51
|
Wadsworth BJ, Pan J, Dude I, Colpo N, Bosiljcic M, Lin KS, Benard F, Bennewith KL. 2-18F-Fluoroethanol Is a PET Reporter of Solid Tumor Perfusion. J Nucl Med 2017; 58:815-820. [DOI: 10.2967/jnumed.116.183624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/21/2016] [Indexed: 11/16/2022] Open
|
52
|
Barajas RF, Krohn KA, Link JM, Hawkins RA, Clarke JL, Pampaloni MH, Cha S. Glioma FMISO PET/MR Imaging Concurrent with Antiangiogenic Therapy: Molecular Imaging as a Clinical Tool in the Burgeoning Era of Personalized Medicine. Biomedicines 2016; 4:biomedicines4040024. [PMID: 28536391 PMCID: PMC5344267 DOI: 10.3390/biomedicines4040024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 01/17/2023] Open
Abstract
The purpose of this article is to provide a focused overview of the current use of positron emission tomography (PET) molecular imaging in the burgeoning era of personalized medicine in the treatment of patients with glioma. Specifically, we demonstrate the utility of PET imaging as a tool for personalized diagnosis and therapy by highlighting a case series of four patients with recurrent high grade glioma who underwent 18F-fluoromisonidazole (FMISO) PET/MR (magnetic resonance) imaging through the course of antiangiogenic therapy. Three distinct features were observed from this small cohort of patients. First, the presence of pseudoprogression was retrospectively associated with the absence of hypoxia. Second, a subgroup of patients with recurrent high grade glioma undergoing bevacizumab therapy demonstrated disease progression characterized by an enlarging nonenhancing mass with newly developed reduced diffusion, lack of hypoxia, and preserved cerebral blood volume. Finally, a reduction in hypoxic volume was observed concurrent with therapy in all patients with recurrent tumor, and markedly so in two patients that developed a nonenhancing reduced diffusion mass. This case series demonstrates how medical imaging has the potential to influence personalized medicine in several key aspects, especially involving molecular PET imaging for personalized diagnosis, patient specific disease prognosis, and therapeutic monitoring.
Collapse
Affiliation(s)
- Ramon F Barajas
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Kenneth A Krohn
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Radiochemistry Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Jeanne M Link
- Department of Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
- Radiochemistry Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| | - Randall A Hawkins
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - Jennifer L Clarke
- Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112, USA.
| | - Miguel H Pampaloni
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143-0628, USA.
- Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave., Room 779 M, San Francisco, CA 94143-0112, USA.
| |
Collapse
|
53
|
Bao X, Wang MW, Luo JM, Wang SY, Zhang YP, Zhang YJ. Optimization of Early Response Monitoring and Prediction of Cancer Antiangiogenesis Therapy via Noninvasive PET Molecular Imaging Strategies of Multifactorial Bioparameters. Theranostics 2016; 6:2084-2098. [PMID: 27698942 PMCID: PMC5039682 DOI: 10.7150/thno.13917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/30/2016] [Indexed: 12/13/2022] Open
Abstract
Objective: Antiangiogenesis therapy (AAT) has provided substantial benefits regarding improved outcomes and survival for suitable patients in clinical settings. Therefore, the early definition of therapeutic effects is urgently needed to guide cancer AAT. We aimed to optimize the early response monitoring and prediction of AAT efficacy, as indicated by the multi-targeted anti-angiogenic drug sunitinib in U87MG tumors, using noninvasive positron emission computed tomography (PET) molecular imaging strategies of multifactorial bioparameters. Methods: U87MG tumor mice were treated via intragastric injections of sunitinib (80 mg/kg) or vehicle for 7 consecutive days. Longitudinal MicroPET/CT scans with 18F-FDG, 18F-FMISO, 18F-ML-10 and 18F-Alfatide II were acquired to quantitatively measure metabolism, hypoxia, apoptosis and angiogenesis on days 0, 1, 3, 7 and 13 following therapy initiation. Tumor tissues from a dedicated group of mice were collected for immunohistochemical (IHC) analysis of key biomarkers (Glut-1, CA-IX, TUNEL, ανβ3 and CD31) at the time points of PET imaging. The tumor sizes and mouse weights were measured throughout the study. The tumor uptake (ID%/gmax), the ratios of the tumor/muscle (T/M) for each probe, and the tumor growth ratios (TGR) were calculated and used for statistical analyses of the differences and correlations. Results: Sunitinib successfully inhibited U87MG tumor growth with significant differences in the tumor size from day 9 after sunitinib treatment compared with the control group (P < 0.01). The uptakes of 18F-FMISO (reduced hypoxia), 18F-ML-10 (increased apoptosis) and 18F-Alfatide II (decreased angiogenesis) in the tumor lesions significantly changed during the early stage (days 1 to 3) of sunitinib treatment; however, the uptake of 18F-FDG (increased glucose metabolism) was significantly different during the late stage. The PET imaging data of each probe were all confirmed via ex vivo IHC of the relevant biomarkers. Notably, the PET imaging of 18F-Alfatide II and 18F-FMISO was significantly correlated (all P < 0.05) with TGR, whereas the imaging of 18F-FDG and 18F-ML-10 was not significantly correlated with TGR. Conclusion: Based on the tumor uptake of the PET probes and their correlations with MVD and TGR, 18F-Alfatide II PET may not only monitor the early response but also precisely predict the therapeutic efficacy of the multi-targeted, anti-angiogenic drug sunitinib in U87MG tumors. In conclusion, it is feasible to optimize the early response monitoring and efficacy prediction of cancer AAT using noninvasive PET molecular imaging strategies of multifactorial bioparameters, such as angiogenesis imaging with 18F-Alfatide II, which represents an RGD-based probe.
