51
|
Affiliation(s)
- Lifeng Yang
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, Texas 77005
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Deepak Nagrath
- Laboratory for Systems Biology of Human Diseases, Rice University, Houston, Texas 77005
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005
- Department of Bioengineering, Rice University, Houston, Texas 77005
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
52
|
Sun A, Liu S, Tang X, Nie D, Tang G, Zhang Z, Wen F, Wang X. Simple and rapid radiosynthesis of N- 18F-labeled glutamic acid as a hepatocellular carcinoma PET tracer. Nucl Med Biol 2017; 49:38-43. [PMID: 28301817 DOI: 10.1016/j.nucmedbio.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/07/2017] [Accepted: 02/26/2017] [Indexed: 01/09/2023]
Abstract
INTRODUCTION We have reported that N-(2-18F-fluoropropionyl)-L-glutamate (18F-FPGLU) showed good tumor-to-background contrast and 18F-FPGLU was prepared via complex multi-step reaction sequence; here, it is synthesized by a facile two-step reaction sequence. The objectives of this study are to synthesize 18F-FPGLU via a two-step reaction sequence and to evaluate the value of 18F-FPGLU in nude mice bearing human hepatocellular carcinoma SMCC-7721 (HCC SMCC-7721). METHODS 18F-FPGLU was synthetized from the precursor (2S)-dimethyl 2-(2-bromopropanamido)pentanedioate via the two-step on-column hydrolysis using a modified commercial FDG synthesizer. To investigate the transport mechanism of 18F-FPGLU, we conducted a series of competitive inhibition experiments on HCC SMCC-7721 cells in the absence or presence of Na+ and various types of inhibitors. Small-animal PET-CT imaging was performed on tumor-bearing nude mice using 18F-FPGLU and 2-18F-2-deoxy-D-glucose (18F-FDG). RESULTS The radiochemical yield of 18F-FPGLU was up to 15±5% (EOS, n=10) in 35min with the two-step procedure and the radiochemical purity was higher than 95% with a specific activity of 30-40GBq/μmol. In vitro cell experiments show that 18F-FPGLU is primarily transported through the Na+-dependent system XAG- and Na+-independent system XC-. PET imaging in a tumor model indicates that 18F-FPGLU may be superior to 18F-FDG for hepatocellular carcinoma (HCC) imaging. CONCLUSION An optimized route to prepare 18F-FPGLU was developed and 18F-FPGLU was synthetized from the precursor ((2S)-dimethyl 2-(2-bromopropanamido)pentanedioate) via the two-step on-column hydrolysis. 18F-FPGLU was a potential novel PET tracer for HCC imaging.
Collapse
Affiliation(s)
- Aixia Sun
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaolan Tang
- School of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Dahong Nie
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhanwen Zhang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuhua Wen
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoyan Wang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
53
|
Jeitner TM, Kristoferson E, Azcona JA, Pinto JT, Stalnecker C, Erickson JW, Kung HF, Li J, Ploessl K, Cooper AJL. Fluorination at the 4 position alters the substrate behavior of L-glutamine and L-glutamate: Implications for positron emission tomography of neoplasias. J Fluor Chem 2017; 192:58-67. [PMID: 28546645 DOI: 10.1016/j.jfluchem.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two 4-fluoro-L-glutamine diastereoisomers [(2S,4R)-4-FGln, (2S,4S)-4-FGln] were previously developed for positron emission tomography. Label uptake into two tumor cell types was greater with [18F](2S,4R)-4-FGln than with [18F](2S,4S)-4-FGln. In the present work we investigated the enzymology of two diastereoisomers of 4-FGln, two diastereoisomers of 4-fluoroglutamate (4-FGlu) (potential metabolites of the 4-FGln diastereoisomers) and another fluoro-derivative of L-glutamine [(2S,4S)-4-(3-fluoropropyl)glutamine (FP-Gln)]. The two 4-FGlu diastereoisomers were found to be moderate-to-good substrates relative to L-glutamate of glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase. Additionally, alanine aminotransferase was shown to catalyze an unusual γ-elimination reaction with both 4-FGlu diastereoisomers. Both 4-FGlu diastereoisomers were shown to be poor substrates, but strong inhibitors of glutamine synthetase. Both 4-FGln diastereoisomers were shown to be poor substrates compared to L-glutamine of glutamine transaminase L and α-aminoadipate aminotransferase. However, (2S,4R)-4-FGln was found to be a poor substrate of glutamine transaminase K, whereas (2S,4S)-4-FGln was shown to be an excellent substrate. By contrast, FP-Gln was found to be a poor substrate of all enzymes examined. Evidently, substitution of H in position 4 by F in L-glutamine/L-glutamate has moderate-to-profound effects on enzyme-catalyzed reactions. The present results: 1) show that 4-FGln and 4-FGlu diastereoisomers may be useful for studying active site topology of glutamate- and glutamine-utilizing enzymes; 2) provide a framework for understanding possible metabolic transformations in tumors of 18F-labeled (2S,4R)-4-FGln, (2S,4S)-4-FGln, (2S,4R)-4-FGlu or (2S,4S)-4-FGlu; and 3) show that [18F]FP-Gln is likely to be much less metabolically active in vivo than are the [18F]4-FGln diastereoisomers.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Eva Kristoferson
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Juan A Azcona
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Clint Stalnecker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jon W Erickson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hank F Kung
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Karl Ploessl
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
54
|
Zhang J, Pavlova NN, Thompson CB. Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine. EMBO J 2017; 36:1302-1315. [PMID: 28420743 DOI: 10.15252/embj.201696151] [Citation(s) in RCA: 456] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
Biochemistry textbooks and cell culture experiments seem to be telling us two different things about the significance of external glutamine supply for mammalian cell growth and proliferation. Despite the fact that glutamine is a nonessential amino acid that can be synthesized by cells from glucose-derived carbons and amino acid-derived ammonia, most mammalian cells in tissue culture cannot proliferate or even survive in an environment that does not contain millimolar levels of glutamine. Not only are the levels of glutamine in standard tissue culture media at least ten-fold higher than other amino acids, but glutamine is also the most abundant amino acid in the human bloodstream, where it is assiduously maintained at approximately 0.5 mM through a combination of dietary uptake, de novo synthesis, and muscle protein catabolism. The complex metabolic logic of the proliferating cancer cells' appetite for glutamine-which goes far beyond satisfying their protein synthesis requirements-has only recently come into focus. In this review, we examine the diversity of biosynthetic and regulatory uses of glutamine and their role in proliferation, stress resistance, and cellular identity, as well as discuss the mechanisms that cells utilize in order to adapt to glutamine limitation.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalya N Pavlova
