A, Awad SS, Combettes L, Thevananther S, Tordjmann T. ATP release after partial hepatectomy regulates liver regeneration in the rat. J Hepatol 2010; 52:54-62. [PMID: 19914731 PMCID: PMC3625734 DOI: 10.1016/j.jhep.2009.10.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/23/2009] [Accepted: 08/18/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Paracrine interactions are critical to liver physiology, particularly during regeneration, although physiological involvement of extracellular ATP, a crucial intercellular messenger, remains unclear. The physiological release of ATP into extracellular milieu and its impact on regeneration after partial hepatectomy were investigated in this study. METHODS Hepatic ATP release after hepatectomy was examined in the rat and in human living donors for liver transplantation. Quinacrine was used for in vivo staining of ATP-enriched compartments in rat liver sections and isolated hepatocytes. Rats were treated with an antagonist for purinergic receptors (Phosphate-6-azo(benzene-2,4-disulfonic acid), PPADS), and liver regeneration after hepatectomy was analyzed. RESULTS A robust and transient ATP release due to acute portal hyperpressure was observed immediately after hepatectomy in rats and humans. Clodronate liposomal pre-treatment partly inhibited ATP release in rats. Quinacrine-stained vesicles, co-labeled with a lysosomal marker in liver sections and isolated hepatocytes, were predominantly detected in periportal areas. These vesicles significantly disappeared after hepatectomy, in parallel with a decrease in liver ATP content. PPADS treatment inhibited hepatocyte cell cycle progression after hepatectomy, as revealed by a reduction in bromodeoxyuridine incorporation, phosphorylated histone 3 immunostaining, cyclin D1 and A expression and immediate early gene induction. CONCLUSION Extracellular ATP is released immediately after hepatectomy from hepatocytes and Kupffer cells under mechanical stress and promotes liver regeneration in the rat. We suggest that in hepatocytes, ATP is released from a lysosomal compartment. Finally, observations made in living donors suggest that purinergic signalling could be critical for human liver regeneration.
Collapse
Affiliation(s)
| | - Boris Julien
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France
| | | | - Alexandra Nicou
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France
| | - Isabelle Doignon
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France
| | - Laura Lagoudakis
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France
| | - Isabelle Garcin
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France
| | - Daniel Azoulay
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | | | - Denis Castaing
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | - Didier Samuel
- Centre Hépato-Biliaire, Hôpital Paul Brousse, Villejuif, France
| | | | | | | | | | - Thierry Tordjmann
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France,Corresponding author: Thierry Tordjmann: INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France FAX:+33 1 69 15 58 93; TEL:+33 1 69 15 70 72.
| |
Collapse
|
53
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
54
|
Friedman DJ, Künzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC. From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 2009; 106:16788-93. [PMID: 19805374 PMCID: PMC2757811 DOI: 10.1073/pnas.0902869106] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Indexed: 12/13/2022] Open
Abstract
CD39/ENTPD1 hydrolyzes proinflammatory nucleotides to generate adenosine. As purinergic mediators have been implicated in intestinal inflammation, we hypothesized that CD39 might protect against inflammatory bowel disease. We studied these possibilities in a mouse model of colitis using mice with global CD39 deletion. We then tested whether human genetic polymorphisms in the CD39 gene might influence susceptibility to Crohn's disease. We induced colitis in mice using Dextran Sodium Sulfate (DSS). Readouts included disease activity scores, histological evidence of injury, and markers of inflammatory activity. We used HapMap cell lines to find SNPs that tag for CD39 expression, and then compared the frequency of subjects with high vs. low CD39-expression genotypes in a case-control cohort for Crohn's disease. Mice null for CD39 were highly susceptible to DSS injury, with heterozygote mice showing an intermediate phenotype compared to wild type (WT). We identified a common SNP that tags CD39 mRNA expression levels in man. The SNP tagging low levels of CD39 expression was associated with increased susceptibility to Crohn's disease in a case-control cohort comprised of 1,748 Crohn's patients and 2,936 controls (P = 0.005-0.0006). Our data indicate that CD39 deficiency exacerbates murine colitis and suggest that CD39 polymorphisms are associated with inflammatory bowel disease in humans.