Collapse
|
54
|
Quintela-Fandino M, Lluch A, Manso L, Calvo I, Cortes J, García-Saenz JA, Gil-Gil M, Martinez-Jánez N, Gonzalez-Martin A, Adrover E, de Andres R, Viñas G, Llombart-Cussac A, Alba E, Guerra J, Bermejo B, Zamora E, Moreno-Anton F, Pernas Simon S, Carrato A, Lopez-Alonso A, Escudero MJ, Campo R, Carrasco E, Palacios J, Mulero F, Colomer R. 18F-fluoromisonidazole PET and Activity of Neoadjuvant Nintedanib in Early HER2-Negative Breast Cancer: A Window-of-Opportunity Randomized Trial. Clin Cancer Res 2016; 23:1432-1441. [DOI: 10.1158/1078-0432.ccr-16-0738] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
|
55
|
He S, Wang M, Yang Z, Zhang J, Zhang Y, Luo J, Zhang Y. Comparison of 18F-FES, 18F-FDG, and 18F-FMISO PET Imaging Probes for Early Prediction and Monitoring of Response to Endocrine Therapy in a Mouse Xenograft Model of ER-Positive Breast Cancer. PLoS One 2016; 11:e0159916. [PMID: 27467716 PMCID: PMC4965120 DOI: 10.1371/journal.pone.0159916] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is an increasing need to characterize biological processes for early prediction and monitoring of response to endocrine therapy in breast cancer using multiple positron emission tomography (PET) imaging probes. However, use of more than two PET tracers in a single clinical trial is quite challenging. In this study we carried out a longitudinal investigation of 18F-FES, 18F-FDG, and 18F-FMISO PET imaging probes for early prediction and monitoring of response to endocrine therapy in a mouse xenograft model of estrogen receptor (ER)-positive breast cancer. METHOD ER+ human breast cancer ZR-75-1 models were established in female mice that were then randomly assigned to a treatment (fulvestrant, 5.0 mg/week for 21 days) or vehicle group. Micro-PET/CT imaging with 18F-FES, 18F-FDG, and 18F-FMISO was performed on days 0, 3, 14, and 21 after treatment. The uptake value (percentage injected dose per gram, %ID/g) for each probe in tumor (T) tissue and contralateral muscle (M) was measured for quantitative analysis and T/M calculation. Tumor volume was measured to record tumor growth at each time point. Tumor tissues were sampled for immunohistochemical staining of ER expression. Correlations for tumor volume and ERα levels with uptake data for the probe were tested. RESULTS Uptake data for 18F-FES in ZR-75-1 tumor tissues corresponded well with tumor response to endocrine therapy, but not for 18F-FDG and 18F-FMISO, according to longitudinal micro-PET/CT imaging and quantitative correlation analysis. There was a significant positive correlation between 18F-FES uptake and ER levels (%ID/gmax r2 = 0.76, P< 0.05; T/M r2 = 0.82, P<0.05). Notably, 18F-FES uptake on day 3 was significantly correlated with the day 21/baseline tumor volume ratio (%ID/gmax r2 = 0.74, P < 0.05; T/M r2 = 0.78, P < 0.05). CONCLUSIONS Comparison of 18F-FES, 18F-FDG, and 18F-FMISO probes revealed that 18F-FES PET/CT molecular imaging can provide a precise early prediction of tumor response to endocrine therapy in ER+ breast cancer in a ZR-75-1 xenograft model. This molecular imaging strategy with 18F-FES PET/CT will be useful in evaluating the efficacy of endocrine therapies and in developing new endocrine drugs.