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
55
|
Zhu L, Ploessl K, Zhou R, Mankoff D, Kung HF. Metabolic Imaging of Glutamine in Cancer. J Nucl Med 2017; 58:533-537. [PMID: 28232608 DOI: 10.2967/jnumed.116.182345] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Glucose and glutamine are the most abundant nutrients for producing energy and building blocks in normal and tumor cells. Increased glycolysis in tumors, the Warburg Effect, is the basis for 18F-FDG PET imaging. Cancer cells can also be genetically reprogrammed to use glutamine. 5-11C-(2S)-glutamine and 18F-(2S,4R)4-fluoroglutamine may be useful complementary tools to measure changes in tumor metabolism. In glioma patients, the tracer 18F-(2S,4R)4-fluoroglutamine showed tumor-to-background contrast different from that of 18F-FDG and differences in uptake in glioma patients with clinical progression of disease versus stable disease (tumor-to-brain ratio > 3.7 in clinically active glioma tumors, minimal or no specific uptake in clinically stable tumors). These preliminary results suggest that 18F-(2S,4R)4-fluoroglutamine PET may be a new tool for probing in vivo metabolism of glutamine in cancer patients and for guiding glutamine-targeted therapeutics. Further studies of uptake mechanism, and comparison of kinetics for 18F-(2S,4R)4-fluoroglutamine versus the 11C-labeled native glutamine, will be important and enlightening.
Collapse
Affiliation(s)
- Lin Zhu
- College of Chemistry 82#, Beijing Normal University, Beijing, China
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Rong Zhou
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - David Mankoff
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania; and .,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
56
|
Zhou R, Pantel AR, Li S, Lieberman BP, Ploessl K, Choi H, Blankemeyer E, Lee H, Kung HF, Mach RH, Mankoff DA. [ 18F](2 S,4 R)4-Fluoroglutamine PET Detects Glutamine Pool Size Changes in Triple-Negative Breast Cancer in Response to Glutaminase Inhibition. Cancer Res 2017; 77:1476-1484. [PMID: 28202527 DOI: 10.1158/0008-5472.can-16-1945] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
Glutaminolysis is a metabolic pathway adapted by many aggressive cancers, including triple-negative breast cancers (TNBC), to utilize glutamine for survival and growth. In this study, we examined the utility of [18F](2S,4R)4-fluoroglutamine ([18F]4F-Gln) PET to measure tumor cellular glutamine pool size, whose change might reveal the pharmacodynamic (PD) effect of drugs targeting this cancer-specific metabolic pathway. High glutaminase (GLS) activity in TNBC tumors resulted in low cellular glutamine pool size assayed via high-resolution 1H magnetic resonance spectroscopy (MRS). GLS inhibition significantly increased glutamine pool size in TNBC tumors. MCF-7 tumors, with inherently low GLS activity compared with TNBC, displayed a larger baseline glutamine pool size that did not change as much in response to GLS inhibition. The tumor-to-blood-activity ratios (T/B) obtained from [18F]4F-Gln PET images matched the distinct glutamine pool sizes of both tumor models at baseline. After a short course of GLS inhibitor treatment, the T/B values increased significantly in TNBC, but did not change in MCF-7 tumors. Across both tumor types and after GLS inhibitor or vehicle treatment, we observed a strong positive correlation between T/B values and tumor glutamine pool size measured using MRS (r2 = 0.71). In conclusion, [18F]4F-Gln PET tracked cellular glutamine pool size in breast cancers with differential GLS activity and detected increases in cellular glutamine pool size induced by GLS inhibitors. This study accomplished the first necessary step toward validating [18F]4F-Gln PET as a PD marker for GLS-targeting drugs. Cancer Res; 77(6); 1476-84. ©2017 AACR.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian P Lieberman
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karl Ploessl
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hoon Choi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Blankemeyer
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
57
|
Halbrook CJ, Lyssiotis CA. Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell 2017; 31:5-19. [PMID: 28073003 DOI: 10.1016/j.ccell.2016.12.006] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is on pace to become the second leading cause of cancer-related death. The high mortality rate results from a lack of methods for early detection and the inability to successfully treat patients once diagnosed. Pancreatic cancer cells have extensively reprogrammed metabolism, which is driven by oncogene-mediated cell-autonomous pathways, the unique physiology of the tumor microenvironment, and interactions with non-cancer cells. In this review, we discuss how recent efforts delineating rewired metabolic networks in pancreatic cancer have revealed new in-roads to develop detection and treatment strategies for this dreadful disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
58
|
Li S, Schmitz A, Lee H, Mach RH. Automation of the Radiosynthesis of Six Different 18F-labeled radiotracers on the AllinOne. EJNMMI Radiopharm Chem 2016; 1:15. [PMID: 29564391 PMCID: PMC5843816 DOI: 10.1186/s41181-016-0018-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/22/2016] [Indexed: 11/21/2022] Open
Abstract
Background Fast implementation of positron emission tomography (PET) into clinical and preclinical studies highly demands automated synthesis for the preparation of PET radiopharmaceuticals in a safe and reproducible manner. The aim of this study was to develop automated synthesis methods for these six 18F-labeled radiopharmaceuticals produced on a routine basis at the University of Pennsylvania using the AllinOne synthesis module. Results The development of automated syntheses with varying complexity was accomplished including HPLC purification, SPE procedures and final formulation with sterile filtration. The six radiopharmaceuticals were obtained in high yield and high specific activity with full automation on the AllinOne synthesis module under current good manufacturing practice (cGMP) guidelines. Conclusion The study demonstrates the versatility of this synthesis module for the preparation of a wide variety of 18F-labeled radiopharmaceuticals for PET imaging studies.
