51
|
Taha B, Boley D, Sun J, Chen C. Potential and limitations of radiomics in neuro-oncology. J Clin Neurosci 2021; 90:206-211. [PMID: 34275550 DOI: 10.1016/j.jocn.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022]
Abstract
Radiomics seeks to apply classical methods of image processing to obtain quantitative parameters from imaging. Derived features are subsequently fed into algorithmic models to aid clinical decision making. The application of radiomics and machine learning techniques to clinical medicine remains in its infancy. The great potential of radiomics lies in its objective, granular approach to investigating clinical imaging. In neuro-oncology, advanced machine learning techniques, particularly deep learning, are at the forefront of new discoveries in the field. However, despite the great promise of machine learning aided radiomic approaches, the current use remains confined to scholarly research, without real-world deployment in neuro-oncology. The paucity of data, inconsistencies in preprocessing, radiomic feature instability, and the rarity of the events of interest are critical barriers to clinical translation. In this article, we will outline the major steps in the process of radiomics, as well as review advances and challenges in the field as they pertain to neuro-oncology.
Collapse
Affiliation(s)
- Birra Taha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN USA
| | - Daniel Boley
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ju Sun
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN USA.
| |
Collapse
|
52
|
Crandall JP, Fraum TJ, Lee M, Jiang L, Grigsby P, Wahl RL. Repeatability of 18F-FDG PET Radiomic Features in Cervical Cancer. J Nucl Med 2021; 62:707-715. [PMID: 33008931 PMCID: PMC8844259 DOI: 10.2967/jnumed.120.247999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Knowledge of the intrinsic variability of radiomic features is essential to the proper interpretation of changes in these features over time. The primary aim of this study was to assess the test-retest repeatability of radiomic features extracted from 18F-FDG PET images of cervical tumors. The impact of different image preprocessing methods was also explored. Methods: Patients with cervical cancer underwent baseline and repeat 18F-FDG PET/CT imaging within 7 d. PET images were reconstructed using 2 methods: ordered-subset expectation maximization (PETOSEM) or ordered-subset expectation maximization with point-spread function (PETPSF). Tumors were segmented to produce whole-tumor volumes of interest (VOIWT) and 40% isocontours (VOI40). Voxels were either left at the default size or resampled to 3-mm isotropic voxels. SUV was discretized to a fixed number of bins (32, 64, or 128). Radiomic features were extracted from both VOIs, and repeatability was then assessed using the Lin concordance correlation coefficient (CCC). Results: Eleven patients were enrolled and completed the test-retest PET/CT imaging protocol. Shape, neighborhood gray-level difference matrix, and gray-level cooccurrence matrix features were repeatable, with a mean CCC value of 0.81. Radiomic features extracted from PETOSEM images showed significantly better repeatability than features extracted from PETPSF images (P < 0.001). Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT (P < 0.001). For most features (78.4%), a change in bin number or voxel size resulted in less than a 10% change in feature value. All gray-level emphasis and gray-level run emphasis features showed poor repeatability (CCC values < 0.52) when extracted from VOIWT but were highly repeatable (mean CCC values > 0.96) when extracted from VOI40Conclusion: Shape, gray-level cooccurrence matrix, and neighborhood gray-level difference matrix radiomic features were consistently repeatable, whereas gray-level run length matrix and gray-level zone length matrix features were highly variable. Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT Changes in voxel size or SUV discretization parameters typically resulted in relatively small differences in feature value, though several features were highly sensitive to these changes.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - MinYoung Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Linda Jiang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Perry Grigsby
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| |
Collapse
|
53
|
Jin J, Wu K, Li X, Yu Y, Wang X, Sun H. Relationship between tumor heterogeneity and volume in cervical cancer: Evidence from integrated fluorodeoxyglucose 18 PET/MR texture analysis. Nucl Med Commun 2021; 42:545-552. [PMID: 33323868 DOI: 10.1097/mnm.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of cervical cancer volume on PET/magnetic resonance (MR) texture heterogeneity. MATERIALS AND METHODS We retrospectively analyzed the PET/MR images of 138 patients with pathologically diagnosed cervical squamous cell carcinoma, including 50 patients undergoing surgery and 88 patients receiving concurrent chemoradiotherapy. Fluorodeoxyglucose 18 (18FDG)-PET/MR examination were performed for each patient before treatment, and the PET and MR texture analysis were undertaken. The texture features of the tumor based on gray-level co-occurrence matrices were extracted, and the correlation between tumor texture features and volume parameters was analyzed using Spearman's rank correlation coefficient. Finally, the variation trend of tumor texture heterogeneity was analyzed as tumor volumes increased. RESULTS PET texture features were highly correlated with metabolic tumor volume (MTV), including entropy-log2, entropy-log10, energy, homogeneity, dissimilarity, contrast, correlation, and the correlation coefficients (rs) were 0.955, 0.955, -0.897, 0.883, -0.881, -0.876, and 0.847 (P < 0.001), respectively. In the range of smaller MTV, the texture heterogeneity of energy, entropy-log2, and entropy-log10 increases with an increase in tumor volume, whereas the texture heterogeneity of homogeneity, dissimilarity, contrast, and correlation decreases with an increase in tumor volume. Only homogeneity, contrast, correlation, and dissimilarity had high correlation with tumor volume on MRI. The correlation coefficients (rs) were 0.76, -0.737, 0.644, and -0.739 (P < 0.001), respectively. The texture heterogeneity of MRI features that are highly correlated with tumor volume decreases with increasing tumor volume. CONCLUSION In the small tumor volume range, the heterogeneity variation trend of PET texture features is inconsistent as the tumor volume increases, but the variation trend of MRI texture heterogeneity is consistent, and MRI texture heterogeneity decreases as tumor volume increases. These results suggest that MRI is a better imaging modality when compared with PET in determining tumor texture heterogeneity in the small tumor volume range.
Collapse
Affiliation(s)
- Junjie Jin
- Department of Radiology, Shengjing Hospital of China Medical University
- Liaoning Provincial Key Laboratory of Medical Imaging
| | - Ke Wu
- Department of Radiology, Shengjing Hospital of China Medical University
| | - Xiaoran Li
- Department of Radiology, Shengjing Hospital of China Medical University
| | - Yang Yu
- Department of Nuclear Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinghao Wang
- Department of Radiology, Shengjing Hospital of China Medical University
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University
- Liaoning Provincial Key Laboratory of Medical Imaging
| |
Collapse
|
54
|
Dai H, Lu M, Huang B, Tang M, Pang T, Liao B, Cai H, Huang M, Zhou Y, Chen X, Ding H, Feng ST. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging. Quant Imaging Med Surg 2021; 11:1836-1853. [PMID: 33936969 PMCID: PMC8047362 DOI: 10.21037/qims-20-218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microvascular invasion (MVI) has a significant effect on the prognosis of hepatocellular carcinoma (HCC), but its preoperative identification is challenging. Radiomics features extracted from medical images, such as magnetic resonance (MR) images, can be used to predict MVI. In this study, we explored the effects of different imaging sequences, feature extraction and selection methods, and classifiers on the performance of HCC MVI predictive models. METHODS After screening against the inclusion criteria, 69 patients with HCC and preoperative gadoxetic acid-enhanced MR images were enrolled. In total, 167 features were extracted from the MR images of each sequence for each patient. Experiments were designed to investigate the effects of imaging sequence, number of gray levels (Ng), quantization algorithm, feature selection method, and classifiers on the performance of radiomics biomarkers in the prediction of HCC MVI. We trained and tested these models using leave-one-out cross-validation (LOOCV). RESULTS The radiomics model based on the images of the hepatobiliary phase (HBP) had better predictive performance than those based on the arterial phase (AP), portal venous phase (PVP), and pre-enhanced T1-weighted images [area under the receiver operating characteristic (ROC) curve (AUC) =0.792 vs. 0.641/0.634/0.620, P=0.041/0.021/0.010, respectively]. Compared with the equal-probability and Lloyd-Max algorithms, the radiomics features obtained using the Uniform quantization algorithm had a better performance (AUC =0.643/0.666 vs. 0.792, P=0.002/0.003, respectively). Among the values of 8, 16, 32, 64, and 128, the best predictive performance was achieved when the Ng was 64 (AUC =0.792 vs. 0.584/0.697/0.677/0.734, P<0.001/P=0.039/0.001/0.137, respectively). We used a two-stage feature selection method which combined the least absolute shrinkage and selection operator (LASSO) and recursive feature elimination (RFE) gradient boosting decision tree (GBDT), which achieved better stability than and outperformed LASSO, minimum redundancy maximum relevance (mRMR), and support vector machine (SVM)-RFE (stability =0.967 vs. 0.837/0.623/0.390, respectively; AUC =0.850 vs. 0.792/0.713/0.699, P=0.142/0.007/0.003, respectively). The model based on the radiomics features of HBP images using the GBDT classifier showed a better performance for the preoperative prediction of MVI compared with logistic regression (LR), SVM, and random forest (RF) classifiers (AUC =0.895 vs. 0.850/0.834/0.884, P=0.558/0.229/0.058, respectively). With the optimal combination of these factors, we established the best model, which had an AUC of 0.895, accuracy of 87.0%, specificity of 82.5%, and sensitivity of 93.1%. CONCLUSIONS Imaging sequences, feature extraction and selection methods, and classifiers can have a considerable effect on the predictive performance of radiomics models for HCC MVI.
Collapse
Affiliation(s)
- Houjiao Dai
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Minhua Lu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiantian Pang
- School of Computer Science and Software Engineering, Jilin University, Changchun, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mengqi Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongjin Zhou
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Xin Chen
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Huijun Ding
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Liberini V, De Santi B, Rampado O, Gallio E, Dionisi B, Ceci F, Polverari G, Thuillier P, Molinari F, Deandreis D. Impact of segmentation and discretization on radiomic features in 68Ga-DOTA-TOC PET/CT images of neuroendocrine tumor. EJNMMI Phys 2021; 8:21. [PMID: 33638729 PMCID: PMC7914329 DOI: 10.1186/s40658-021-00367-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To identify the impact of segmentation methods and intensity discretization on radiomic features (RFs) extraction from 68Ga-DOTA-TOC PET images in patients with neuroendocrine tumors. METHODS Forty-nine patients were retrospectively analyzed. Tumor contouring was performed manually by four different operators and with a semi-automatic edge-based segmentation (SAEB) algorithm. Three SUVmax fixed thresholds (20, 30, 40%) were applied. Fifty-one RFs were extracted applying two different intensity rescale factors for gray-level discretization: one absolute (AR60 = SUV from 0 to 60) and one relative (RR = min-max of the VOI SUV). Dice similarity coefficient (DSC) was calculated to quantify segmentation agreement between different segmentation methods. The impact of segmentation and discretization on RFs was assessed by intra-class correlation coefficients (ICC) and the coefficient of variance (COVL). The RFs' correlation with volume and SUVmax was analyzed by calculating Pearson's correlation coefficients. RESULTS DSC mean value was 0.75 ± 0.11 (0.45-0.92) between SAEB and operators and 0.78 ± 0.09 (0.36-0.97), among the four manual segmentations. The study showed high robustness (ICC > 0.9): (a) in 64.7% of RFs for segmentation methods using AR60, improved by applying SUVmax threshold of 40% (86.5%); (b) in 50.9% of RFs for different SUVmax thresholds using AR60; and (c) in 37% of RFs for discretization settings using different segmentation methods. Several RFs were not correlated with volume and SUVmax. CONCLUSIONS RFs robustness to manual segmentation resulted higher in NET 68Ga-DOTA-TOC images compared to 18F-FDG PET/CT images. Forty percent SUVmax thresholds yield superior RFs stability among operators, however leading to a possible loss of biological information. SAEB segmentation appears to be an optimal alternative to manual segmentation, but further validations are needed. Finally, discretization settings highly impacted on RFs robustness and should always be stated.