Collapse
Affiliation(s)
- SiMin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - MingWei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - ZhongYi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - JianPing Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - YongPing Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - JianMin Luo
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
| | - YingJian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Molecular Imaging Probes, Shanghai, China
- * E-mail:
| |
Collapse
|
56
|
Kenny L. The Use of Novel PET Tracers to Image Breast Cancer Biologic Processes Such as Proliferation, DNA Damage and Repair, and Angiogenesis. J Nucl Med 2016; 57 Suppl 1:89S-95S. [PMID: 26834108 DOI: 10.2967/jnumed.115.157958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The balance between proliferation and cell death is pivotal to breast tumor growth. Because of a combination of environmental and genetic factors leading to activation of oncogenes or inactivation of tumor suppressor genes, these processes become deregulated in cancer. PET imaging of proliferation, angiogenesis, and DNA damage and repair offers the opportunity to monitor therapeutic efficacy to detect changes in tumor biology that may precede physical size reduction and simultaneously allows the study of intratumoral and intertumoral heterogeneity.This review examines recent developments in breast cancer imaging using novel probes. The probes discussed here are not licensed for routine use and are at various stages of development ranging from preclinical development (e.g., the DNA repair marker γH2AX) to clinical validation in larger studies (such as the proliferation probe 3'-deoxy-3'-(18)F-fluorothymidine [(18)F-FLT]). In breast cancer, most studies have focused on proliferation imaging mainly based on (18)F-labeled thymidine analogs. Initial studies have been promising; however, the results of larger validation studies are necessary before being incorporated into routine clinical use. Although there are distinct advantages in using process-specific probes, properties such as metabolism need careful consideration, because high background uptake in the liver due to glucuronidation in the case of (18)F-FLT may limit utility for imaging of liver metastases.Targeting angiogenesis has had some success in tumors such as renal cell carcinoma; however, angiogenesis inhibitors have not been particularly successful in the clinical treatment of breast cancer. This could be potentially attributed to patient selection due to the lack of validated predictive and responsive biomarkers; the quest for a successful noninvasive biomarker for angiogenesis could solve this challenge. Finally, we look at cell death including apoptosis and DNA damage and repair probes, the most well-studied example being (18)F-annexin V; more recently, probes that target caspase endoproteases have been developed and are undergoing early clinical validation studies.Further clinical studies including analysis of test-retest variability are essential to determine sensitivity and future utility of these probes in breast cancer.
Collapse
Affiliation(s)
- Laura Kenny
- Department of Surgery and Cancer, Comprehensive Cancer Imaging Center, Imperial College London, London, United Kingdom
| |
Collapse
|
57
|
Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in estrogen receptor-positive breast cancer. Oncotarget 2016; 6:8648-62. [PMID: 25929338 PMCID: PMC4496173 DOI: 10.18632/oncotarget.3257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/31/2015] [Indexed: 12/27/2022] Open
Abstract
Resistance is an obstacle to endocrine therapy for breast cancer. We measured levels of hypoxia-inducible factor (HIF)-1α in 52 primary breast cancer patients before and after receiving neoadjuvant endocrine therapy with letrozole for at least 3 months. Pre-treatment levels of HIF-1α were associated with negative clinical outcome. Furthermore, levels of HIF-1α were increased in post-treatment residual tumors compared with those in pre-treatment biopsy samples. In animal studies, xenografts stably expressing HIF-1α were resistant to endocrine therapy with fulvestrant compared with the effects in control xenografts. Additionally, HIF-1α transcription was inhibited by zoledronic acid, a conventional drug for the treatment of postmenopausal osteoporosis, and was accompanied by a marked inhibition of the RAS/MAPK/ERK1/2 pathway. HIF-1α is a determinant of resistance to endocrine therapy and should be considered as a potential therapeutic target for overcoming endocrine resistance in estrogen receptor (ER)-positive breast cancer. In addition, zoledronic acid may overcome endocrine resistance in ER-positive human breast cancer by targeting HIF-1α transcription through inhibition of the RAS/MAPK/ERK1/2 pathway. Clinical studies on the administration of zoledronic acid as a second line treatment in patients who failed endocrine therapy should be considered to improve therapeutic outcomes in breast cancer patients.
Collapse
|
58
|
Apostolova I, Wedel F, Brenner W. Imaging of Tumor Metabolism Using Positron Emission Tomography (PET). Recent Results Cancer Res 2016; 207:177-205. [PMID: 27557539 DOI: 10.1007/978-3-319-42118-6_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular imaging employing PET/CT enables in vivo visualization, characterization, and measurement of biologic processes in tumors at a molecular and cellular level. Using specific metabolic tracers, information about the integrated function of multiple transporters and enzymes involved in tumor metabolic pathways can be depicted, and the tracers can be directly applied as biomarkers of tumor biology. In this review, we discuss the role of F-18-fluorodeoxyglucose (FDG) as an in vivo glycolytic marker which reflects alterations of glucose metabolism in cancer cells. This functional molecular imaging technique offers a complementary approach to anatomic imaging such as computed tomography (CT) and magnetic resonance imaging (MRI) and has found widespread application as a diagnostic modality in oncology to monitor tumor biology, optimize the therapeutic management, and guide patient care. Moreover, emerging methods for PET imaging of further biologic processes relevant to cancer are reviewed, with a focus on tumor hypoxia and aberrant tumor perfusion. Hypoxic tumors are associated with poor disease control and increased resistance to cytotoxic and radiation treatment. In vivo imaging of hypoxia, perfusion, and mismatch of metabolism and perfusion has the potential to identify specific features of tumor microenvironment associated with poor treatment outcome and, thus, contribute to personalized treatment approaches.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Radiology and Nuclear Medicine, Medical School, Otto-von-Guericke University, Magdeburg A.ö.R., Magdeburg, Germany
| | - Florian Wedel
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine, University Medicine Charité, Berlin, Germany.