Collapse
Affiliation(s)
- Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Alexander Schmitz
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Hsiaoju Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
59
|
Abstract
The resurgence of research into cancer metabolism has recently broadened interests beyond glucose and the Warburg effect to other nutrients, including glutamine. Because oncogenic alterations of metabolism render cancer cells addicted to nutrients, pathways involved in glycolysis or glutaminolysis could be exploited for therapeutic purposes. In this Review, we provide an updated overview of glutamine metabolism and its involvement in tumorigenesis in vitro and in vivo, and explore the recent potential applications of basic science discoveries in the clinical setting.
Collapse
Affiliation(s)
- Brian J. Altman
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zachary E. Stine
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chi V. Dang
- Abramson Family Cancer Research Institute, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
60
|
Rotstein BH, Liang SH, Placzek MS, Hooker JM, Gee AD, Dollé F, Wilson AA, Vasdev N. (11)C[double bond, length as m-dash]O bonds made easily for positron emission tomography radiopharmaceuticals. Chem Soc Rev 2016; 45:4708-26. [PMID: 27276357 PMCID: PMC5000859 DOI: 10.1039/c6cs00310a] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry.
Collapse
Affiliation(s)
| | - Steven H Liang
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA and McLean Hospital, Belmont, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, MGH, HMS, Charlestown, USA
| | | | - Frédéric Dollé
- CEA - Institut d'imagerie biomédicale, Service hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Alan A Wilson
- Centre for Addiction and Mental Health, Toronto, Canada
| | - Neil Vasdev
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
61
|
Hudson CD, Savadelis A, Nagaraj AB, Joseph P, Avril S, DiFeo A, Avril N. Altered glutamine metabolism in platinum resistant ovarian cancer. Oncotarget 2016; 7:41637-41649. [PMID: 27191653 PMCID: PMC5173084 DOI: 10.18632/oncotarget.9317] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/10/2016] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is characterized by an increase in cellular energy metabolism, which is predominantly satisfied by glucose and glutamine. Targeting metabolic pathways is an attractive approach to enhance the therapeutic effectiveness and to potentially overcome drug resistance in ovarian cancer. In platinum-sensitive ovarian cancer cell lines the metabolism of both, glucose and glutamine was initially up-regulated in response to platinum treatment. In contrast, platinum-resistant cells revealed a significant dependency on the presence of glutamine, with an upregulated expression of glutamine transporter ASCT2 and glutaminase. This resulted in a higher oxygen consumption rate compared to platinum-sensitive cell lines reflecting the increased dependency of glutamine utilization through the tricarboxylic acid cycle. The important role of glutamine metabolism was confirmed by stable overexpression of glutaminase, which conferred platinum resistance. Conversely, shRNA knockdown of glutaminase in platinum resistant cells resulted in re-sensitization to platinum treatment. Importantly, combining the glutaminase inhibitor BPTES with platinum synergistically inhibited platinum sensitive and resistant ovarian cancers in vitro. Apoptotic induction was significantly increased using platinum together with BPTES compared to either treatment alone. Our findings suggest that targeting glutamine metabolism together with platinum based chemotherapy offers a potential treatment strategy particularly in drug resistant ovarian cancer.
Collapse
Affiliation(s)
- Chantelle D. Hudson
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alyssa Savadelis
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Peronne Joseph
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stefanie Avril
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Analisa DiFeo
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Norbert Avril
- Department of Radiology, Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
62
|
Zhang X, Basuli F, Shi ZD, Xu B, Blackman B, Choyke PL, Swenson RE. Automated synthesis of [(18)F](2S,4R)-4-fluoroglutamine on a GE TRACERlab™ FX-N Pro module. Appl Radiat Isot 2016; 112:110-4. [PMID: 27019029 PMCID: PMC4853275 DOI: 10.1016/j.apradiso.2016.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/28/2022]
Abstract
Glutamine (Gln) and its analogues may serve as imaging agents for tumor diagnosis using positron emission tomography (PET), especially for tumors with negative [(18)F]FDG scan. We report the first automated synthesis of [(18)F](2S,4R)-4-fluoroglutamine ([(18)F]FGln) on a GE TRACERlab™ FX-N Pro module. [(18)F]FGln was obtained in 80±3min with a radiochemical yield of 21±3% (n=5, uncorrected). The radiochemical purity was >98%, and optical purity 90±5%. The synthesis is highly reproducible with good chemical purity, radiochemical yield, and is suitable for translation to cGMP production.