Collapse
Affiliation(s)
- Virginia Liberini
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Bruno De Santi
- Biolab, Department of Electronics and Telecomunications, Politecnico di Torino, Turin, Italy
| | - Osvaldo Rampado
- Medical Physics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Elena Gallio
- Medical Physics Unit, AOU Città della Salute e della Scienza, Turin, Italy
| | - Beatrice Dionisi
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Francesco Ceci
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giulia Polverari
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Philippe Thuillier
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Endocrinology, University Hospital of Brest, Politecnico di Torino Brest, Turin, France
| | - Filippo Molinari
- Biolab, Department of Electronics and Telecomunications, Politecnico di Torino, Turin, Italy
| | - Désirée Deandreis
- Nuclear Medicine Unit, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
56
|
BAYKARA S, BAYKARA M, MERMİ O, YILDIRIM H, ATMACA M. Magnetic resonance imaging histogram analysis of corpus callosum in a functional neurological disorder. Turk J Med Sci 2021; 51:140-147. [PMID: 32892546 PMCID: PMC7991863 DOI: 10.3906/sag-2004-252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/29/2020] [Indexed: 02/02/2023] Open
Abstract
Background/aim The aim of the present study was to examine and compare the corpus callosum (CC) via histogram analysis (HA) on T1-weighted MR images of patients diagnosed with Functional Neurological Disorder (FND) and healthy controls. Materials and methods The study group included 19 female patients diagnosed with FND, and the control group included 20 healthy subjects. All participants were scanned with a 1.5 T MR scanner. A high-resolution structural image of the entire brain was obtained with sagittal 3D spiral fast spin echo T1-weighted images. Gray level intensity, standard deviation of the histogram, entropy, uniformity, skewness, and kurtosis values were determined with texture analysis. A student’s t-test was used to compare the group data. P < 0.05 was accepted as statistically significant. Results It was determined that the mean gray level intensity, standard deviation of the histogram, entropy calculated by the maximum, median and variance and size M percentage values were higher in patients with FND. Kurtosis and size U percentages values were lower in patients with FND. Conclusion In the present study, analysis of CC with T1-weighted MR image HA demonstrated significant differences between FND patients and healthy controls. The study findings indicated that HA is a beneficial technique for demonstrating textural variations between the CCs of patients with FND and healthy controls using MR images.
Collapse
Affiliation(s)
- Sema BAYKARA
- Department of Psychiatry, Faculty of Medicine, Fırat University, ElazığTurkey
| | - Murat BAYKARA
- Department of Radiology, Faculty of Medicine, Fırat University, ElazığTurkey
| | - Osman MERMİ
- Department of Psychiatry, Faculty of Medicine, Fırat University, ElazığTurkey
| | - Hanefi YILDIRIM
- Department of Radiology, Faculty of Medicine, Fırat University, ElazığTurkey
| | - Murad ATMACA
- Department of Psychiatry, Faculty of Medicine, Fırat University, ElazığTurkey
| |
Collapse
|
57
|
Manning MA, Shafa S, Mehrotra AK, Grenier RE, Levy AD. Role of Multimodality Imaging in Gastroesophageal Reflux Disease and Its Complications, with Clinical and Pathologic Correlation. Radiographics 2021; 40:44-71. [PMID: 31917657 DOI: 10.1148/rg.2020190029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastroesophageal reflux disease (GERD) is a common condition and impairs the quality of life for millions of patients, accounts for considerable health care spending, and is a primary risk factor for esophageal adenocarcinoma. There have been substantial advances in understanding the pathogenesis of GERD and its complications and much progress in diagnosis and management of GERD; however, these have not been comprehensively discussed in the recent radiology literature. Understanding the role of imaging in GERD and its complications is important to aid in multidisciplinary treatment of GERD. GERD results from prolonged or recurrent reflux of gastric contents into the esophagus. Common symptoms include heartburn or regurgitation. Prolonged reflux of gastric contents into the esophagus can cause erosive esophagitis. Over time, the inflammatory response related to esophagitis can lead to deposition of fibrous tissue and development of strictures. Alternatively, the esophageal mucosa can undergo metaplasia (Barrett esophagus), a precursor to dysplasia (which can lead to adenocarcinoma). Conventional barium esophagography has long been considered the primary imaging modality for the esophagus, and the fluoroscopic findings for diagnosis of GERD have been well established. Multimodality imaging has a clear role in detection and assessment of the complications of GERD, specifically reflux esophagitis and Barrett esophagus; differentiation of benign and malignant strictures; and detection, staging, and posttreatment surveillance of esophageal adenocarcinoma. Given the dramatic changes in utilization of abdominal imaging during the past 2 decades, with significantly declining volume of fluoroscopic procedures and concomitant increase in CT and MRI studies, it is crucial that modern radiologists appreciate the value of barium esophagography in the workup of GERD and recognize the key imaging features of GERD and its complications at CT and MRI.
Collapse
Affiliation(s)
- Maria A Manning
- From the American Institute for Radiologic Pathology, 1100 Wayne Ave, Suite 1020, Silver Spring, MD 20910 (M.A.M.); Department of Radiology (M.A.M., A.D.L.) and Division of Gastroenterology and Hepatology (S.S.), MedStar Georgetown University Hospital, Washington, DC; the Joint Pathology Center, Silver Spring, Md (A.K.M.); and Georgetown University School of Medicine, Washington, DC (R.E.G.)
| | - Shervin Shafa
- From the American Institute for Radiologic Pathology, 1100 Wayne Ave, Suite 1020, Silver Spring, MD 20910 (M.A.M.); Department of Radiology (M.A.M., A.D.L.) and Division of Gastroenterology and Hepatology (S.S.), MedStar Georgetown University Hospital, Washington, DC; the Joint Pathology Center, Silver Spring, Md (A.K.M.); and Georgetown University School of Medicine, Washington, DC (R.E.G.)
| | - Anupamjit K Mehrotra
- From the American Institute for Radiologic Pathology, 1100 Wayne Ave, Suite 1020, Silver Spring, MD 20910 (M.A.M.); Department of Radiology (M.A.M., A.D.L.) and Division of Gastroenterology and Hepatology (S.S.), MedStar Georgetown University Hospital, Washington, DC; the Joint Pathology Center, Silver Spring, Md (A.K.M.); and Georgetown University School of Medicine, Washington, DC (R.E.G.)
| | - Rachel E Grenier
- From the American Institute for Radiologic Pathology, 1100 Wayne Ave, Suite 1020, Silver Spring, MD 20910 (M.A.M.); Department of Radiology (M.A.M., A.D.L.) and Division of Gastroenterology and Hepatology (S.S.), MedStar Georgetown University Hospital, Washington, DC; the Joint Pathology Center, Silver Spring, Md (A.K.M.); and Georgetown University School of Medicine, Washington, DC (R.E.G.)
| | - Angela D Levy
- From the American Institute for Radiologic Pathology, 1100 Wayne Ave, Suite 1020, Silver Spring, MD 20910 (M.A.M.); Department of Radiology (M.A.M., A.D.L.) and Division of Gastroenterology and Hepatology (S.S.), MedStar Georgetown University Hospital, Washington, DC; the Joint Pathology Center, Silver Spring, Md (A.K.M.); and Georgetown University School of Medicine, Washington, DC (R.E.G.)
| |
Collapse
|
58
|
Peng L, Hong X, Yuan Q, Lu L, Wang Q, Chen W. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Ann Nucl Med 2021; 35:458-468. [PMID: 33543393 DOI: 10.1007/s12149-021-01585-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To develop a radiomics signature to predict locoregional recurrence (LR) and distant metastasis (DM), as extracted from pretreatment 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/X-ray computed tomography (PET/CT) images in locally advanced nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Eighty-five patients with Stage III-IVB NPC underwent pretreatment [18F]FDG PET/CT scans and received radiotherapy or chemoradiotherapy. 53 of them achieved disease control, and 32 of them failed after treatment (15: LR, 17: DM). A total of 114 radiomic features were extracted from PET/CT images. For univariate analysis, Wilcoxon test and Chi-square test were used to compare median values of features between different treatment outcomes and predict the risk of treatment failure, respectively. For multivariate analysis, all features were grouped into clusters based on Pearson correlation using hierarchical clustering, and the representative feature of each cluster was chosen by the Relief algorithm. Then sequential floating forward selection (SFFS) coupled with a support vector machine (SVM) classifier were used to derive the optimized feature set in terms of the area under receiver operating characteristic (ROC) curve (AUC). The performance of the model was evaluated by leave-one-out-cross-validation, fivefold cross-validation, tenfold cross-validation. RESULTS Twenty features had significant differences between disease control and treatment failure. NPC patients with values of Compactness1, Compactness2, Coarseness_NGTDM or SGE_GLGLM above the median as well as patients with values of Irregularity, RLN_GLRLM or GLV_GLSZM below the median, showed a significant (p < 0.05) higher risk of treatment failure (about 50% vs. 25%). The derived radiomics signature consisted of 5 features with the highest AUC value of 0.8290 (sensitivity: 0.8438, specificity: 0.7736) using leave-one-out-cross-validation. CONCLUSION Locoregional recurrence (LR) and DM of locally advanced NPC can be predicted using radiomics analysis of pretreatment [18F]FDG PET/CT. The SFFS feature selection coupled with SVM classifier can derive the optimized feature set with correspondingly highest AUC value for pretreatment prediction of LR and/or DM of NPC.