| |
Collapse
|
59
|
Zhang Z, Lau J, Kuo HT, Zhang C, Hundal-Jabal N, Colpo N, Bénard F, Lin KS. Synthesis and evaluation of 18 F-labeled 4-nitrobenzyl derivatives for imaging tumor hypoxia with positron emission tomography: Comparison of 2-[ 18 F]fluoroethyl carbonate and 2-[ 18 F]fluoroethyl carbamate. Bioorg Med Chem Lett 2016; 26:584-588. [DOI: 10.1016/j.bmcl.2015.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
|
60
|
Rajendran JG, Krohn KA. F-18 fluoromisonidazole for imaging tumor hypoxia: imaging the microenvironment for personalized cancer therapy. Semin Nucl Med 2015; 45:151-62. [PMID: 25704387 DOI: 10.1053/j.semnuclmed.2014.10.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoxia in solid tumors is one of the seminal mechanisms for developing aggressive trait and treatment resistance in solid tumors. This evolutionarily conserved biological mechanism along with derepression of cellular functions in cancer, although resulting in many challenges, provide us with opportunities to use these adversities to our advantage. Our ability to use molecular imaging to characterize therapeutic targets such as hypoxia and apply this information for therapeutic interventions is growing rapidly. Evaluation of hypoxia and its biological ramifications to effectively plan appropriate therapy that can overcome the cure-limiting effects of hypoxia provides an objective means for treatment selection and planning. Fluoromisonidazole (FMISO) continues to be the lead radiopharmaceutical in PET imaging for the evaluation, prognostication, and quantification of tumor hypoxia, one of the key elements of the tumor microenvironment. FMISO is less confounded by blood flow, and although the images have less contrast than FDG-PET, its uptake after 2 hours is an accurate reflection of inadequate regional oxygen partial pressure at the time of radiopharmaceutical administration. By virtue of extensive clinical utilization, FMISO remains the lead candidate for imaging and quantifying hypoxia. The past decade has seen significant technological advances in investigating hypoxia imaging in radiation treatment planning and in providing us with the ability to individualize radiation delivery and target volume coverage. The presence of widespread hypoxia in the tumor can be effectively targeted with a systemic hypoxic cell cytotoxin or other agents that are more effective with diminished oxygen partial pressure, either alone or in combination. Molecular imaging in general and hypoxia imaging in particular will likely become an important in vivo imaging biomarker of the future, complementing the traditional direct tissue sampling methods by providing a snap shot of a primary tumor and metastatic disease and in following treatment response and will serve as adjuncts to personalized therapy.
Collapse
Affiliation(s)
- Joseph G Rajendran
- Department of Radiology, University of Washington, Seattle, WA; Department of Radiation Oncology, University of Washington, Seattle, WA.
| | - Kenneth A Krohn
- Department of Radiology, University of Washington, Seattle, WA; Department of Radiation Oncology, University of Washington, Seattle, WA
| |
Collapse
|
61
|
Tamaki N, Hirata K. Tumor hypoxia: a new PET imaging biomarker in clinical oncology. Int J Clin Oncol 2015; 21:619-625. [DOI: 10.1007/s10147-015-0920-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 01/02/2023]
|
62
|
Integration of imaging into clinical practice to assess the delivery and performance of macromolecular and nanotechnology-based oncology therapies. J Control Release 2015; 219:295-312. [PMID: 26403800 DOI: 10.1016/j.jconrel.2015.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/19/2015] [Accepted: 09/19/2015] [Indexed: 01/02/2023]
Abstract
Functional and molecular imaging has become increasingly used to evaluate interpatient and intrapatient tumor heterogeneity. Imaging allows for assessment of microenvironment parameters including tumor hypoxia, perfusion and proliferation, as well as tumor metabolism and the intratumoral distribution of specific molecular markers. Imaging information may be used to stratify patients for targeted therapies, and to define patient populations that may benefit from alternative therapeutic approaches. It also provides a method for non-invasive monitoring of treatment response at earlier time-points than traditional cues, such as tumor shrinkage. Further, companion diagnostic imaging techniques are becoming progressively more important for development and clinical implementation of targeted therapies. Imaging-based companion diagnostics are likely to be essential for the validation and FDA approval of targeted nanotherapies and macromolecular medicines. This review describes recent clinical advances in the use of functional and molecular imaging to evaluate the tumor microenvironment. Additionally, this article focuses on image-based assessment of distribution and anti-tumor effect of nano- and macromolecular systems.