Collapse
Affiliation(s)
- David J. Friedman
- Renal Division and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, Boston, MA 02215
| | - Beat M. Künzli
- Transplantation Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, Boston, MA 02215
- Department of Surgery, Technische Universität München, Ismaningerstrasse 22, D-81675 Munich, Germany; and
| | - Yousif I. A-Rahim
- Department of Gastroenterology, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96822
| | - Jean Sevigny
- Transplantation Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, Boston, MA 02215
| | - Pascal O. Berberat
- Department of Surgery, Technische Universität München, Ismaningerstrasse 22, D-81675 Munich, Germany; and
| | - Keiichi Enjyoji
- Transplantation Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, Boston, MA 02215
| | - Eva Csizmadia
- Transplantation Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, Boston, MA 02215
| | - Helmut Friess
- Department of Surgery, Technische Universität München, Ismaningerstrasse 22, D-81675 Munich, Germany; and
| | - Simon C. Robson
- Transplantation Center and Gastroenterology Division, Beth Israel Deaconess Medical Center, Harvard University, 330 Brookline Avenue, Boston, MA 02215
| |
Collapse
|
55
|
Sun X, Cárdenas A, Wu Y, Enjyoji K, Robson SC. Vascular stasis, intestinal hemorrhage, and heightened vascular permeability complicate acute portal hypertension in cd39-null mice. Am J Physiol Gastrointest Liver Physiol 2009; 297:G306-11. [PMID: 19520738 PMCID: PMC2724088 DOI: 10.1152/ajpgi.90703.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Vasoactive factors that regulate splanchnic hemodynamics include nitric oxide, catecholamines, and possibly extracellular nucleosides/nucleotides (adenosine, ATP). CD39/ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1) is the major vascular ectonucleotidase that hydrolyzes extracellular nucleotides. CD39 activity may be modulated by vascular injury, inflammation, and altered oxygen tension. Altered Cd39 expression by the murine hepatosplanchnic vasculature may impact hemodynamics and portal hypertension (PHT) in vivo. We noted that basal portal pressures (PPs) were comparable in wild-type and Cd39-null mice (n = 9). ATP infusions resulted in increments in PP in wild-type mice, but, in contrast, this significantly decreased in Cd39-null mice (n = 9) post-ATP in a nitric oxide-dependent manner. We then studied Cd39/NTPDase1 deletion in the regulation of portal hemodynamics, vascular integrity, and intestinal permeability in a murine model of PHT. Partial portal vein ligation (PPVL) was performed in Cd39-null (n = 44) and wild-type (n = 23) mice. Sequential measurements obtained after PPVL were indicative of comparable levels of PHT (ranges 14-29 mmHg) in both groups. There was one death in the wild-type group and eight in the Cd39-null group from intestinal bleeding (P = 0.024). Circulatory stasis in the absence of overt portal vein thrombosis, portal congestion, intestinal hemorrhage, and increased permeability were evident in all surviving Cd39-null mice. Deletion of Cd39 results in deleterious outcomes post-PPVL that are associated with significant microcirculatory derangements and major intestinal congestion with hemorrhage mimicking acute mesenteric occlusion. Absent Cd39/NTPDase1 and decreased generation of adenosine in the splanchnic circulation cause heightened vascular permeability and gastrointestinal hemorrhage in PPVL.
Collapse
Affiliation(s)
- Xiaofeng Sun
- Department of Medicine, Division of Gastroenterology and Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Gastroenterology Unit, Institut Clinic de Malalties Digestives i Metaboliques, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Andrés Cárdenas
- Department of Medicine, Division of Gastroenterology and Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Gastroenterology Unit, Institut Clinic de Malalties Digestives i Metaboliques, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Yan Wu
- Department of Medicine, Division of Gastroenterology and Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Gastroenterology Unit, Institut Clinic de Malalties Digestives i Metaboliques, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Keichi Enjyoji
- Department of Medicine, Division of Gastroenterology and Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Gastroenterology Unit, Institut Clinic de Malalties Digestives i Metaboliques, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Simon C. Robson
- Department of Medicine, Division of Gastroenterology and Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Gastroenterology Unit, Institut Clinic de Malalties Digestives i Metaboliques, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
56
|
Di Virgilio F, Boeynaems JM, Robson SC. Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 2009; 9:507-13. [PMID: 19628431 DOI: 10.1016/j.coph.2009.06.021] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 12/13/2022]
Abstract
Nucleotides are well known for being the universal currency of intracellular energy transactions, but over the past decade it has become clear that they are also ubiquitous extracellular messengers. In the immune system there is increasing awareness that nucleotides serve multiple roles as stimulants of lymphocyte proliferation, ROS generation, cytokine and chemokine secretion: in one word as pro-inflammatory mediators. However, although often neglected, extracellular nucleotides exert an additional more subtle function as negative modulators of immunity, or as immunodepressants. The more we understand the peculiar biochemical composition of the microenvironment generated at inflammatory sites, the more we appreciate how chronic exposure to low extracellular nucleotide levels affect immunity and inflammation. A deeper understanding of this complex network will no doubt help design more effective therapies for cancer and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy.