Collapse
Affiliation(s)
- Lihong Peng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaotong Hong
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingyu Yuan
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wufan Chen
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
59
|
Hartmann L, Bundschuh L, Zsótér N, Essler M, Bundschuh RA. Tumor heterogeneity for differentiation between liver tumors and normal liver tissue in 18F-FDG PET/CT. Nuklearmedizin 2021; 60:25-32. [PMID: 33142334 DOI: 10.1055/a-1270-5568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIM Malignancies show higher spatial heterogeneity than normal tissue. We investigated, if textural parameters from FDG PET describing the heterogeneity function as tool to differentiate between tumor and normal liver tissue. METHODS FDG PET/CT scans of 80 patients with liver metastases and 80 patients with results negative upper abdominal organs were analyzed. Metastases and normal liver tissue were analyzed drawing up to three VOIs with a diameter of 25 mm in healthy liver tissue of the tumoral affected and results negative liver, whilst up to 3 metastases per patient were delineated. Within these VOIs 30 different textural parameters were calculated as well as SUV. The parameters were compared in terms of intra-patient and inter-patient variability (2-sided t test). ROC analysis was performed to analyze predictive power and cut-off values. RESULTS 28 textural parameters differentiated healthy and pathological tissue (p < 0.05) with high sensitivity and specificity. SUV showed ability to differentiate but with a lower significance. 15 textural parameters as well as SUV showed a significant variation between healthy tissues out of tumour infested and negative livers. Mean intra- and inter-patient variability of metastases were found comparable or lower for 6 of the textural features than the ones of SUV. They also showed good values of mean intra- and inter-patient variability of VOIs drawn in liver tissue of patients with metastases and of results negative ones. CONCLUSION Heterogeneity parameters assessed in FDG PET are promising to classify tissue and differentiate malignant lesions usable for more personalized treatment planning, therapy response evaluation and precise delineation of tumors for target volume determination as part of radiation therapy planning.
Collapse
Affiliation(s)
- Lynn Hartmann
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
| | - Lena Bundschuh
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
| | | | - Markus Essler
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Bonn, Germany
| | | |
Collapse
|
60
|
Shur J, Blackledge M, D'Arcy J, Collins DJ, Bali M, O'Leach M, Koh DM. MRI texture feature repeatability and image acquisition factor robustness, a phantom study and in silico study. Eur Radiol Exp 2021; 5:2. [PMID: 33462642 PMCID: PMC7813908 DOI: 10.1186/s41747-020-00199-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose To evaluate robustness and repeatability of magnetic resonance imaging (MRI) texture features in water and tissue phantom test-retest study. Materials and methods Separate water and tissue phantoms were imaged twice with the same protocol in a test-retest experiment using a 1.5-T scanner. Protocols were acquired to favour signal-to-noise ratio and resolution. Forty-six features including first order statistics and second-order texture features were extracted, and repeatability was assessed by calculating the concordance correlation coefficient. Separately, base image noise and resolution were manipulated in an in silico experiment, and robustness of features was calculated by assessing percentage coefficient of variation and linear correlation of features with noise and resolution. These simulation data were compared with the acquired data. Features were classified by their degree (high, intermediate, or low) of robustness and repeatability. Results Eighty percent of the MRI features were repeatable (concordance correlation coefficient > 0.9) in the phantom test-retest experiment. The majority (approximately 90%) demonstrated a strong or intermediate correlation with image acquisition parameter, and 19/46 (41%) and 13/46 (28%) of features were highly robust to noise and resolution, respectively (coefficient of variation < 5%). Agreement between the acquired and simulation data varied, with the range of agreement within feature classes between 11 and 92%. Conclusion Most MRI features were repeatable in a phantom test-retest study. This phantom data may serve as a lower limit of feature MRI repeatability. Robustness of features varies with acquisition parameter, and appropriate features can be selected for clinical validation studies. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-020-00199-6.
Collapse
Affiliation(s)
- Joshua Shur
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, London, Surrey, SM2 5PT, UK
| | - Matthew Blackledge
- CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - James D'Arcy
- CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - David J Collins
- CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Maria Bali
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, London, Surrey, SM2 5PT, UK
| | - Martin O'Leach
- CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, London, Surrey, SM2 5PT, UK. .,CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
61
|
A Phantom Study to Investigate Robustness and Reproducibility of Grey Level Co-Occurrence Matrix (GLCM)-Based Radiomics Features for PET. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Quantification and classification of heterogeneous radiotracer uptake in Positron Emission Tomography (PET) using textural features (termed as radiomics) and artificial intelligence (AI) has the potential to be used as a biomarker of diagnosis and prognosis. However, textural features have been predicted to be strongly correlated with volume, segmentation and quantization, while the impact of image contrast and noise has not been assessed systematically. Further continuous investigations are required to update the existing standardization initiatives. This study aimed to investigate the relationships between textural features and these factors with 18F filled torso NEMA phantom to yield different contrasts and reconstructed with different durations to represent varying levels of noise. The phantom was also scanned with heterogeneous spherical inserts fabricated with 3D printing technology. All spheres were delineated using: (1) the exact boundaries based on their known diameters; (2) 40% fixed; and (3) adaptive threshold. Six textural features were derived from the gray level co-occurrence matrix (GLCM) using different quantization levels. The results indicate that homogeneity and dissimilarity are the most suitable for measuring PET tumor heterogeneity with quantization 64 provided that the segmentation method is robust to noise and contrast variations. To use these textural features as prognostic biomarkers, changes in textural features between baseline and treatment scans should always be reported along with the changes in volumes.
Collapse
|
62
|
Litvin A, Burkin D, Kropinov A, Paramzin F. Radiomics and Digital Image Texture Analysis in Oncology (Review). Sovrem Tekhnologii Med 2021; 13:97-104. [PMID: 34513082 PMCID: PMC8353717 DOI: 10.17691/stm2021.13.2.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most promising areas of diagnosis and prognosis of diseases is radiomics, a science combining radiology, mathematical modeling, and deep machine learning. The main concept of radiomics is image biomarkers (IBMs), the parameters characterizing various pathological changes and calculated based on the analysis of digital image texture. IBMs are used for quantitative assessment of digital imaging results (CT, MRI, ultrasound, PET). The use of IBMs in the form of "virtual biopsy" is of particular relevance in oncology. The article provides the basic concepts of radiomics identifying the main stages of obtaining IBMs: data collection and preprocessing, tumor segmentation, data detection and extraction, modeling, statistical processing, and data validation. The authors have analyzed the possibilities of using IBMs in oncology, describing the currently known features and advantages of using radiomics and image texture analysis in the diagnosis and prognosis of cancer. The limitations and problems associated with the use of radiomics data are considered. Although the novel effective tool for performing virtual biopsy of human tissue is at the development stage, quite a few projects have already been implemented, and medical software packages for radiomics analysis of digital images have been created.
Collapse
Affiliation(s)
- A.A. Litvin
- Professor, Department of Surgical Disciplines, Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad, 236016, Russia; Deputy Head Physician for Medical Aspects, Regional Clinical Hospital of the Kaliningrad Region, 74 Klinicheskaya St., Kaliningrad, 236016, Russia
| | - D.A. Burkin
- PhD Student in Information Science and Computer Engineering, Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad, 236016, Russia
| | - A.A. Kropinov
- Therapeutist, Central City Clinical Hospital, 3 Letnyaya St., Kaliningrad, 236005, Russia
| | - F.N. Paramzin
- Oncologist, Central City Clinical Hospital, 3 Letnyaya St., Kaliningrad, 236005, Russia
| |
Collapse
|
63
|
Hu Y, Xie C, Yang H, Ho JWK, Wen J, Han L, Lam KO, Wong IYH, Law SYK, Chiu KWH, Vardhanabhuti V, Fu J. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Radiother Oncol 2021; 154:6-13. [PMID: 32941954 DOI: 10.1016/j.radonc.2020.09.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deep learning is promising to predict treatment response. We aimed to evaluate and validate the predictive performance of the CT-based model using deep learning features for predicting pathologic complete response to neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS Patients were retrospectively enrolled between April 2007 and December 2018 from two institutions. We extracted deep learning features of six pre-trained convolutional neural networks, respectively, from pretreatment CT images in the training cohort (n = 161). Support vector machine was adopted as the classifier. Validation was performed in an external testing cohort (n = 70). We assessed the performance using the area under the receiver operating characteristics curve (AUC) and selected an optimal model, which was compared with a radiomics model developed from the training cohort. A clinical model consisting of clinical factors only was also built for baseline comparison. We further conducted a radiogenomics analysis using gene expression profiles to reveal underlying biology associated with radiological prediction. RESULTS The optimal model with features extracted from ResNet50 achieved an AUC and accuracy of 0.805 (95% CI, 0.696-0.913) and 77.1% (65.6%-86.3%) in the testing cohort, compared with 0.725 (0.605-0.846)) and 67.1% (54.9%-77.9%) for the radiomics model. All the radiological models showed better predictive performance than the clinical model. Radiogenomics analysis suggested a potential association mainly with WNT signaling pathway and tumor microenvironment. CONCLUSIONS The novel and noninvasive deep learning approach could provide efficient and accurate prediction of treatment response to nCRT in ESCC, and benefit clinical decision making of therapeutic strategy.
Collapse
Affiliation(s)
- Yihuai Hu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Chenyi Xie
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hong Yang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Lujun Han
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ka-On Lam
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ian Y H Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Simon Y K Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Keith W H Chiu
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Varut Vardhanabhuti
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| | - Jianhua Fu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Guangdong Esophageal Cancer Institute, Guangzhou, China.
| |
Collapse
|
64
|
Ceriani L, Milan L, Virili C, Cascione L, Paone G, Trimboli P, Giovanella L. Radiomics Analysis of [ 18F]-Fluorodeoxyglucose-Avid Thyroid Incidentalomas Improves Risk Stratification and Selection for Clinical Assessment. Thyroid 2021; 31:88-95. [PMID: 32517585 DOI: 10.1089/thy.2020.0224] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: [18F]-Fluorodeoxyglucose (FDG)-avid thyroid lesions incidentally detected on positron emission tomography/computed tomography (PET/CT) scans represent a tumor lesion in about 30% of cases. The present study evaluated the ability of PET metrics and radiomics features to predict final diagnosis of [18F]FDG thyroid incidentalomas (TIs). Methods: A total of 104 patients with 107 TIs were retrospectively studied; 30 nodules (28%) were diagnosed as malignant. After volumetric segmentation of each thyroid lesion, metabolic tumor volume (MTV), total lesion glycolysis (TLG), standardized uptake values (SUVs), and metabolic heterogeneity were estimated, and 107 radiomics features were extracted following a standard protocol. Results: MTV, TLG, SUVmax, SUVmean, and SUVpeak among functional PET parameters, and gray-level co-occurrence matrix (GLCM)_InverseDifferenceMoment, shape_Sphericity, GLCM_SumSquares, firstorder_Maximum2DDiameterSlice, firstorder_Energy, and GLCM_Contrast among nonredundant radiomics features, showed significantly different values between malignant and benign TIs (Mann-Whitney U-test, p < 0.01 for all). Univariate logistic regression revealed that these parameters demonstrated good ability to predict final diagnosis of TIs (p < 0.02 for all). Shape_Sphericity was the best predictor classifying 82% of TIs correctly (p < 0.0001). Only TLG, SUVmax, and shape_Sphericity retained significance (p < 0.0001) by multivariate analysis. Malignant lesion prevalence increased from 7% to 100% in accordance with the number (score, 0-3) of the three positive parameters present (χ2 trend, p < 0.0001). A score of 0 excludes malignant TIs with a negative predictive value of 93%, while a score of 3 predicted malignancy with a positive predictive value of 100%. Conclusions: PET metrics and radiomics analysis can improve identification of [18F]FDG-avid TIs at high risk of malignancy. A model based on TLG, SUVmax, and shape_Sphericity may allow prediction of a final diagnosis, providing useful information for the management of TIs.