Collapse
|
63
|
Deng SM, Zhang W, Zhang B, Chen YY, Li JH, Wu YW. Correlation between the Uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the Expression of Proliferation-Associated Antigen Ki-67 in Cancer Patients: A Meta-Analysis. PLoS One 2015; 10:e0129028. [PMID: 26038827 PMCID: PMC4454667 DOI: 10.1371/journal.pone.0129028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To study the correlation between 18F-FDG uptake and cell proliferation in cancer patients by meta-analysis of published articles. Methods We searched PubMed (MEDLINE included), EMBASE, and Cochrane Database of Systematic Review, and selected research articles on the relationship between 18F-FDG uptake and Ki-67 expression (published between August 1, 1994-August 1, 2014), according to the literature inclusion and exclusion criteria. The publishing language was limited to English. The quality of included articles was evaluated according to the Quality Assessment of Diagnosis Accuracy Studies-2 (QUADAS-2). The correlation coefficient (r) was extracted from the included articles and processed by Fisher's r-to-z transformation. The combined correlation coefficient (r) and the 95% confidence interval (CI) were calculated with STATA 11.0 software under a random-effects model. Begg's test was used to analyze the existence of publication bias and draw funnel plot, and the sources of heterogeneity were explored by sensitivity and subgroup analyses. Results According to the inclusion and exclusion criteria, 79 articles were finally included, including 81 studies involving a total of 3242 patients. All the studies had a combined r of 0.44 (95% CI, 0.41-0.46), but with a significant heterogeneity (I2 = 80.9%, P<0.01). Subgroup analysis for different tumor types indicated that most subgroups showed a reduced heterogeneity. Malignant melanoma (n = 1) had the minimum correlation coefficient (-0.22) between 18F-FDG uptake and Ki-67 expression, while the thymic epithelial tumors (TETs; n = 2) showed the maximum correlation coefficient of 0.81. The analytical results confirmed that correlation between 18F-FDG uptake and Ki-67 expression was extremely significant in TETs, significant in gastrointestinal stromal tumors (GISTs), moderate in patients with lung, breast, bone and soft tissue, pancreatic, oral, thoracic, and uterine and ovarian cancers, average in brain, esophageal and colorectal cancers, and poor in head and neck, thyroid, gastric and malignant melanoma tumors. Subgroup analysis indicated that positron emission tomography (PET) or PET/CT imaging technology or Ki-67 and standardized uptake value (SUV) measurement technology did not significantly affect the results of r values, and Begg's test showed no significant publication bias. Conclusion In cancer patients, 18F-FDG uptake showed a moderate positive correlation with tumor cell proliferation. Different tumor types exhibited varied degree of correlation, and the correlation was significant in TETs and GSTs. However, our results need further validation by clinical trials with a large sample of different tumor types.
Collapse
Affiliation(s)
- Sheng-ming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- * E-mail:
| | - Yin-yin Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-hui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-wei Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
64
|
Chung SH, Feldman MD, Martinez D, Kim H, Putt ME, Busch DR, Tchou J, Czerniecki BJ, Schnall MD, Rosen MA, DeMichele A, Yodh AG, Choe R. Macroscopic optical physiological parameters correlate with microscopic proliferation and vessel area breast cancer signatures. Breast Cancer Res 2015; 17:72. [PMID: 26013572 PMCID: PMC4487833 DOI: 10.1186/s13058-015-0578-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/11/2015] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Non-invasive diffuse optical tomography (DOT) and diffuse correlation spectroscopy (DCS) can detect and characterize breast cancer and predict tumor responses to neoadjuvant chemotherapy, even in patients with radiographically dense breasts. However, the relationship between measured optical parameters and pathological biomarker information needs to be further studied to connect information from optics to traditional clinical cancer biology. Thus we investigate how optically measured physiological parameters in malignant tumors such as oxy-, deoxy-hemoglobin concentration, tissue blood oxygenation, and metabolic rate of oxygen correlate with microscopic histopathological biomarkers from the same malignant tumors, e.g., Ki67 proliferation markers, CD34 stained vasculature markers and nuclear morphology. METHODS In this pilot study, we investigate correlations of macroscopic physiological parameters of malignant tumors measured by diffuse optical technologies with microscopic histopathological biomarkers of the same tumors, i.e., the Ki67 proliferation marker, the CD34 stained vascular properties marker, and nuclear morphology. RESULTS The tumor-to-normal relative ratio of Ki67-positive nuclei is positively correlated with DOT-measured relative tissue blood oxygen saturation (R = 0.89, p-value: 0.001), and lower tumor-to-normal deoxy-hemoglobin concentration is associated with higher expression level of Ki67 nuclei (p-value: 0.01). In a subset of the Ki67-negative group (defined by the 15 % threshold), an inverse correlation between Ki67 expression level and mammary metabolic rate of oxygen was observed (R = -0.95, p-value: 0.014). Further, CD34 stained mean-vessel-area in tumor is positively correlated with tumor-to-normal total-hemoglobin and oxy-hemoglobin concentration. Finally, we find that cell nuclei tend to have more elongated shapes in less oxygenated DOT-measured environments. CONCLUSIONS Collectively, the pilot data are consistent with the notion that increased blood is supplied to breast cancers, and it also suggests that less conversion of oxy- to deoxy-hemoglobin occurs in more proliferative cancers. Overall, the observations corroborate expectations that macroscopic measurements of breast cancer physiology using DOT and DCS can reveal microscopic pathological properties of breast cancer and hold potential to complement pathological biomarker information.