Collapse
Affiliation(s)
- Xiang Zhang
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Falguni Basuli
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Biying Xu
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Burchelle Blackman
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rolf E Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
63
|
Bouhlel A, Alyami W, Li A, Yuan L, Rich K, McConathy J. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET). J Med Chem 2016; 59:3515-31. [PMID: 26967318 DOI: 10.1021/acs.jmedchem.6b00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Inserm, Vascular Center of Marseille (UMR_S1076), CERIMED, Aix-Marseille University , Marseille, France
| | - Wadha Alyami
- Doisy College of Health Sciences, Saint Louis University , St. Louis, Missouri 63103, United States
| | - Aixiao Li
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States
| | - Liya Yuan
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Keith Rich
- Department of Neurosurgery, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jonathan McConathy
- Department of Radiology, School of Medicine, Washington University in St. Louis , St. Louis, Missouri 63110, United States.,Department of Radiology, University of Alabama at Birmingham , Birmingham, Alabama 35249, United States
| |
Collapse
|
64
|
Buckingham F, Gouverneur V. Asymmetric 18F-fluorination for applications in positron emission tomography. Chem Sci 2016; 7:1645-1652. [PMID: 28808536 PMCID: PMC5535067 DOI: 10.1039/c5sc04229a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/12/2015] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) is becoming more frequently used by medicinal chemists to facilitate the selection of the most promising lead compounds for further evaluation. For PET, this entails the preparation of 11C- or 18F-labeled drugs or radioligands. With the importance of chirality and fluorine substitution in drug development, chemists can be faced with the challenge of preparing enantiopure molecules featuring the 18F-tag on a stereogenic carbon. Asymmetric 18F-fluorination is an emerging field of research that provides an alternative to resolution or conventional SN2-based radiochemistry. To date, both transition metal complexes and organomediators have been successfully employed for 18F-incorporation at a stereogenic carbon.
Collapse
Affiliation(s)
- Faye Buckingham
- University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , OX1 3UQ , Oxford , UK .
| | - Véronique Gouverneur
- University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , OX1 3UQ , Oxford , UK .
| |
Collapse
|
65
|
Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin SD, La Rocca G, Lyashchenko S, Ploessl K, Rohle D, Omuro AM, Cross JR, Brennan CW, Weber WA, Holland EC, Mellinghoff IK, Kung HF, Lewis JS, Thompson CB. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 2016; 7:274ra17. [PMID: 25673762 DOI: 10.1126/scitranslmed.aaa1009] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucose and glutamine are the two principal nutrients that cancer cells use to proliferate and survive. Many cancers show altered glucose metabolism, which constitutes the basis for in vivo positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)F-FDG). However, (18)F-FDG is ineffective in evaluating gliomas because of high background uptake in the brain. Glutamine metabolism is also altered in many cancers, and we demonstrate that PET imaging in vivo with the glutamine analog 4-(18)F-(2S,4R)-fluoroglutamine ((18)F-FGln) shows high uptake in gliomas but low background brain uptake, facilitating clear tumor delineation. Chemo/radiation therapy reduced (18)F-FGln tumor avidity, corresponding with decreased tumor burden. (18)F-FGln uptake was not observed in animals with a permeable blood-brain barrier or neuroinflammation. We translated these findings to human subjects, where (18)F-FGln showed high tumor/background ratios with minimal uptake in the surrounding brain in human glioma patients with progressive disease. These data suggest that (18)F-FGln is avidly taken up by gliomas, can be used to assess metabolic nutrient uptake in gliomas in vivo, and may serve as a valuable tool in the clinical management of gliomas.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, MI 41809, USA.
| | - Mark P Dunphy
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hanwen Zhang
- Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY 10065, USA
| | - Kenneth L Pitter
- Cancer Biology and Genetics Program, MSKCC, New York, NY 10065, USA
| | | | - Carl Campos
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA
| | - Sean D Carlin
- Radiochemistry and Imaging Sciences Service, Department of Radiology, MSKCC, New York, NY 10065, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, MSKCC, New York, NY 10065, USA
| | - Serge Lyashchenko
- Radiochemistry and Molecular Imaging Probe Core, MSKCC, New York, NY 10065, USA
| | - Karl Ploessl
- Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Rohle
- Cancer Biology and Genetics Program, MSKCC, New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA
| | | | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, MSKCC, New York, NY 10065, USA
| | - Cameron W Brennan
- Medical Physics, MSKCC, New York, NY 10065, USA. Department of Neurosurgery, MSKCC, New York, NY 10065, USA
| | - Wolfgang A Weber
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY 10065, USA
| | - Eric C Holland
- Director, Solid Tumor Translational Research, Division of Human Biology, Fred Hutchinson Cancer Research Center, and Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA. Department of Neurology, MSKCC, New York, NY 10065, USA
| | - Hank F Kung
- Departments of Radiology and Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason S Lewis
- Molecular Pharmacology and Chemistry Program, MSKCC, New York, NY 10065, USA. Radiochemistry and Imaging Sciences Service, Department of Radiology, MSKCC, New York, NY 10065, USA. Radiochemistry and Molecular Imaging Probe Core, MSKCC, New York, NY 10065, USA.
| | - Craig B Thompson
- Cancer Biology and Genetics Program, MSKCC, New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA.
| |
Collapse
|
66
|
Burkemper JL, Huang C, Li A, Yuan L, Rich K, McConathy J, Lapi SE. Synthesis and Biological Evaluation of (S)-Amino-2-methyl-4-[(76)Br]bromo-3-(E)-butenoic Acid (BrVAIB) for Brain Tumor Imaging. J Med Chem 2015; 58:8542-52. [PMID: 26444035 PMCID: PMC4764504 DOI: 10.1021/acs.jmedchem.5b01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The novel compound, (S)-amino-2-methyl-4-[(76)Br]bromo-3-(E)-butenoic acid (BrVAIB, [(76)Br]5), was characterized against the known system A tracer, IVAIB ([(123)I]8). [(76)Br]5 was prepared in a 51% ± 19% radiochemical yield with high radiochemical purity (≥98%). The biological properties of [(76)Br]5 were compared with those of [(123)I]8. Results showed that [(76)Br]5 undergoes mixed amino acid transport by system A and system L transport, while [(123)I]8 had less uptake by system L. [(76)Br]5 demonstrated higher uptake than [(123)I]8 in DBT tumors 1 h after injection (3.7 ± 0.4% ID/g vs 1.5 ± 0.3% ID/g) and also showed higher uptake vs [(123)I]8 in normal brain. Small animal PET studies with [(76)Br]5 demonstrated good tumor visualization of intracranial DBTs up to 24 h with clearance from normal tissues. These results indicate that [(76)Br]5 is a promising PET tracer for brain tumor imaging and lead compound for a mixed system A and system L transport substrate.