Collapse
Affiliation(s)
- Luca Ceriani
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Lugano, Switzerland
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Lisa Milan
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Lugano, Switzerland
| | - Camilla Virili
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, Lausanne, Switzerland
| | - Gaetano Paone
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Lugano, Switzerland
| | - Pierpaolo Trimboli
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Lugano, Switzerland
- Competence Centre for Thyroid Diseases, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Lugano, Switzerland
- Competence Centre for Thyroid Diseases, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Clinic for Nuclear Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
65
|
Abstract
Carrying out large multicenter studies is one of the key goals to be achieved towards a faster transfer of the radiomics approach in the clinical setting. This requires large-scale radiomics data analysis, hence the need for integrating radiomic features extracted from images acquired in different centers. This is challenging as radiomic features exhibit variable sensitivity to differences in scanner model, acquisition protocols and reconstruction settings, which is similar to the so-called 'batch-effects' in genomics studies. In this review we discuss existing methods to perform data integration with the aid of reducing the unwanted variation associated with batch effects. We also discuss the future potential role of deep learning methods in providing solutions for addressing radiomic multicentre studies.
Collapse
Affiliation(s)
- R Da-Ano
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - D Visvikis
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| | - M Hatt
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| |
Collapse
|
66
|
Is FDG-PET texture analysis related to intratumor biological heterogeneity in lung cancer? Eur Radiol 2020; 31:4156-4165. [PMID: 33247345 DOI: 10.1007/s00330-020-07507-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/04/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We aimed at investigating the origin of the correlations between tumor volume and 18F-FDG-PET texture indices in lung cancer. METHODS Eighty-five consecutive patients with newly diagnosed non-small cell lung cancer (NSCLC) underwent a 18F-FDG-PET/CT scan before treatment. Seven phantom spheres uniformly filled with 18F-FDG, and covering a range of activities and volumes similar to that found in lung tumors, were also scanned. Established texture indices were computed for lung tumors and homogeneous spheres. The dependence between textural indices and volume in homogeneous spheres was modeled and then used to predict texture indices in lung tumors. Correlation analyses were carried out between predicted and texture features measured in lung tumors. Cox proportional hazards regression was used to investigate the associations between overall survival and volume-adjusted textural features. RESULTS All textural features showed strong, non-linear correlations with volume, both in tumors and homogeneous spheres. Correlations between predicted versus measured texture features were very high for contrast (r2 = 0.91), dissimilarity (r2 = 0.90), ZP (r2 = 0.90), GLNN (r2 = 0.86), and homogeneity (r2 = 0.82); high for entropy (r2 = 0.50) and HILAE (r2 = 0.53); and low for energy (r2 = 0.30). Cox regressions showed that among volume-adjusted features, only HILAE was associated with overall survival (b = - 0.35, p = 0.008). CONCLUSION We have shown that texture indices previously found to be correlated with a number of clinically relevant outcomes might not provide independent information apart from that driven by their correlation with tumor volume, suggesting that these metrics might not be suitable as intratumor heterogeneity markers. KEY POINTS • Associations between texture FDG-PET indices and overall survival have been widely reported in lung cancer, with tumor volume also being associated with overall survival, and therefore, it is still unclear whether the predictive power of textural indices is simply driven by this correlation. • Our results demonstrated strong non-linear correlations between textural indices and volume, showing an analogous behavior for lung tumors from patients and homogeneous spheres inserted in phantoms. • Our findings showed that texture FDG-PET indices might not provide independent information apart from that driven by their correlation with tumor volume.
Collapse
|
67
|
Lee SH, Park H, Ko ES. Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review. Korean J Radiol 2020; 21:779-792. [PMID: 32524780 PMCID: PMC7289696 DOI: 10.3348/kjr.2019.0855] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Recent advances in computer technology have generated a new area of research known as radiomics. Radiomics is defined as the high throughput extraction and analysis of quantitative features from imaging data. Radiomic features provide information on the gray-scale patterns, inter-pixel relationships, as well as shape and spectral properties of radiological images. Moreover, these features can be used to develop computational models that may serve as a tool for personalized diagnosis and treatment guidance. Although radiomics is becoming popular and widely used in oncology, many problems such as overfitting and reproducibility issues remain unresolved. In this review, we will outline the steps of radiomics used for oncology, specifically addressing applications for breast cancer patients and focusing on technical issues.
Collapse
Affiliation(s)
- Seung Hak Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea.,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Eun Sook Ko
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
68
|
Hatt M, Cheze Le Rest C, Antonorsi N, Tixier F, Tankyevych O, Jaouen V, Lucia F, Bourbonne V, Schick U, Badic B, Visvikis D. Radiomics in PET/CT: Current Status and Future AI-Based Evolutions. Semin Nucl Med 2020; 51:126-133. [PMID: 33509369 DOI: 10.1053/j.semnuclmed.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This short review aims at providing the readers with an update on the current status, as well as future perspectives in the quickly evolving field of radiomics applied to the field of PET/CT imaging. Numerous pitfalls have been identified in study design, data acquisition, segmentation, features calculation and modeling by the radiomics community, and these are often the same issues across all image modalities and clinical applications, however some of these are specific to PET/CT (and SPECT/CT) imaging and therefore the present paper focuses on those. In most cases, recommendations and potential methodological solutions do exist and should therefore be followed to improve the overall quality and reproducibility of published studies. In terms of future evolutions, the techniques from the larger field of artificial intelligence (AI), including those relying on deep neural networks (also known as deep learning) have already shown impressive potential to provide solutions, especially in terms of automation, but also to maybe fully replace the tools the radiomics community has been using until now in order to build the usual radiomics workflow. Some important challenges remain to be addressed before the full impact of AI may be realized but overall the field has made striking advances over the last few years and it is expected advances will continue at a rapid pace.
Collapse
Affiliation(s)
- Mathieu Hatt
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | - Catherine Cheze Le Rest
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; Nuclear Medicine Department, CHU Milétrie, Poitiers, France
| | - Nils Antonorsi
- Nuclear Medicine Department, CHU Milétrie, Poitiers, France
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States of America
| | | | - Vincent Jaouen
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; IMT-Atlantique, Plouzané, France
| | - Francois Lucia
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | | | - Ulrike Schick
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | - Bogdan Badic
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | | |
Collapse
|
69
|
Abstract
Radiomics describes the extraction of multiple features from medical images, including molecular imaging modalities, that with bioinformatic approaches, provide additional clinically relevant information that may be invisible to the human eye. This information may complement standard radiological interpretation with data that may better characterize a disease or that may provide predictive or prognostic information. Progressing from predefined image features, often describing heterogeneity of voxel intensities within a volume of interest, there is increasing use of machine learning to classify disease characteristics and deep learning methods based on artificial neural networks that can learn features without a priori definition and without the need for preprocessing of images. There have been advances in standardization and harmonization of methods to a level that should support multicenter studies. However, in this relatively early phase of research in the field, there are limited aspects that have been adopted into routine practice. Most of the reports in the molecular imaging field describe radiomic approaches in cancer using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). In this review, we will describe radiomics in molecular imaging and summarize the pertinent literature in lung cancer where reports are most prevalent and mature.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK.
| | - Vicky Goh
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Radiology Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
70
|
Yamashita S, Okuda K, Nakaichi T, Yamamoto H, Yokoyama K. Texture Feature Comparison Between Step-and-Shoot and Continuous-Bed-Motion 18F-FDG PET. J Nucl Med Technol 2020; 49:58-64. [PMID: 33020230 DOI: 10.2967/jnmt.120.246157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Our objective was to investigate the differences in texture features between step-and-shoot (SS) and continuous-bed-motion (CBM) imaging in phantom and clinical studies. Methods: A National Electrical Manufacturers Association body phantom was filled with 18F-FDG solution at a sphere-to-background ratio of 4:1. SS and CBM were performed using the same acquisition duration, and the data were reconstructed using 3-dimensional ordered-subset expectation maximization with time-of-flight algorithms. Texture features were extracted using the software LIFEx. A volume of interest was delineated on the 22-, 28-, and 37-mm spheres with a threshold of 42% of the maximum SUV. The voxel intensities were discretized using 2 resampling methods, namely a fixed bin size and a fixed bin number discretization. The discrete resampling values were set to 64 and 128. In total, 31 texture features were calculated with gray-level cooccurrence matrix (GLCM), gray-level run length matrix, neighborhood gray-level different matrix, and gray-level zone length matrix. The texture features of the SS and CBM images were compared for all settings using the paired t test and the coefficient of variation. In a clinical study, 27 lesions from 20 patients were examined using the same acquisition and image processing as were used during the phantom study. The percentage difference (%Diff) and correlation between the texture features from SS and CBM images were calculated to evaluate agreement between the 2 scanning techniques. Results: In the phantom study, the 11 features exhibited no significant difference between SS and CBM images, and the coefficient of variation was no more than 10%, depending on resampling conditions, whereas entropy and dissimilarity from GLCM fulfilled the criteria for all settings. In the clinical study, the entropy and dissimilarity from GLCM exhibited a low %Diff and excellent correlation in all resampling conditions. The %Diff of entropy was lower than that of dissimilarity. Conclusion: Differences between the texture features of SS and CBM images varied depending on the type of feature. Because entropy for GLCM exhibits minimal differences between SS and CBM images irrespective of resampling conditions, entropy may be the optimal feature to reduce the differences between the 2 scanning techniques.