Collapse
Affiliation(s)
- So Hyun Chung
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Daniel Martinez
- Pathology Core Laboratory, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Helen Kim
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - David R Busch
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
- Division of Neurology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| | - Julia Tchou
- Department of Surgery, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Brian J Czerniecki
- Department of Surgery, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Mitchell D Schnall
- Department of Radiology, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Mark A Rosen
- Department of Radiology, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Angela DeMichele
- Department of Medicine, The Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA, 19104, USA.
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, 209 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA.
| |
Collapse
|
65
|
Alam IS, Arshad MA, Nguyen QD, Aboagye EO. Radiopharmaceuticals as probes to characterize tumour tissue. Eur J Nucl Med Mol Imaging 2015; 42:537-61. [PMID: 25647074 DOI: 10.1007/s00259-014-2984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/06/2023]
Abstract
Tumour cells exhibit several properties that allow them to grow and divide. A number of these properties are detectable by nuclear imaging methods. We discuss crucial tumour properties that can be described by current radioprobe technologies, further discuss areas of emerging radioprobe development, and finally articulate need areas that our field should aspire to develop. The review focuses largely on positron emission tomography and draws upon the seminal 'Hallmarks of Cancer' review article by Hanahan and Weinberg in 2011 placing into context the present and future roles of radiotracer imaging in characterizing tumours.
Collapse
Affiliation(s)
- Israt S Alam
- Comprehensive Cancer Imaging Centre, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
66
|
Vercher-Conejero JL, Pelegrí-Martinez L, Lopez-Aznar D, Cózar-Santiago MDP. Positron Emission Tomography in Breast Cancer. Diagnostics (Basel) 2015; 5:61-83. [PMID: 26854143 PMCID: PMC4665546 DOI: 10.3390/diagnostics5010061] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
Abstract
Gradually, FDG-PET/CT has been strengthening within the diagnostic algorithms of oncological diseases. In many of these, PET/CT has shown to be useful at different stages of the disease: diagnosis, staging or re-staging, treatment response assessment, and recurrence. Some of the advantages of this imaging modality versus CT, MRI, bone scan, mammography, or ultrasound, are based on its great diagnostic capacity since, according to the radiopharmaceutical used, it reflects metabolic changes that often occur before morphological changes and therefore allows us to stage at diagnosis. Moreover, another advantage of this technique is that it allows us to evaluate the whole body so it can be very useful for the detection of distant disease. With regard to breast cancer, FDG-PET/CT has proven to be important when recurrence is suspected or in the evaluation of treatment response. The technological advancement of PET equipment through the development of new detectors and equipment designed specifically for breast imaging, and the development of more specific radiopharmaceuticals for the study of the different biological processes of breast cancer, will allow progress not only in making the diagnosis of the disease at an early stage but also in enabling personalized therapy for patients with breast cancer.
Collapse
Affiliation(s)
- Jose Luis Vercher-Conejero
- Clinical Area of Medical Imaging, Department of Nuclear Medicine, GIBI230, Polytechnic and University Hospital La Fe, Valencia 46026, Spain.
| | - Laura Pelegrí-Martinez
- Diagnostic Imaging, Sant Joan Despí Moisès Broggi Hospital, Sant Joan Despí, Barcelona 08970, Spain.
| | - Diego Lopez-Aznar
- Department of Nuclear Medicine, Provincial Hospital Consortium, Castellón de la Plana 12002, Spain.