Collapse
Affiliation(s)
- Jennifer L. Burkemper
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Chaofeng Huang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Keith Rich
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Suzanne E. Lapi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
67
|
Buckingham F, Kirjavainen AK, Forsback S, Krzyczmonik A, Keller T, Newington IM, Glaser M, Luthra SK, Solin O, Gouverneur V. Organomediated Enantioselective (18)F Fluorination for PET Applications. Angew Chem Int Ed Engl 2015; 54:13366-9. [PMID: 26360631 DOI: 10.1002/anie.201506035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/30/2015] [Indexed: 01/02/2023]
Abstract
The first organomediated asymmetric (18)F fluorination has been accomplished using a chiral imidazolidinone and [(18)F]N-fluorobenzenesulfonimide. The method provides access to enantioenriched (18)F-labeled α-fluoroaldehydes (>90% ee), which are versatile chiral (18)F synthons for the synthesis of radiotracers. The utility of this process is demonstrated with the synthesis of the PET (positron emission tomography) tracer (2S,4S)-4-[(18)F]fluoroglutamic acid.
Collapse
Affiliation(s)
- Faye Buckingham
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (UK)
| | - Anna K Kirjavainen
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4-8, 20520 Turku (Finland)
| | - Sarita Forsback
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4-8, 20520 Turku (Finland)
| | - Anna Krzyczmonik
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4-8, 20520 Turku (Finland)
| | - Thomas Keller
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4-8, 20520 Turku (Finland)
| | - Ian M Newington
- GE Healthcare, The Grove Centre, White Lion Road, Amersham, HP7 9LL (UK)
| | - Matthias Glaser
- GE Healthcare, The Grove Centre, White Lion Road, Amersham, HP7 9LL (UK)
| | - Sajinder K Luthra
- GE Healthcare, The Grove Centre, White Lion Road, Amersham, HP7 9LL (UK)
| | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4-8, 20520 Turku (Finland)
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (UK).
| |
Collapse
|
68
|
Buckingham F, Kirjavainen AK, Forsback S, Krzyczmonik A, Keller T, Newington IM, Glaser M, Luthra SK, Solin O, Gouverneur V. Organomediated Enantioselective
18
F Fluorination for PET Applications. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Faye Buckingham
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (UK)
| | - Anna K. Kirjavainen
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4–8, 20520 Turku (Finland)
| | - Sarita Forsback
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4–8, 20520 Turku (Finland)
| | - Anna Krzyczmonik
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4–8, 20520 Turku (Finland)
| | - Thomas Keller
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4–8, 20520 Turku (Finland)
| | - Ian M. Newington
- GE Healthcare, The Grove Centre, White Lion Road, Amersham, HP7 9LL (UK)
| | - Matthias Glaser
- GE Healthcare, The Grove Centre, White Lion Road, Amersham, HP7 9LL (UK)
| | - Sajinder K. Luthra
- GE Healthcare, The Grove Centre, White Lion Road, Amersham, HP7 9LL (UK)
| | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Kiinamyllynkatu 4–8, 20520 Turku (Finland)
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (UK)
| |
Collapse
|
69
|
Hassanein M, Qian J, Hoeksema MD, Wang J, Jacobovitz M, Ji X, Harris FT, Harris BK, Boyd KL, Chen H, Eisenberg R, Massion PP. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int J Cancer 2015; 137:1587-97. [PMID: 25821004 DOI: 10.1002/ijc.29535] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/17/2015] [Indexed: 01/22/2023]
Abstract
We previously elucidated the pleotropic role of solute carrier family A1 member 5 (SLC1A5) as the primary transporter of glutamine (Gln), a modulator of cell growth and oxidative stress in non-small cell lung cancer (NSCLC). The aim of our study was to evaluate SLC1A5 as a potential new therapeutic target and candidate biomarker predictive of survival and response to therapy. SLC1A5 targeting was examined in a panel of NSCLC and human bronchial cell lines by RNA interference and by a small molecular inhibitor, gamma-l-glutamyl-p-nitroanilide (GPNA). The effects of targeting SLC1A5 on cell growth, Gln uptake, ATP level, autophagy and cell death were examined. Inactivation of SLC1A5 genetically or pharmacologically decreased Gln consumption, inhibited cell growth, induced autophagy and apoptosis in a subgroup of NSCLC cell lines that overexpress SLC1A5. Targeting SLC1A5 function decreased tumor growth in NSCLC xenografts. A multivariate Cox proportional hazards analysis indicates that patients with increased SLC1A5 mRNA expression have significantly shorter overall survival (p = 0.01, HR = 1.24, 95% CI: 1.05-1.46), adjusted for age, gender, smoking history and disease stage. In an immunohistochemistry study on 207 NSCLC patients, SLC1A5 protein expression remained highly significant prognostic value in both univariate (p < 0.0001, HR = 1.45, 95% CI: 1.15-1.50) and multivariate analyses (p = 0.04, HR = 1.22, 95% CI: 1.01-1.31). These results position SLC1A5 as a new candidate prognostic biomarker for selective targeting of Gln-dependent NSCLC.