Collapse
Affiliation(s)
- Shozo Yamashita
- Division of Radiology, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| | - Koichi Okuda
- Department of Physics, Kanazawa Medical University, Kahoku, Japan; and
| | - Tetsu Nakaichi
- Division of Radiology, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| | - Haruki Yamamoto
- Division of Radiology, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| | - Kunihiko Yokoyama
- PET Imaging Center, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| |
Collapse
|
71
|
Mori M, Passoni P, Incerti E, Bettinardi V, Broggi S, Reni M, Whybra P, Spezi E, Vanoli EG, Gianolli L, Picchio M, Di Muzio NG, Fiorino C. Training and validation of a robust PET radiomic-based index to predict distant-relapse-free-survival after radio-chemotherapy for locally advanced pancreatic cancer. Radiother Oncol 2020; 153:258-264. [PMID: 32681930 DOI: 10.1016/j.radonc.2020.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess the value of 18F-Fluorodeoxyglucose (18F-FDG) PET Radiomic Features (RF) in predicting Distant Relapse Free Survival (DRFS) in patients with Locally AdvancedPancreaticCancer (LAPC) treated with radio-chemotherapy. MATERIALS & METHODS One-hundred-ninety-eight RFs were extracted using IBSI (Image Biomarker Standardization Initiative) consistent software from pre-radiotherapy images of 176 LAPC patients treated with moderate hypo-fractionation (44.25 Gy, 2.95 Gy/fr). Tumors were segmented by applying a previously validated semi-automatic method. One-hundred-twenty-six RFs were excluded due to poor reproducibility and/or repeatability and/or inter-scanner variability. The original cohort was randomly split into a training (n = 116) and a validation (n = 60) group. Multi-variable Cox regression was applied to the training group, including only independent RFs in the model. The resulting radiomic index was tested in the validation cohort. The impact of selected clinical variables was also investigated. RESULTS The resulting Cox model included two first order RFs: Center of Mass Shift (COMshift) and 10th Intensity percentile (P10) (p = 0.0005, HR = 2.72, 95%CI = 1.54-4.80), showing worse outcomes for patients with lower COMshift and higher P10. Once stratified by quartile values (<lowest quartile vs >highest quartile vs the remaining), the index properly stratified patients according to their DRFS (p = 0.0024, log-rank test). Performances were confirmed in the validation cohort (p = 0.03, HR = 2.53, 95%CI = 0.96-6.65). The addition of clinical factors did not significantly improve the models' performance. CONCLUSIONS A radiomic-based index including only two robust PET-RFs predicted DRFS of LAPC patients after radio-chemotherapy. The current results could find relevant applications in the treatment personalization of LAPC. A multi-institution independent validation has been planned.
Collapse
Affiliation(s)
- Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Paolo Passoni
- Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | - Elena Incerti
- Nuclear Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | - Sara Broggi
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy
| | - Michele Reni
- Oncology, San Raffaele Scientific Institute, Milano, Italy
| | - Phil Whybra
- School of Engineering, Cardiff University, Cardiff, UK
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, UK; Department of Medical Physics, Velindre Cancer Centre, Cardiff, UK
| | - Elena G Vanoli
- Nuclear Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Luigi Gianolli
- Nuclear Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Nadia G Di Muzio
- Vita-Salute San Raffaele University, Milan, Italy; Radiotherapy, San Raffaele Scientific Institute, Milano, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
72
|
Ibrahim A, Primakov S, Beuque M, Woodruff HC, Halilaj I, Wu G, Refaee T, Granzier R, Widaatalla Y, Hustinx R, Mottaghy FM, Lambin P. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2020; 188:20-29. [PMID: 32504782 DOI: 10.1016/j.ymeth.2020.05.022] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The advancement of artificial intelligence concurrent with the development of medical imaging techniques provided a unique opportunity to turn medical imaging from mostly qualitative, to further quantitative and mineable data that can be explored for the development of clinical decision support systems (cDSS). Radiomics, a method for the high throughput extraction of hand-crafted features from medical images, and deep learning -the data driven modeling techniques based on the principles of simplified brain neuron interactions, are the most researched quantitative imaging techniques. Many studies reported on the potential of such techniques in the context of cDSS. Such techniques could be highly appealing due to the reuse of existing data, automation of clinical workflows, minimal invasiveness, three-dimensional volumetric characterization, and the promise of high accuracy and reproducibility of results and cost-effectiveness. Nevertheless, there are several challenges that quantitative imaging techniques face, and need to be addressed before the translation to clinical use. These challenges include, but are not limited to, the explainability of the models, the reproducibility of the quantitative imaging features, and their sensitivity to variations in image acquisition and reconstruction parameters. In this narrative review, we report on the status of quantitative medical image analysis using radiomics and deep learning, the challenges the field is facing, propose a framework for robust radiomics analysis, and discuss future prospects.
Collapse
Affiliation(s)
- A Ibrahim
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium; Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany.
| | - S Primakov
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands; Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - M Beuque
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - H C Woodruff
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - I Halilaj
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - G Wu
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - T Refaee
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands; Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - R Granzier
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Surgery, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Y Widaatalla
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - R Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Hospital Center Universitaire De Liege, Liege, Belgium
| | - F M Mottaghy
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - P Lambin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
73
|
Prenosil GA, Weitzel T, Fürstner M, Hentschel M, Krause T, Cumming P, Rominger A, Klaeser B. Towards guidelines to harmonize textural features in PET: Haralick textural features vary with image noise, but exposure-invariant domains enable comparable PET radiomics. PLoS One 2020; 15:e0229560. [PMID: 32176698 PMCID: PMC7075630 DOI: 10.1371/journal.pone.0229560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Image texture is increasingly used to discriminate tissues and lesions in PET/CT. For quantification or in computer-aided diagnosis, textural feature analysis must produce robust and comparable values. Because statistical feature values depend on image count statistics, we investigated in depth the stability of Haralick features values as functions of acquisition duration, and for common image resolutions and reconstructions. Methods A homogeneous cylindrical phantom containing 9.6 kBq/ml Ge-68 was repeatedly imaged on a Siemens Biograph mCT, with acquisition durations ranging from three seconds to three hours. Images with 1.5, 2, and 4 mm isometrically spaced voxels were reconstructed with filtered back-projection (FBP), ordered subset expectation maximization (OSEM), and the Siemens TrueX algorithm. We analysed Haralick features derived from differently quantized (3 to 8-bit) grey level co-occurrence matrices (GLCMs) as functions of exposure E, which we defined as the product of activity concentration in a volume of interest (VOI) and acquisition duration. The VOI was a 50 mm wide cube at the centre of the phantom. Feature stability was defined for df/dE → 0. Results The most stable feature values occurred in low resolution FBPs, whereas some feature values from 1.5 mm TrueX reconstructions ranged over two orders of magnitude. Within the same reconstructions, most feature value-exposure curves reached stable plateaus at similar exposures, regardless of GLCM quantization. With 8-bit GLCM, median time to stability was 16 s and 22 s for FBPs, 18 s and 125 s for OSEM, and 23 s, 45 s, and 76 s for PSF reconstructions, with longer durations for higher resolutions. Stable exposures coincided in OSEM and TrueX reconstructions with image noise distributions converging to a Gaussian. In FBP, the occurrence of stable values coincided the disappearance of negatives image values in the VOI. Conclusions Haralick feature values depend strongly on exposure, but invariance exists within defined domains of exposure. Here, we present an easily replicable procedure to identify said stable exposure domains, where image noise does not substantially add to textural feature values. Only by imaging at predetermined feature-invariant exposure levels and by adjusting exposure to expected activity concentrations, can textural features have a quantitative use in PET/CT. The necessary exposure levels are attainable by modern PET/CT systems in clinical routine.
Collapse
Affiliation(s)
- George Amadeus Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| | - Thilo Weitzel
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus Fürstner
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Hentschel
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Krause
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bernd Klaeser
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Radiology and Nuclear Medicine, Cantonal Hospital Winterthur, Winterthur, Switzerland
| |
Collapse
|
74
|
Reliability of CT radiomic features reflecting tumour heterogeneity according to image quality and image processing parameters. Sci Rep 2020; 10:3852. [PMID: 32123281 PMCID: PMC7052198 DOI: 10.1038/s41598-020-60868-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The reliability of radiomics features (RFs) is crucial for quantifying tumour heterogeneity. We assessed the influence of imaging, segmentation, and processing conditions (quantization range, bin number, signal-to-noise ratio [SNR], and unintended outliers) on RF measurement. Low SNR and unintended outliers increased the standard deviation and mean values of histograms to calculate the first-order RFs. Variations in imaging processing conditions significantly altered the shape of the probability distribution (centre of distribution, extent of dispersion, and segmentation of probability clusters) in second-order RF matrices (i.e. grey-level co-occurrence and grey-level run length), thereby eventually causing fluctuations in RF estimation. Inconsistent imaging and processing conditions decreased the number of reliably measured RFs in terms of individual RF values (intraclass correlation coefficient ≥0.75) and inter-lesion RF ratios (coefficient of variation <15%). No RF could be reliably estimated under inconsistent SNR and inclusion of outlier conditions. By contrast, with high SNR and no outliers, all first-order RFs, 11 (42%) grey-level co-occurrence RFs and five (42%) grey-level run length RFs showed acceptable reliability. Our study suggests that optimization of SNR, exclusion of outliers, and application of relevant quantization range and bin number should be performed to ensure the robustness of radiomics studies assessing tumor heterogeneity.
Collapse
|
75
|
Krarup MMK, Nygård L, Vogelius IR, Andersen FL, Cook G, Goh V, Fischer BM. Heterogeneity in tumours: Validating the use of radiomic features on 18F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother Oncol 2020; 144:72-78. [PMID: 31733491 DOI: 10.1016/j.radonc.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
AIM The aim was to validate promising radiomic features (RFs)1 on 18F-flourodeoxyglucose positron emission tomography/computed tomography-scans (18F-FDG PET/CT) of non-small cell lung cancer (NSCLC) patients undergoing definitive chemo-radiotherapy. METHODS 18F-FDG PET/CT scans performed for radiotherapy (RT) planning were retrieved. Auto-segmentation with visual adaption was used to define the primary tumour on PET images. Six pre-selected prognostic and reproducible PET texture -and shape-features were calculated using texture respectively shape analysis. The correlation between these RFs and metabolic active tumour volume (MTV)3, gross tumour volume (GTV)4 and maximum and mean of standardized uptake value (SUV)5 was tested with a Spearman's Rank test. The prognostic value of RFs was tested in a univariate cox regression analysis and a multivariate cox regression analysis with GTV, clinical stage and histology. P-value ≤ 0.05 were considered significant. RESULTS Image analysis was performed for 233 patients: 145 males and 88 females, mean age of 65.7 and clinical stage II-IV. Mean GTV was 129.87 cm3 (SD 130.30 cm3). Texture and shape-features correlated more strongly to MTV and GTV compared to SUV-measurements. Four RFs predicted PFS in the univariate analysis. No RFs predicted PFS in the multivariate analysis, whereas GTV and clinical stage predicted PFS (p = 0.001 and p = 0.008 respectively). CONCLUSION The pre-selected RFs were insignificant in predicting PFS in combination with GTV, clinical stage and histology. These results might be due to variations in technical parameters. However, it is relevant to question whether RFs are stable enough to provide clinically useful information.