| | | |
Collapse
|
67
|
Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, Domarkas J, Lord S, Baldry C, Gilbert FJ. Imaging tumour hypoxia with positron emission tomography. Br J Cancer 2015; 112:238-50. [PMID: 25514380 PMCID: PMC4453462 DOI: 10.1038/bjc.2014.610] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/30/2014] [Accepted: 11/10/2014] [Indexed: 01/02/2023] Open
Abstract
Hypoxia, a hallmark of most solid tumours, is a negative prognostic factor due to its association with an aggressive tumour phenotype and therapeutic resistance. Given its prominent role in oncology, accurate detection of hypoxia is important, as it impacts on prognosis and could influence treatment planning. A variety of approaches have been explored over the years for detecting and monitoring changes in hypoxia in tumours, including biological markers and noninvasive imaging techniques. Positron emission tomography (PET) is the preferred method for imaging tumour hypoxia due to its high specificity and sensitivity to probe physiological processes in vivo, as well as the ability to provide information about intracellular oxygenation levels. This review provides an overview of imaging hypoxia with PET, with an emphasis on the advantages and limitations of the currently available hypoxia radiotracers.
Collapse
Affiliation(s)
- I N Fleming
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, Foresterhill, Aberdeen AB25 2ZD, UK
| | - R Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218-Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - P J Blower
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London SE1 7EH, UK
| | - C West
- Manchester Academic Health Science Centre, Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - K J Williams
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, University Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
- EPSRC and CRUK Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | - A L Harris
- Molecular Oncology Laboratories, University Department of Medical Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - J Domarkas
- Centre for Cardiovascular and Metabolic Research, Respiratory Medicine, Hull-York Medical School, University of Hull, Hull HU16 5JQ, UK
| | - S Lord
- Molecular Oncology Laboratories, University Department of Medical Oncology, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - C Baldry
- Division of Imaging Sciences and Biomedical Engineering, St Thomas' Hospital, King's College London, 4th Floor, Lambeth Wing, London SE1 7EH, UK
| | - F J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218-Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
- EPSRC and CRUK Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| |
Collapse
|
68
|
Verwer EE, Boellaard R, Veldt AAMVD. Positron emission tomography to assess hypoxia and perfusion in lung cancer. World J Clin Oncol 2014; 5:824-844. [PMID: 25493221 PMCID: PMC4259945 DOI: 10.5306/wjco.v5.i5.824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
In lung cancer, tumor hypoxia is a characteristic feature, which is associated with a poor prognosis and resistance to both radiation therapy and chemotherapy. As the development of tumor hypoxia is associated with decreased perfusion, perfusion measurements provide more insight into the relation between hypoxia and perfusion in malignant tumors. Positron emission tomography (PET) is a highly sensitive nuclear imaging technique that is suited for non-invasive in vivo monitoring of dynamic processes including hypoxia and its associated parameter perfusion. The PET technique enables quantitative assessment of hypoxia and perfusion in tumors. To this end, consecutive PET scans can be performed in one scan session. Using different hypoxia tracers, PET imaging may provide insight into the prognostic significance of hypoxia and perfusion in lung cancer. In addition, PET studies may play an important role in various stages of personalized medicine, as these may help to select patients for specific treatments including radiation therapy, hypoxia modifying therapies, and antiangiogenic strategies. In addition, specific PET tracers can be applied for monitoring therapy. The present review provides an overview of the clinical applications of PET to measure hypoxia and perfusion in lung cancer. Available PET tracers and their characteristics as well as the applications of combined hypoxia and perfusion PET imaging are discussed.
Collapse
|
69
|
Lee CI, Gold LS, Nelson HD, Chou R, Ramsey SD, Sullivan SD. Comparative effectiveness of imaging modalities to determine metastatic breast cancer treatment response. Breast 2014; 24:3-11. [PMID: 25479913 DOI: 10.1016/j.breast.2014.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/07/2014] [Accepted: 11/16/2014] [Indexed: 11/26/2022] Open
Abstract
We performed a systematic review to address the comparative effectiveness of different imaging modalities in evaluating treatment response among metastatic breast cancer patients. We searched seven multidisciplinary electronic databases for relevant publications (January 2003-December 2013) and performed dual abstraction of details and results for all clinical studies that involved stage IV breast cancer patients and evaluated imaging for detecting treatment response. Among 159 citations reviewed, 17 single-institution, non-randomized, observational studies met our inclusion criteria. Several studies demonstrate that changes in PET/CT standard uptake values are associated with changes in tumor volume as determined by bone scan, MRI, and/or CT. However, no studies evaluated comparative test performance between modalities or determined relationships between imaging findings and subsequent clinical decisions. Evidence for imaging's effectiveness in determining treatment response among metastatic breast cancer patients is limited. More rigorous research is needed to address imaging's value in this patient population.