| | | | | |
Collapse
|
57
|
Kirk AD, Morrell C, Baldwin WM. Platelets influence vascularized organ transplants from start to finish. Am J Transplant 2009; 9:14-22. [PMID: 19067663 PMCID: PMC2692406 DOI: 10.1111/j.1600-6143.2008.02473.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review relates the basic functions of platelets to specific aspects of organ allograft rejection. Platelet activation can occur in the donor or recipient before transplantation as well as during antibody- and cell-mediated rejection. Biopsies taken during organ procurement from cadaver donors have documented that activated platelets are attached to vascular endothelial cells or leukocytes. In addition, many patients waiting for transplants have activated platelets due to the diseases that lead to organ failure or as a result of interventions used to support patients before and during transplantation. The contribution of platelets to hyperacute rejection of both allografts and xenografts is well recognized. Intravascular aggregates of platelets can also be prominent in experimental and clinical transplants that undergo acute antibody or cell-mediated rejection. In acute rejection, platelets can recruit mononuclear cells by secretion of chemokines. After contact, monocytes, macrophages and T cells interact with platelets through receptor/ligand pairs, including P-selectin/PSGL-1 and CD40/CD154. There is a potential for therapy to inhibit platelet mediated immune stimulation, but it is counterbalanced by the need to maintain coagulation in the perioperative period.
Collapse
Affiliation(s)
- A. D. Kirk
- Emory Transplant Center, Department of Surgery, Emory University, Atlanta, GA
| | - C.N. Morrell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - W. M. Baldwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
58
|
Volonté C, D'Ambrosi N. Membrane compartments and purinergic signalling: the purinome, a complex interplay among ligands, degrading enzymes, receptors and transporters. FEBS J 2008; 276:318-29. [PMID: 19076212 DOI: 10.1111/j.1742-4658.2008.06793.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Receptors should be properly analysed in view of the microenvironment in which they are embedded. Therefore, the concept of 'receptosome' was formulated to the complex interactions taking place between receptors and other proteins at the plasma membrane level, and to explain very heterogeneous or divergent cellular responses to common epigenetic factors and modifications to the extracellular environment. The receptosome thus becomes a molecular network connecting transmitters, hormones or growth factors, to both their specific receptors and unique downstream effector proteins. As an example of receptosome, we introduce here the 'purinome' as molecular complex responsible for the biological effects of extracellular purine and pyrimidine ligands. In addition to a vast heterogeneity of purinergic ligands, the purinome thus consists of ectonucleotide-metabolizing enzymes hydrolysing nucleoside phosphates, purinergic receptors classified as P1 for adenosine/AMP and P2 for nucleosides tri-/diphosphates, nucleoside transporters with both equilibrative and concentrative properties and finally, nucleotide channels and transporters. Notably, these purinergic elements are not independent, but they play tightly concerted actions under physiological conditions. As a whole and not singularly, they trigger, maintain and terminate the purinergic signalling. This signifies that the purinome is not a new, mere definition of juxtaposed purinergic units, but rather the experimental evidence of complex and dynamic molecular cross-talk and cooperation networks. Alteration of this dynamic equilibrium may even participate in many pathological states. As a consequence, to be successful against pathological conditions, the genetic/pharmacological manipulation of purinergic mechanisms must go well beyond single proteins, and be more holistically oriented.
Collapse
|
59
|
Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS One 2008; 3:e3352. [PMID: 18839041 PMCID: PMC2556398 DOI: 10.1371/journal.pone.0003352] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 09/15/2008] [Indexed: 01/06/2023] Open
Abstract
Background Hypoxia-inducible factor 1 (HIF)-1α is a transcription factor that functions as master regulator of mammalian oxygen homeostasis. In addition, recent studies identified a role for HIF-1α as transcriptional regulator during inflammation or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to induce an inflammatory milieu, we hypothesized a role of HIF-1α as transcriptional regulator during infections with RSV. Methodology, Principal Findings We gained first insight from immunohistocemical studies of RSV-infected human pulmonary epithelia that were stained for HIF-1α. These studies revealed that RSV-positive cells also stained for HIF-1α, suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-fold increase in HIF-1α protein 24 h after RSV infection. In contrast, HIF-1α activation was abolished utilizing UV-treated RSV. Moreover, HIF-α-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast, HIF-1α dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1α. Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no differences in oxygen content, suggesting that HIF-1α activation is not caused by RSV associated hypoxia. Finally, studies of RSV pneumonitis in mice confirmed HIF-α-activation in a murine in vivo model. Conclusions/Significance Taking together, these studies suggest hypoxia-independent activation of HIF-1α during infection with RSV in vitro and in vivo.
Collapse
|
60
|
Abstract
Chemotaxis allows polymorphonuclear neutrophils (PMN) to rapidly reach infected and inflamed sites. However, excessive influx of PMN damages host tissues. Better knowledge of the mechanisms that control PMN chemotaxis may lead to improved treatments of inflammatory diseases. Recent findings suggest that ATP and adenosine are involved in PMN chemotaxis. Therefore, these purinergic signaling processes may be suitable targets for novel therapeutic approaches to ameliorate host tissue damage.
Collapse
Affiliation(s)
- W G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, East Stoneman 8M 10C, Boston, Massachusetts 02215, USA.
| |
Collapse
|