Collapse
Affiliation(s)
- Mohamed Hassanein
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | - Jun Qian
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | - Megan D Hoeksema
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | - Jing Wang
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN
| | - Marie Jacobovitz
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | - Xiangming Ji
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | - Fredrick T Harris
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN.,Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN
| | - Bradford K Harris
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN
| | - Kelli L Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN
| | - Rosana Eisenberg
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Pierre P Massion
- Thoracic Program, Vanderbilt-Ingram Comprehensive Cancer Center and Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN.,Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
70
|
Bouhlel A, Zhou D, Li A, Yuan L, Rich KM, McConathy J. Synthesis, Radiolabeling, and Biological Evaluation of (R)- and (S)-2-Amino-5-[(18)F]fluoro-2-methylpentanoic Acid ((R)-, (S)-[(18)F]FAMPe) as Potential Positron Emission Tomography Tracers for Brain Tumors. J Med Chem 2015; 58:3817-29. [PMID: 25843369 DOI: 10.1021/jm502023y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel (18)F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[(18)F]fluoro-2-methylpentanoic acid ([(18)F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [(18)F]FAMPe were obtained in good radiochemical yield (24-52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that (S)-[(18)F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and small animal PET/CT studies in the mouse DBT model of glioblastoma showed that both (R)- and (S)-[(18)F]FAMPe have good tumor imaging properties with the (S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Comparison of the SUVs showed that (S)-[(18)F]FAMPe had higher tumor to brain ratios compared to (S)-[(18)F]FET, a well-established system L substrate.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Dong Zhou
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Keith M Rich
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
71
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
72
|
Tang C, Xu Z, Hu K, Yao B, Tang G, Nie D. Radiation dosimetry estimation of N-(2-[(18)F]fluoropropionyl)- L-glutamate based on the mice distribution data. Appl Radiat Isot 2015; 98:108-112. [PMID: 25661723 DOI: 10.1016/j.apradiso.2015.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/22/2014] [Accepted: 01/25/2015] [Indexed: 10/24/2022]
Abstract
N-(2-[(18)F]fluoropropionyl)-l-glutamate([(18)F]FPGLU) was a recently developed potential amino acid tracer for tumor imaging with positron emission tomography-computer tomography (PET-CT). The absorbed and effective radiation doses resulting from the intravenous administration of [(18)F]FPGLU were estimated using biodistribution data from normal mice. The methodology recommended by Medical Internal Radiation Dose Committee (MIRD) was used to estimate the doses. The highest uptake of [(18)F]FPGLU was found in the kidneys, followed by the liver and lung. The kidneys were the organ received the highest absorbed dose, 58.4μGy/MBq, the brain received the lowest dose, 5.5μGy/MBq, and other organs received doses in the range of 8.3-11.9μGy/MBq. The effective dose was 17.0μSv/MBq. The data show that a 370MBq (10mCi) injection of [(18)F]FPGLU would lead to an estimated effective dose of 6.3mSv, which is within the accepted range of routine nuclear medicine investigations.
Collapse
Affiliation(s)
- Caihua Tang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Zeqing Xu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai 519000, China
| | - Kongzhen Hu
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Baoguo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ganghua Tang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dahong Nie
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
73
|
Abstract
Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.
Collapse
|
74
|
Abstract
Positron emission tomography (PET) is an extraordinarily sensitive clinical imaging modality for interrogating tumor metabolism. Radiolabeled PET substrates can be traced at subphysiological concentrations, allowing noninvasive imaging of metabolism and intratumoral heterogeneity in systems ranging from advanced cancer models to patients in the clinic. There are a wide range of novel and more established PET radiotracers, which can be used to investigate various aspects of the tumor, including carbohydrate, amino acid, and fatty acid metabolism. In this review, we briefly discuss the more established metabolic tracers and describe recent work on the development of new tracers. Some of the unanswered questions in tumor metabolism are considered alongside new technical developments, such as combined PET/magnetic resonance imaging scanners, which could provide new imaging solutions to some of the outstanding diagnostic challenges facing modern cancer medicine.
Collapse
Affiliation(s)
- David Y. Lewis
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Dmitry Soloviev
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Kevin M. Brindle
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
75
|
Cetindis M, Biegner T, Munz A, Teriete P, Reinert S, Grimm M. Glutaminolysis and carcinogenesis of oral squamous cell carcinoma. Eur Arch Otorhinolaryngol 2015; 273:495-503. [PMID: 25663193 DOI: 10.1007/s00405-015-3543-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/03/2015] [Indexed: 12/12/2022]
Abstract
Glutaminolysis is a crucial factor for tumor metabolism in the carcinogenesis of several tumors but has not been clarified for oral squamous cell carcinoma (OSCC) yet. Expression of glutaminolysis-related solute carrier family 1, member 5 (SLC1A5)/neutral amino acid transporter (ASCT2), glutaminase (GLS), and glutamate dehydrogenase (GLDH) was analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry. SLC1A5/ASCT2 and GLS were significantly overexpressed in the carcinogenesis of OSCC compared with normal tissue, while GLDH was weakly detected. Compared with SIN I-III SLC1A5/ASCT2 and GLS expression were significantly increased in OSCC. GLDH expression did not significantly differ from SIN I-III compared with OSCC. This study shows the first evidence of glutaminolysis-related SLC1A5/ASCT2, GLS, and GLDH expression in OSCC. The very weak GLDH expression indicates that glutamine metabolism is rather related to nucleotide or protein/hexosamine biosynthesis or to the function as an antioxidant (glutathione) than to energy production or generation of lactate through entering the tricarboxylic acid cycle. Overcoming glutaminolysis by targeting c-Myc oncogene (e.g. by natural compounds) and thereby cross-activation of mammalian target of rapamycin complex 1 or SLC1A5/ASCT2, GLS inhibitors may be a useful strategy to sensitize cancer cells to common OSCC cancer therapies.