Collapse
Affiliation(s)
- Marie Manon Krebs Krarup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Lotte Nygård
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Ivan Richter Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, Copenhagen University, Denmark.
| | - Flemming Littrup Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Gary Cook
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| | - Vicky Goh
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark; PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| |
Collapse
|
76
|
Yu H, Huang Z, Li M, Wei Y, Zhang L, Yang C, Zhang Y, Song B. Differential Diagnosis of Nonhypervascular Pancreatic Neuroendocrine Neoplasms From Pancreatic Ductal Adenocarcinomas, Based on Computed Tomography Radiological Features and Texture Analysis. Acad Radiol 2020; 27:332-341. [PMID: 31495760 DOI: 10.1016/j.acra.2019.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 02/07/2023]
Abstract
RATIONALE AND OBJECTIVES To determine computed tomography (CT) radiological features and texture features that are rewarding in differentiating nonhypervascular pancreatic neuroendocrine neoplasms (PNENs) from pancreatic ductal adenocarcinomas (PDACs). MATERIALS AND METHODS We compared patients to pathologically proven nonhypervascular PNENs and age-matched controls with pathologically proven PDACs in a 1:2 ratio. Preoperative CT images in the arterial phase (AP) and portal vein phase (PVP) were obtained. Two radiologists independently reviewed the morphological characteristics of each tumor. Three-dimensional regions of interest (ROIs), drawn using ITK-SNAP software, were input into AK software (Artificial Intelligent Kit, GE) to extract texture features from AP and PVP images. Differences between PNENs and PDACs were analyzed with the chi-squared test, least absolute shrinkage and selection operator, kappa statistics, and uni- and multivariate logistic regression analyses. RESULTS In total, 40 nonhypervascular PNENs and 80 PDACs were evaluated. Maximum diameter on axial section, margin, calcification, vascularity in the tumor, and tumor heterogeneity were significantly different between PDACs and nonhypervascular PNENs. Multivariate analysis showed well-defined tumor margin (odds ratio: 21.0) and presence of calcification (odds ratio: 4.4) were significant predictors of nonhypervascular PNENs. The area under the receiver operating characteristic curve of the radiological feature model, AP texture model, and PVP texture model were 0.780, 0.855, and 0.929, respectively, based on logistic regression. CONCLUSION A well-defined margin and calcification in the tumor were helpful in discriminating nonhypervascular PNENs from PDACs. Texture analysis of contrast-enhanced CT images could be beneficial in differentially diagnosing nonhypervascular PNENs and PDACs.
Collapse
Affiliation(s)
- Haopeng Yu
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Zixing Huang
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Mou Li
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Yi Wei
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Lin Zhang
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Chengmin Yang
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Yongchang Zhang
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Guoxue Lane 37#, Chengdu 610041, PR China.
| |
Collapse
|
77
|
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to Radiomics. J Nucl Med 2020; 61:488-495. [PMID: 32060219 DOI: 10.2967/jnumed.118.222893] [Citation(s) in RCA: 927] [Impact Index Per Article: 185.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Radiomics is a rapidly evolving field of research concerned with the extraction of quantitative metrics-the so-called radiomic features-within medical images. Radiomic features capture tissue and lesion characteristics such as heterogeneity and shape and may, alone or in combination with demographic, histologic, genomic, or proteomic data, be used for clinical problem solving. The goal of this continuing education article is to provide an introduction to the field, covering the basic radiomics workflow: feature calculation and selection, dimensionality reduction, and data processing. Potential clinical applications in nuclear medicine that include PET radiomics-based prediction of treatment response and survival will be discussed. Current limitations of radiomics, such as sensitivity to acquisition parameter variations, and common pitfalls will also be covered.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andrzej Materka
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ida Häggström
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Piotr Szczypiński
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Peter Gibbs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; and.,King's College London and Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
78
|
Ulrich EJ, Menda Y, Boles Ponto LL, Anderson CM, Smith BJ, Sunderland JJ, Graham MM, Buatti JM, Beichel RR. FLT PET Radiomics for Response Prediction to Chemoradiation Therapy in Head and Neck Squamous Cell Cancer. ACTA ACUST UNITED AC 2020; 5:161-169. [PMID: 30854454 PMCID: PMC6403029 DOI: 10.18383/j.tom.2018.00038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiomics is an image analysis approach for extracting large amounts of quantitative information from medical images using a variety of computational methods. Our goal was to evaluate the utility of radiomic feature analysis from 18F-fluorothymidine positron emission tomography (FLT PET) obtained at baseline in prediction of treatment response in patients with head and neck cancer. Thirty patients with advanced-stage oropharyngeal or laryngeal cancer, treated with definitive chemoradiation therapy, underwent FLT PET imaging before treatment. In total, 377 radiomic features of FLT uptake and feature variants were extracted from volumes of interest; these features variants were defined by either the primary tumor or the total lesion burden, which consisted of the primary tumor and all FLT-avid nodes. Feature variants included normalized measurements of uptake, which were calculated by dividing lesion uptake values by the mean uptake value in the bone marrow. Feature reduction was performed using clustering to remove redundancy, leaving 172 representative features. Effects of these features on progression-free survival were modeled with Cox regression and P-values corrected for multiple comparisons. In total, 9 features were considered significant. Our results suggest that smaller, more homogenous lesions at baseline were associated with better prognosis. In addition, features extracted from total lesion burden had a higher concordance index than primary tumor features for 8 of the 9 significant features. Furthermore, total lesion burden features showed lower interobserver variability.
Collapse
Affiliation(s)
- Ethan J Ulrich
- Departments of Electrical and Computer Engineering.,Biomedical Engineering
| | | | | | | | | | | | | | | | - Reinhard R Beichel
- Departments of Electrical and Computer Engineering.,Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
79
|
Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients. Radiother Oncol 2020; 143:88-94. [DOI: 10.1016/j.radonc.2019.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/30/2023]
|
80
|
Refaee T, Wu G, Ibrahim A, Halilaj I, Leijenaar RTH, Rogers W, Gietema HA, Hendriks LEL, Lambin P, Woodruff HC. The Emerging Role of Radiomics in COPD and Lung Cancer. Respiration 2020; 99:99-107. [PMID: 31991420 DOI: 10.1159/000505429] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Medical imaging plays a key role in evaluating and monitoring lung diseases such as chronic obstructive pulmonary disease (COPD) and lung cancer. The application of artificial intelligence in medical imaging has transformed medical images into mineable data, by extracting and correlating quantitative imaging features with patients' outcomes and tumor phenotype - a process termed radiomics. While this process has already been widely researched in lung oncology, the evaluation of COPD in this fashion remains in its infancy. Here we outline the main applications of radiomics in lung cancer and briefly review the workflow from image acquisition to the evaluation of model performance. Finally, we discuss the current assessments of COPD and the potential application of radiomics in COPD.
Collapse
Affiliation(s)
- Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands, .,Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia,
| | - Guangyao Wu
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Abdallah Ibrahim
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Centre Hospitalier Universitaire de Liège, Liège, Belgium.,Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Iva Halilaj
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Ralph T H Leijenaar
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - William Rogers
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Thoracic Oncology, IRCCS Foundation National Cancer Institute, Milan, Italy
| | - Hester A Gietema
- Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
81
|
Cheze Le Rest C, Hustinx R. Are radiomics ready for clinical prime-time in PET/CT imaging? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:347-354. [DOI: 10.23736/s1824-4785.19.03210-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
82
|
Bologna M, Corino VDA, Montin E, Messina A, Calareso G, Greco FG, Sdao S, Mainardi LT. Assessment of Stability and Discrimination Capacity of Radiomic Features on Apparent Diffusion Coefficient Images. J Digit Imaging 2019; 31:879-894. [PMID: 29725965 PMCID: PMC6261192 DOI: 10.1007/s10278-018-0092-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The objectives of the study are to develop a new way to assess stability and discrimination capacity of radiomic features without the need of test-retest or multiple delineations and to use information obtained to perform a preliminary feature selection. Apparent diffusion coefficient (ADC) maps were computed from diffusion-weighted magnetic resonance images (DW-MRI) of two groups of patients: 18 with soft tissue sarcomas (STS) and 18 with oropharyngeal cancers (OPC). Sixty-nine radiomic features were computed, using three different histogram discretizations (16, 32, and 64 bins). Geometrical transformations (translations) of increasing entity were applied to the regions of interest (ROIs), and the intra-class correlation coefficient (ICC) was used to compare the features computed on the original and modified ROIs. The distribution of ICC values for minimal and maximal entity translations (ICC10 and ICC100, respectively) was used to adjust thresholds of ICC (ICCmin and ICCmax) used to discriminate between good, unstable (ICC10 < ICCmin), and non-discriminative features (ICC100 > ICCmax). Fifty-four and 59 radiomic features passed the stability-based selection for all the three histogram discretizations for the OPC and STS datasets, respectively. The excluded features were similar across the different histogram discretizations (Jaccard’s index 0.77 ± 0.13 and 0.9 ± 0.1 for OPC and STS, respectively) but different between datasets (Jaccard’s index 0.19 ± 0.02). The results suggest that the observed radiomic features are mainly stable and discriminative, but the stability depends on the region of the body under observation. The method provides a way to assess stability without the need of test-retest or multiple delineations.
Collapse
Affiliation(s)
- Marco Bologna
- Departement of Electronics, Information and Bioengineering, Milan, Italy.
| | | | - Eros Montin
- Departement of Electronics, Information and Bioengineering, Milan, Italy
| | | | | | | | - Silvana Sdao
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca T Mainardi
- Departement of Electronics, Information and Bioengineering, Milan, Italy
| |
Collapse
|
83
|
Xu L, Yang P, Yen EA, Wan Y, Jiang Y, Cao Z, Shen X, Wu Y, Wang J, Luo C, Niu T. A multi-organ cancer study of the classification performance using 2D and 3D image features in radiomics analysis. ACTA ACUST UNITED AC 2019; 64:215009. [DOI: 10.1088/1361-6560/ab489f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
84
|
Hatt M, Le Rest CC, Tixier F, Badic B, Schick U, Visvikis D. Radiomics: Data Are Also Images. J Nucl Med 2019; 60:38S-44S. [DOI: 10.2967/jnumed.118.220582] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
|
85
|
Karacavus S, Yılmaz B, Tasdemir A, Kayaaltı Ö, Kaya E, İçer S, Ayyıldız O. Can Laws Be a Potential PET Image Texture Analysis Approach for Evaluation of Tumor Heterogeneity and Histopathological Characteristics in NSCLC? J Digit Imaging 2019; 31:210-223. [PMID: 28685320 DOI: 10.1007/s10278-017-9992-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We investigated the association between the textural features obtained from 18F-FDG images, metabolic parameters (SUVmax, SUVmean, MTV, TLG), and tumor histopathological characteristics (stage and Ki-67 proliferation index) in non-small cell lung cancer (NSCLC). The FDG-PET images of 67 patients with NSCLC were evaluated. MATLAB technical computing language was employed in the extraction of 137 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), and Laws' texture filters. Textural features and metabolic parameters were statistically analyzed in terms of good discrimination power between tumor stages, and selected features/parameters were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). We showed that one textural feature (gray-level nonuniformity, GLN) obtained using GLRLM approach and nine textural features using Laws' approach were successful in discriminating all tumor stages, unlike metabolic parameters. There were significant correlations between Ki-67 index and some of the textural features computed using Laws' method (r = 0.6, p = 0.013). In terms of automatic classification of tumor stage, the accuracy was approximately 84% with k-NN classifier (k = 3) and SVM, using selected five features. Texture analysis of FDG-PET images has a potential to be an objective tool to assess tumor histopathological characteristics. The textural features obtained using Laws' approach could be useful in the discrimination of tumor stage.