Collapse
Affiliation(s)
- Marcel Cetindis
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, 72076, Tuebingen, Germany
| | - Thorsten Biegner
- Department of Pathology, University Hospital Tuebingen, Liebermeisterstrasse 8, 72076, Tuebingen, Germany
| | - Adelheid Munz
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, 72076, Tuebingen, Germany
| | - Peter Teriete
- Cancer Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, 72076, Tuebingen, Germany
| | - Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, 72076, Tuebingen, Germany.
| |
Collapse
|
76
|
Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, Shirakami Y. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol 2015; 16:322-9. [PMID: 24136390 DOI: 10.1007/s11307-013-0693-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE We aimed to elucidate trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid (anti-[(18)F]FACBC) uptake mechanisms in inflammatory and tumor cells, in comparison with those of L-[methyl-(11)C]methionine ([(11)C]Met) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG). PROCEDURES Using carbon-14-labeled tracers, in vitro time-course, pH dependence, and competitive inhibition uptake experiments were performed in rat inflammatory (T cells, B cells, granulocytes, macrophages), prostate cancer (MLLB2), and glioma (C6) cells. RESULTS Anti-[(14)C]FACBC uptake ratios of T/B cells to tumor cells were comparable, while those of granulocytes/macrophages to tumor cells were lower than those for [(14)C]FDG. Over half of anti-[(14)C]FACBC uptake by T/B and tumor cells was mediated by Na(+)-dependent amino acid transporters (system ASC), whereas most [(14)C]Met transport in all cells was mediated by Na(+)-independent carriers (system L). CONCLUSIONS The low anti-[(18)F]FACBC accumulation in granulocytes/macrophages may be advantageous in discriminating inflamed regions from tumors. The significant anti-[(18)F]FACBC uptake in T/B cells may cause false-positives in some cancer patients who undergo FACBC-positron emission tomography (PET).
Collapse
Affiliation(s)
- Shuntaro Oka
- Research Center, Nihon Medi-Physics Co., Ltd, Chiba, Japan,
| | | | | | | | | | | | | |
Collapse
|
77
|
Hu K, Du K, Tang G, Yao S, Wang H, Liang X, Yao B, Huang T, Zang L. Radiosynthesis and biological evaluation of N-[18F]labeled glutamic acid as a tumor metabolic imaging tracer. PLoS One 2014; 9:e93262. [PMID: 24681642 PMCID: PMC3969356 DOI: 10.1371/journal.pone.0093262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022] Open
Abstract
We have previously reported that N-(2-[18F]fluoropropionyl)-L-methionine ([18F]FPMET) selectively accumulates in tumors. However, due to the poor pharmacokinetics of [18F]FPMET in vivo, the potential clinical translation of this observation is hampered. In this study, we rationally designed and synthesized [18F] or [11C]labeled N-position L-glutamic acid analogues for tumor imaging. N-(2-[18F]fluoropropionyl)-L-glutamic acid ([18F]FPGLU) was synthesized with a 30±10% (n = 10, decay-corrected) overall radiochemical yield and a specific activity of 40±25 GBq/μmol (n = 10) after 130 min of radiosynthesis. In vitro cell experiments showed that [18F]FPGLU was primarily transported through the XAG(-) system and was not incorporated into protein. [18F]FPGLU was stable in urine, tumor tissues, and blood. We were able to use [18F]FPGLU in PET imaging and obtained high tumor to background ratios when visualizing tumors tissues in animal models.
Collapse
Affiliation(s)
- Kongzhen Hu
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ganghua Tang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shaobo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongliang Wang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Liang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Baoguo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Huang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
78
|
Webster JM, Morton CA, Johnson BF, Yang H, Rishel MJ, Lee BD, Miao Q, Pabba C, Yapp DT, Schaffer P. Functional imaging of oxidative stress with a novel PET imaging agent, 18F-5-fluoro-L-aminosuberic acid. J Nucl Med 2014; 55:657-64. [PMID: 24578242 DOI: 10.2967/jnumed.113.126664] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Glutathione is the predominant endogenous cellular antioxidant, playing a critical role in the cellular defensive response to oxidative stress by neutralizing free radicals and reactive oxygen species. With cysteine as the rate-limiting substrate in glutathione biosynthesis, the cystine/glutamate transporter (system xc(-)) represents a potentially attractive PET biomarker to enable in vivo quantification of xc(-) activity in response to oxidative stress associated with disease. We have developed a system xc(-) substrate that incorporates characteristics of both natural substrates, L-cystine and L-glutamate (L-Glu). L-aminosuberic acid (L-ASu) has been identified as a more efficient system xc(-) substrate than L-Glu, leading to an assessment of a series of anionic amino acids as prospective PET tracers. Herein, we report the synthesis and in vitro and in vivo validation of a lead candidate, (18)F-5-fluoro-aminosuberic acid ((18)F-FASu), as a PET tracer for functional imaging of a cellular response to oxidative stress with remarkable tumor uptake and retention. METHODS (18)F-FASu was identified as a potential PET tracer based on an in vitro screening of compounds similar to L-cystine and L-Glu. Affinity toward system xc(-) was determined via in vitro uptake and inhibition studies using oxidative stress-induced EL4 and SKOV-3 cells. In vivo biodistribution and PET imaging studies were performed in mice bearing xenograft tumors (EL4 and SKOV-3). RESULTS In vitro assay results determined that L-ASu inhibited system xc(-) as well as or better than L-Glu. The direct comparison of uptake of tritiated compounds demonstrated more efficient system xc(-) uptake of L-ASu than L-Glu. Radiosynthesis of (18)F-FASu allowed the validation of uptake for the fluorine-bearing derivative in vitro. Evaluation in vivo demonstrated primarily renal clearance and uptake of approximately 8 percentage injected dose per gram in SKOV-3 tumors, with tumor-to-blood and tumor-to-muscle ratios of approximately 12 and approximately 28, respectively. (18)F-FASu uptake was approximately 5 times greater than (18)F-FDG uptake in SKOV-3 tumors. Dynamic PET imaging demonstrated uptake in EL4 tumor xenografts of approximately 6 percentage injected dose per gram and good tumor retention for at least 2 h after injection. CONCLUSION (18)F-FASu is a potentially useful metabolic tracer for PET imaging of a functional cellular response to oxidative stress. (18)F-FASu may provide more sensitive detection than (18)F-FDG in certain tumors.