Collapse
Affiliation(s)
- Seyhan Karacavus
- Department of Nuclear Medicine, Saglık Bilimleri University, Kayseri Training and Research Hospital, 38010, Kayseri, Turkey. .,Department of Biomedical Engineering, Erciyes University, Engineering Faculty, Kayseri, Turkey.
| | - Bülent Yılmaz
- Department of Electrical and Electronics Engineering, Abdullah Gül University, Engineering Faculty, Kayseri, Turkey
| | - Arzu Tasdemir
- Department of Pathology, Saglik Bilimleri University, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Ömer Kayaaltı
- Department of Computer Technologies, Erciyes University, Develi Hüseyin Şahin Vocational College, Kayseri, Turkey
| | - Eser Kaya
- Department of Nuclear Medicine, Acibadem University, School of Medicine, İstanbul, Turkey
| | - Semra İçer
- Department of Biomedical Engineering, Erciyes University, Engineering Faculty, Kayseri, Turkey
| | - Oguzhan Ayyıldız
- Department of Electrical and Electronics Engineering, Abdullah Gül University, Engineering Faculty, Kayseri, Turkey
| |
Collapse
|
86
|
Biological correlates of tumor perfusion and its heterogeneity in newly diagnosed breast cancer using dynamic first-pass 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2019; 47:1103-1115. [DOI: 10.1007/s00259-019-04422-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022]
|
87
|
Prognostic Value of Functional Parameters of 18F-FDG-PET Images in Patients with Primary Renal/Adrenal Lymphoma. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:2641627. [PMID: 31427906 PMCID: PMC6683818 DOI: 10.1155/2019/2641627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/05/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
Objectives The aim of this study is to explore the textural features that may identify the morphological changes in the lymphoma region and predict the prognosis of patients with primary renal lymphoma (PRL) and primary adrenal lymphoma (PAL). Methods This retrospective study comprised nineteen non-Hodgkin's lymphoma (NHL) patients undergoing 18F-FDG-PET/CT at West China Hospital from December 2013 to May 2017. 18F-FDG-PET images were reviewed independently by two board certificated radiologists of nuclear medicine, and the texture features were extracted from LifeX packages. The prognostic value of PET FDG-uptake parameters, patients' baseline characteristics, and textural parameters were analyzed using Kaplan–Meier analysis. Cox regression analysis was used to identify the independent prognostic factors among the imaging and clinical features. Results The overall survival of included patients was 18.84 ± 13.40 (mean ± SD) months. Univariate Cox analyses found that the tumor stage, GLCM (gray-level co-occurrence matrix) entropy, GLZLM_GLNU (gray-level nonuniformity), and GLZLM_ZLNU (zone length nonuniformity), values were significant predictors for OS. Among them, GLRLM_RLNU ≥216.6 demonstrated association with worse OS at multivariate analysis (HR 9.016, 95% CI 1.041–78.112, p=0.046). Conclusions The texture analysis of 18F-FDG-PET images could potentially serve as a noninvasive strategy to predict the overall survival of patients with PRL and PAL.
Collapse
|
88
|
AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics. Eur J Nucl Med Mol Imaging 2019; 46:2673-2699. [PMID: 31292700 DOI: 10.1007/s00259-019-04414-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The quantitative imaging features (radiomics) that can be obtained from the different modalities of current-generation hybrid imaging can give complementary information with regard to the tumour environment, as they measure different morphologic and functional imaging properties. These multi-parametric image descriptors can be combined with artificial intelligence applications into predictive models. It is now the time for hybrid PET/CT and PET/MRI to take the advantage offered by radiomics to assess the added clinical benefit of using multi-parametric models for the personalized diagnosis and prognosis of different disease phenotypes. OBJECTIVE The aim of the paper is to provide an overview of current challenges and available solutions to translate radiomics into hybrid PET-CT and PET-MRI imaging for a smart and truly multi-parametric decision model.
Collapse
|
89
|
Radiogenomics-based cancer prognosis in colorectal cancer. Sci Rep 2019; 9:9743. [PMID: 31278324 PMCID: PMC6611779 DOI: 10.1038/s41598-019-46286-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Radiogenomics aims at investigating the relationship between imaging radiomic features and gene expression alterations. This study addressed the potential prognostic complementary value of contrast enhanced computed tomography (CE-CT) radiomic features and gene expression data in primary colorectal cancers (CRC). Sixty-four patients underwent CT scans and radiomic features were extracted from the delineated tumor volume. Gene expression analysis of a small set of genes, previously identified as relevant for CRC, was conducted on surgical samples from the same tumors. The relationships between radiomic and gene expression data was assessed using the Kruskal–Wallis test. Multiple testing was not performed, as this was a pilot study. Cox regression was used to identify variables related to overall survival (OS) and progression free survival (PFS). ABCC2 gene expression was correlated with N (p = 0.016) and M stages (p = 0.022). Expression changes of ABCC2, CD166, CDKNV1 and INHBB genes exhibited significant correlations with some radiomic features. OS was associated with Ratio 3D Surface/volume (p = 0.022) and ALDH1A1 expression (p = 0.042), whereas clinical stage (p = 0.004), ABCC2 expression (p = 0.035), and EntropyGLCM_E (p = 0.0031), were prognostic factors for PFS. Combining CE-CT radiomics with gene expression analysis and histopathological examination of primary CRC could provide higher prognostic stratification power, leading to improved patient management.
Collapse
|
90
|
Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and Generalizability in Radiomics Modeling: Possible Strategies in Radiologic and Statistical Perspectives. Korean J Radiol 2019; 20:1124-1137. [PMID: 31270976 PMCID: PMC6609433 DOI: 10.3348/kjr.2018.0070] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023] Open
Abstract
Radiomics, which involves the use of high-dimensional quantitative imaging features for predictive purposes, is a powerful tool for developing and testing medical hypotheses. Radiologic and statistical challenges in radiomics include those related to the reproducibility of imaging data, control of overfitting due to high dimensionality, and the generalizability of modeling. The aims of this review article are to clarify the distinctions between radiomics features and other omics and imaging data, to describe the challenges and potential strategies in reproducibility and feature selection, and to reveal the epidemiological background of modeling, thereby facilitating and promoting more reproducible and generalizable radiomics research.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seo Young Park
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hwa Jung Kim
- Department of Clinical Epidemiology and Biostatistics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
91
|
Schwier M, van Griethuysen J, Vangel MG, Pieper S, Peled S, Tempany C, Aerts HJWL, Kikinis R, Fennessy FM, Fedorov A. Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep 2019; 9:9441. [PMID: 31263116 PMCID: PMC6602944 DOI: 10.1038/s41598-019-45766-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
In this study we assessed the repeatability of radiomics features on small prostate tumors using test-retest Multiparametric Magnetic Resonance Imaging (mpMRI). The premise of radiomics is that quantitative image-based features can serve as biomarkers for detecting and characterizing disease. For such biomarkers to be useful, repeatability is a basic requirement, meaning its value must remain stable between two scans, if the conditions remain stable. We investigated repeatability of radiomics features under various preprocessing and extraction configurations including various image normalization schemes, different image pre-filtering, and different bin widths for image discretization. Although we found many radiomics features and preprocessing combinations with high repeatability (Intraclass Correlation Coefficient > 0.85), our results indicate that overall the repeatability is highly sensitive to the processing parameters. Neither image normalization, using a variety of approaches, nor the use of pre-filtering options resulted in consistent improvements in repeatability. We urge caution when interpreting radiomics features and advise paying close attention to the processing configuration details of reported results. Furthermore, we advocate reporting all processing details in radiomics studies and strongly recommend the use of open source implementations.
Collapse
Affiliation(s)
- Michael Schwier
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mark G Vangel
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Sharon Peled
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clare Tempany
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hugo J W L Aerts
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ron Kikinis
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Fraunhofer MEVIS, Bremen, Germany
- Mathematics/Computer Science Faculty, University of Bremen, Bremen, Germany
| | - Fiona M Fennessy
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andriy Fedorov
- Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
92
|
Korn RL, Rahmanuddin S, Borazanci E. Use of Precision Imaging in the Evaluation of Pancreas Cancer. Cancer Treat Res 2019; 178:209-236. [PMID: 31209847 DOI: 10.1007/978-3-030-16391-4_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreas cancer is an aggressive and fatal disease that will become one of the leading causes of cancer mortality by 2030. An all-out effort is underway to better understand the basic biologic mechanisms of this disease ranging from early development to metastatic disease. In order to change the course of this disease, diagnostic radiology imaging may play a vital role in providing a precise, noninvasive method for early diagnosis and assessment of treatment response. Recent progress in combining medical imaging, advanced image analysis and artificial intelligence, termed radiomics, can offer an innovate approach in detecting the earliest changes of tumor development as well as a rapid method for the detection of response. In this chapter, we introduce the principles of radiomics and demonstrate how it can provide additional information into tumor biology, early detection, and response assessments advancing the goals of precision imaging to deliver the right treatment to the right person at the right time.
Collapse
Affiliation(s)
- Ronald L Korn
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA. .,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA. .,Imaging Endpoints Core Lab, Scottsdale, AZ, USA.
| | | | - Erkut Borazanci
- Virginia G Piper Cancer Center at HonorHealth, Scottsdale, AZ, USA.,Translational Genomics Research Institute, An Affiliate of City of Hope, Phoenix, AZ, USA
| |
Collapse
|
93
|
Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 2019; 46:2638-2655. [PMID: 31240330 DOI: 10.1007/s00259-019-04391-8] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Radiomics in nuclear medicine is rapidly expanding. Reproducibility of radiomics studies in multicentre settings is an important criterion for clinical translation. We therefore performed a meta-analysis to investigate reproducibility of radiomics biomarkers in PET imaging and to obtain quantitative information regarding their sensitivity to variations in various imaging and radiomics-related factors as well as their inherent sensitivity. Additionally, we identify and describe data analysis pitfalls that affect the reproducibility and generalizability of radiomics studies. After a systematic literature search, 42 studies were included in the qualitative synthesis, and data from 21 were used for the quantitative meta-analysis. Data concerning measurement agreement and reliability were collected for 21 of 38 different factors associated with image acquisition, reconstruction, segmentation and radiomics-specific processing steps. Variations in voxel size, segmentation and several reconstruction parameters strongly affected reproducibility, but the level of evidence remained weak. Based on the meta-analysis, we also assessed inherent sensitivity to variations of 110 PET image biomarkers. SUVmean and SUVmax were found to be reliable, whereas image biomarkers based on the neighbourhood grey tone difference matrix and most biomarkers based on the size zone matrix were found to be highly sensitive to variations, and should be used with care in multicentre settings. Lastly, we identify 11 data analysis pitfalls. These pitfalls concern model validation and information leakage during model development, but also relate to reporting and the software used for data analysis. Avoiding such pitfalls is essential for minimizing bias in the results and to enable reproduction and validation of radiomics studies.