Collapse
Affiliation(s)
- Jack M Webster
- Diagnostics and Biomedical Technologies, GE Global Research, Niskayuna, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Mohamed A, Deng X, Khuri FR, Owonikoko TK. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin Lung Cancer 2014; 15:7-15. [PMID: 24377741 PMCID: PMC3970234 DOI: 10.1016/j.cllc.2013.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 12/16/2022]
Abstract
Disordered cancer metabolism was described almost a century ago as an abnormal adaptation of cancer cells to glucose utilization especially in hypoxic conditions; the so-called Warburg effect. Greater research interest in this area in the past two decades has led to the recognition of the critical coupling of specific malignant phenotypes such as increased proliferation and resistance to programmed cell death (apoptosis) with altered metabolic handling of key molecules that are essential for normal cellular metabolism. The altered glucose metabolism frequently encountered in cancer cells has already been exploited for cancer diagnosis and treatment. The role of other glycolytic pathway intermediates and alternative pathways for energy generation and macromolecular synthesis in cancer cells has only become recognized more recently. Especially, the important role of altered glutamine metabolism in the malignant behavior of cancer cells and the potential exploitation of this cellular adaptation for therapeutic targeting has now emerged as an important area of cancer research. Expectedly, attempts to exploit this understanding for diagnostic and therapeutic ends are running apace with the elucidation of the complex metabolic alterations that accompany neoplastic transformation. Because lung cancer is a leading cause of cancer death with limited curative therapy options, careful elucidation of the mechanism and consequences of disordered cancer metabolism in lung cancer is warranted. This review provides a concise, systematic overview of the current understanding of the role of altered glutamine metabolism in cancer, and how these findings intersect with current and future approaches to lung cancer management.
Collapse
Affiliation(s)
- Amr Mohamed
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA.
| |
Collapse
|
80
|
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013. [DOI: 10.1172/jci69600 pmid:239994422013-09-01]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
81
|
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123:3678-84. [PMID: 23999442 DOI: 10.1172/jci69600] [Citation(s) in RCA: 925] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glutamine is an abundant and versatile nutrient that participates in energy formation, redox homeostasis, macromolecular synthesis, and signaling in cancer cells. These characteristics make glutamine metabolism an appealing target for new clinical strategies to detect, monitor, and treat cancer. Here we review the metabolic functions of glutamine as a super nutrient and the surprising roles of glutamine in supporting the biological hallmarks of malignancy. We also review recent efforts in imaging and therapeutics to exploit tumor cell glutamine dependence, discuss some of the challenges in this arena, and suggest a disease-focused paradigm to deploy these emerging approaches.
Collapse
Affiliation(s)
- Christopher T Hensley
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
82
|
Cooper AJL, Krasnikov BF, Pinto JT, Kung HF, Li J, Ploessl K. Comparative enzymology of (2S,4R)4-fluoroglutamine and (2S,4R)4-fluoroglutamate. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:108-20. [PMID: 22613816 DOI: 10.1016/j.cbpb.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/26/2022]
Abstract
Many cancer cells have a strong requirement for glutamine. As an aid for understanding this phenomenon the (18)F-labeled 2S,4R stereoisomer of 4-fluoroglutamine [(2S,4R)4-FGln] was previously developed for in vivo positron emission tomography (PET). In the present work, comparative enzymological studies of unlabeled (2S,4R)4-FGln and its deamidated product (2S,4R)4-FGlu were conducted as an adjunct to these PET studies. Our findings are as follows: Rat kidney preparations catalyze the deamidation of (2S,4R)4-FGln. (2,4R)4-FGln and (2S,4R)4-FGlu are substrates of various aminotransferases. (2S,4R)4-FGlu is a substrate of glutamate dehydrogenase, but not of sheep brain glutamine synthetase. The compound is, however, a strong inhibitor of this enzyme. Rat liver cytosolic fractions catalyze a γ-elimination reaction with (2S,4R)4-FGlu, generating α-ketoglutarate. Coupling of a deamidase reaction with this γ-elimination reaction provides an explanation for the previous detection of (18)F(-) in tumors exposed to [(18)F](2S,4R)4-FGln. One enzyme contributing to this reaction was identified as alanine aminotransferase, which catalyzes competing γ-elimination and aminotransferase reactions with (2S,4R)4-FGlu. This appears to be the first description of an aminotransferase catalyzing a γ-elimination reaction. The present results demonstrate that (2S,4R)4-FGln and (2S,4R)4-FGlu are useful analogues for comparative studies of various glutamine- and glutamate-utilizing enzymes in normal and cancerous mammalian tissues, and suggest that tumors may metabolize (2S,4R)4-FGln in a generally similar fashion to glutamine. In plants, yeast and bacteria a major route for ammonia assimilation involves the consecutive action of glutamate synthase plus glutamine synthetase (glutamate synthase cycle). It is suggested that (2S,4R)4-FGln and (2S,4R)4-FGlu will be useful probes in studies of ammonia assimilation by the glutamate synthase pathway in these organisms. Finally, glutamine transaminases are conserved in mammals, plants and bacteria, and probably serve to close the methionine salvage pathway, thus linking nitrogen metabolism to sulfur metabolism and one-carbon metabolism. It is suggested that (2S,4R)4-FGln may be useful in studies of the methionine salvage pathway in a variety of organisms.
Collapse
Affiliation(s)
- Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|