Collapse
Affiliation(s)
- Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
94
|
Forgács A, Béresová M, Garai I, Lassen ML, Beyer T, DiFranco MD, Berényi E, Balkay L. Impact of intensity discretization on textural indices of [ 18F]FDG-PET tumour heterogeneity in lung cancer patients. Phys Med Biol 2019; 64:125016. [PMID: 31108468 DOI: 10.1088/1361-6560/ab2328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantifying tumour heterogeneity from [18F]FDG-PET images promises benefits for treatment selection of cancer patients. Here, the calculation of texture parameters mandates an initial discretization step (binning) to reduce the number of intensity levels. Typically, three types of discrimination methods are used: lesion relative resampling (LRR) with fixed bin number, lesion absolute resampling (LAR) and absolute resampling (AR) with fixed bin widths. We investigated the effects of varying bin widths or bin number using 27 commonly cited local and regional texture indices (TIs) applied on lung tumour volumes. The data set were extracted from 58 lung cancer patients, with three different and robust tumour segmentation methods. In our cohort, the variations of the mean value as the function of the bin widths were similar for TIs calculated with LAR and AR quantification. The TI histograms calculated by LRR method showed distinct behaviour and its numerical values substantially effected by the selected bin number. The correlations of the AR and LAR based TIs demonstrated no principal differences between these methods. However, no correlation was found for the interrelationship between the TIs calculated by LRR and LAR (or AR) discretization method. Visual classification of the texture was also performed for each lesion. This classification analysis revealed that the parameters show statistically significant correlation with the visual score, if LAR or AR discretization method is considered, in contrast to LRR. Moreover, all the resulted tendencies were similar regardless the segmentation methods and the type of textural features involved in this work.
Collapse
Affiliation(s)
- Attila Forgács
- Scanomed Nuclear Medicine Center, Debrecen, Hungary. Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Dragić M, Zarić M, Mitrović N, Nedeljković N, Grković I. Application of Gray Level Co-Occurrence Matrix Analysis as a New Method for Enzyme Histochemistry Quantification. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:690-698. [PMID: 30714562 DOI: 10.1017/s1431927618016306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enzyme histochemistry is a valuable histological method which provides a connection between morphology, activity, and spatial localization of investigated enzymes. Even though the method relies purely on arbitrary evaluations performed by the human eye, it is still wildly accepted and used in histo(patho)logy. Texture analysis emerged as an excellent tool for image quantification of subtle differences reflected in both spatial discrepancies and gray level values of pixels. The current study of texture analysis utilizes the gray-level co-occurrence matrix as a method for quantification of differences between ecto-5'-nucleotidase activities in healthy hippocampal tissue and tissue with marked neurodegeneration. We used the angular second moment, contrast (CON), correlation, inverse difference moment (INV), and entropy for texture analysis and receiver operating characteristic analysis with immunoblot and qualitative assessment of enzyme histochemistry as a validation. Our results strongly argue that co-occurrence matrix analysis could be used for the determination of fine differences in the enzyme activities with the possibility to ascribe those differences to regions or specific cell types. In addition, it emerged that INV and CON are especially useful parameters for this type of enzyme histochemistry analysis. We concluded that texture analysis is a reliable method for quantification of this descriptive technique, thus removing biases and adding it a quantitative dimension.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics,Faculty of Biology,University of Belgrade,Belgrade,Studentski trg 3,11001 Belgrade,Serbia
| | - Marina Zarić
- Department of Molecular Biology and Endocrinology,Vinča Institute of Nuclear Sciences, University of Belgrade,Mike Petrovića Alasa 12-14,11001 Belgrade,Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology,Vinča Institute of Nuclear Sciences, University of Belgrade,Mike Petrovića Alasa 12-14,11001 Belgrade,Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics,Faculty of Biology,University of Belgrade,Belgrade,Studentski trg 3,11001 Belgrade,Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology,Vinča Institute of Nuclear Sciences, University of Belgrade,Mike Petrovića Alasa 12-14,11001 Belgrade,Serbia
| |
Collapse
|
96
|
Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol 2019; 135:107-114. [DOI: 10.1016/j.radonc.2019.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023]
|
97
|
Nkoulou R, Zaidi H. Does simplified quantitative analysis of 18F-FDG PET in cardiac inflammatory disease work? J Nucl Cardiol 2019; 26:919-921. [PMID: 29344921 DOI: 10.1007/s12350-017-1179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Affiliation(s)
- R Nkoulou
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
- Division of Cardiology, Geneva University Hospital, Geneva, Switzerland.
| | - H Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, Netherlands
- Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
98
|
Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fassbender TF, Bronsert P, Koeber G, Schilling O, Ruf J, Werner M, Jilg CA, Baltas D, Mix M, Grosu AL. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer - a comparison study with histology reference. Theranostics 2019; 9:2595-2605. [PMID: 31131055 PMCID: PMC6525993 DOI: 10.7150/thno.32376] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/10/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose: To evaluate the performance of radiomic features (RF) derived from PSMA PET for intraprostatic tumor discrimination and non-invasive characterization of Gleason score (GS) and pelvic lymph node status. Patients and methods: Patients with prostate cancer (PCa) who underwent [68Ga]-PSMA-11 PET/CT followed by radical prostatectomy and pelvic lymph node dissection were prospectively enrolled (n=20). Coregistered histopathological gross tumor volume (GTV-Histo) in the prostate served as reference. 133 RF were derived from GTV-Histo and from manually created segmentations of the intraprostatic tumor volume (GTV-Exp). Spearman´s correlation coefficients (ρ) were assessed between RF derived from the different GTVs. We additionally analyzed the differences in RF values for PCa and non-PCa tissues. Furthermore, areas under receiver-operating characteristics curves (AUC) were calculated and uni- and multivariate analyses were performed to evaluate the RF based discrimination of GS 7 and ≥8 disease and of patients with nodal spread (pN1) and non-nodal spread (pN0) in surgical specimen. The results found in the latter analyses were validated by a retrospective cohort of 40 patients. Results: Most RF from GTV-Exp showed strong correlations with RF from GTV-Histo (86% with ρ>0.7). 81% and 76% of RF from GTV-Exp and GTV-Histo significantly discriminated between PCa and non-PCa tissue. The texture feature QSZHGE discriminated between GS 7 and ≥8 considering GTV-Histo (AUC=0.93) and GTV-Exp (prospective cohort: AUC=0.91 / validation cohort: AUC=0.84). QSZHGE also discriminated between pN1 and pN0 disease considering GTV-Histo (AUC=0.85) and GTV-Exp (prospective cohort: AUC=0.87 / validation cohort: AUC=0.85). In uni- and multivariate analyses including patients of both cohorts QSZHGE was a statistically significant (p<0.01) predictor for PCa patients with GS ≥8 tumors and pN1 status. Conclusion: RF derived from PSMA PET discriminated between PCa and non-PCa tissue within the prostate. Additionally, the texture feature QSZHGE discriminated between GS 7 and GS ≥8 tumors and between patients with pN1 and pN0 disease. Our results support the role of RF in PSMA PET as a new tool for non-invasive PCa discrimination and characterization of its biological properties.
Collapse
|
99
|
Badic B, Desseroit MC, Hatt M, Visvikis D. Potential Complementary Value of Noncontrast and Contrast Enhanced CT Radiomics in Colorectal Cancers. Acad Radiol 2019; 26:469-479. [PMID: 30072293 DOI: 10.1016/j.acra.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE AND OBJECTIVES The aim of our study was to assess the relationships between textural features extracted from contrast enhanced (CE) and noncontrast enhanced (NCE) computed tomography (CT) images of primary colorectal cancer, in order to identify radiomics features more likely to provide potential complementary information regarding outcome. MATERIALS AND METHODS Sixty-one patients with primary colorectal cancer underwent both CE-CT and NCE-CT scans within the same acquisition. First-order and textural features (with three different methods for grey-level discretization) were extracted from the tumor volume in both modalities and their correlation was assessed with Spearman's rank correlation (rs). Significance was assessed at p < 0.05 with correction for multiple comparisons. Kaplan-Meier estimation and log-rank tests were used to identify features associated with long term patient survival. RESULTS Moderate positive correlations were observed between CE-CT and NCE-CT histogram-derived entropy (EntropyHist) and area under the curve (CHAUC) (rs = 0.49, p < 0.001 and rs= 0.45, p < 0.001, respectively). Some second and third order textural features were found highly correlated between CE-CT and NCE-CT, such as small zone-size emphasis SZSE (rs = 0.729, p < 0.001) and zone-size percentage (rs = 0.770, p < 0.001). Grey-levels discretization methods influenced these correlations. A few of the third order NCE-CT and CE-CT features were significantly associated with survival. CONCLUSION Some radiomics features with moderate correlations between nonenhanced and enhanced CT images were found to be associated with survival, thus suggesting that complementary prognostic value may be extracted from both modalities when available.
Collapse
|
100
|
Gardin I, Grégoire V, Gibon D, Kirisli H, Pasquier D, Thariat J, Vera P. Radiomics: Principles and radiotherapy applications. Crit Rev Oncol Hematol 2019; 138:44-50. [PMID: 31092384 DOI: 10.1016/j.critrevonc.2019.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/26/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Radiomics is defined as the extraction of a large quantity of quantitative image features. The different radiomic indexes that have been proposed in the literature are described as well as the various factors that have an impact on the robustness of these indexes. We will see that several hundred quantitative features can be extracted per lesion and imaging modality. The ever-growing number of features studied raises the question of the statistical method of analysis used. This review addresses the research supporting the clinical use of radiomics in oncology in the staging of disease, discrimination between healthy and pathological tissues, the identification of genetic features, the prediction of patient survival, the response to treatment, the recurrence after radiotherapy and chemoradiotherapy and the side effects. Based on the existing literature, it remains difficult to identify features that should be used for current clinical practice.
Collapse
Affiliation(s)
- I Gardin
- Department of Nuclear Medicine, Centre Henri-Becquerel, France; LITIS EA4108, Normandie University, Rouen, France.
| | - V Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, France
| | - D Gibon
- Research and Innovation Department, AQUILAB, Loos Les Lille, France
| | - H Kirisli
- Research and Innovation Department, AQUILAB, Loos Les Lille, France
| | - D Pasquier
- Department of Radiation Oncology, Centre Oscar Lambret, CRIStAL UMR CNRS 9189, Lille University, Lille, France
| | - J Thariat
- Radiotherapy Department, Centre François Baclesse, Caen, France
| | - P Vera
- Department of Nuclear Medicine, Centre Henri-Becquerel, France; LITIS EA4108, Normandie University, Rouen, France
| |
Collapse
|