Collapse
Affiliation(s)
- Christoph I Lee
- Department of Radiology, University of Washington School of Medicine, 825 Eastlake Avenue East, Seattle, WA 98109, USA; Department of Health Services, University of Washington School of Public Health, Box 357660, Seattle, WA 98195, USA; Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Laura S Gold
- Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Pharmaceutical Outcomes Research & Policy Program, School of Pharmacy, University of Washington, Box 257630, Seattle, WA 98195, USA.
| | - Heidi D Nelson
- Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Departments of Medical Informatics and Clinical Epidemiology and Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Providence Cancer Center, Providence Health & Services, 4805 NE Glisan Street, Portland, OR 97213, USA.
| | - Roger Chou
- Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Departments of Medical Informatics and Clinical Epidemiology and Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Scott D Ramsey
- Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Pharmaceutical Outcomes Research & Policy Program, School of Pharmacy, University of Washington, Box 257630, Seattle, WA 98195, USA; Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Sean D Sullivan
- Department of Health Services, University of Washington School of Public Health, Box 357660, Seattle, WA 98195, USA; Hutchinson Institute for Cancer Outcomes Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA; Pacific Northwest Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Pharmaceutical Outcomes Research & Policy Program, School of Pharmacy, University of Washington, Box 257630, Seattle, WA 98195, USA.
| |
Collapse
|
70
|
Pinker K, Helbich TH, Magometschnigg H, Fueger B, Baltzer P. [Molecular breast imaging. An update]. Radiologe 2014; 54:241-53. [PMID: 24557495 DOI: 10.1007/s00117-013-2580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. STANDARD RADIOLOGICAL METHODS Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ((1)H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). METHODICAL INNOVATIONS Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ((23)Na-MRI), phosphorus spectroscopy ((31)P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. PRACTICAL RECOMMENDATIONS It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible.
Collapse
Affiliation(s)
- K Pinker
- Abteilung für Molekulare Bildgebung, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | | | | | | | | |
Collapse
|
71
|
Radiolabeled probes targeting hypoxia-inducible factor-1-active tumor microenvironments. ScientificWorldJournal 2014; 2014:165461. [PMID: 25215311 PMCID: PMC4151590 DOI: 10.1155/2014/165461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/06/2014] [Indexed: 11/17/2022] Open
Abstract
Because tumor cells grow rapidly and randomly, hypoxic regions arise from the lack of oxygen supply in solid tumors. Hypoxic regions in tumors are known to be resistant to chemotherapy and radiotherapy. Hypoxia-inducible factor-1 (HIF-1) expressed in hypoxic regions regulates the expression of genes related to tumor growth, angiogenesis, metastasis, and therapy resistance. Thus, imaging of HIF-1-active regions in tumors is of great interest. HIF-1 activity is regulated by the expression and degradation of its α subunit (HIF-1α), which is degraded in the proteasome under normoxic conditions, but escapes degradation under hypoxic conditions, allowing it to activate transcription of HIF-1-target genes. Therefore, to image HIF-1-active regions, HIF-1-dependent reporter systems and injectable probes that are degraded in a manner similar to HIF-1α have been recently developed and used in preclinical studies. However, no probe currently used in clinical practice directly assesses HIF-1 activity. Whether the accumulation of 18F-FDG or 18F-FMISO can be utilized as an index of HIF-1 activity has been investigated in clinical studies. In this review, the current status of HIF-1 imaging in preclinical and clinical studies is discussed.
Collapse
|
72
|
Son SH, Kim DH, Hong CM, Kim CY, Jeong SY, Lee SW, Lee J, Ahn BC. Prognostic implication of intratumoral metabolic heterogeneity in invasive ductal carcinoma of the breast. BMC Cancer 2014; 14:585. [PMID: 25112709 PMCID: PMC4148559 DOI: 10.1186/1471-2407-14-585] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/05/2014] [Indexed: 11/16/2022] Open
Abstract
Background The purpose of this study was to evaluate the prognostic implication of findings of intratumoral metabolic heterogeneity on pretreatment 18F-FDG PET/CT scans in patients with invasive ductal carcinoma (IDC) of the breast. Methods One hundred and twenty-three female IDC patients who underwent pretreatment 18F-fluorodeoxyglucose positron-emission tomography/computed tomography (18F-FDG PET/CT) scans were retrospectively evaluated in this study. The heterogeneity factor (HF) defined as the derivative (dV/dT) of a volume threshold function from 40% to 80%, was computed for each primary tumor. Other metabolic PET parameters (maximum standardized uptake value [SUVmax], metabolic tumor volume [MTV], and total lesion glycolysis [TLG]) were measured. The HF was compared with clinicopathologic factors and other PET parameters. Univariate and multivariate analyses for the overall survival (OS) were performed. Results The HF ranged from 0.02 to 6.72 (mean, 0.35 ± 0.82) and significantly correlated with MTV (r = 0.955; p < 0.0001) and TLG (r = 0.354; p = 0.0001). The HF was significantly higher (implying more heterogeneity) in tumors with higher T and N stages. The optimal cut-off values for the OS determined using a receiver operating characteristic (ROC) curve were 0.34 for the HF, 5.6 for SUVmax, 8.55 cm3 for MTV, and 14.43 for TLG. The OS rate among the 123 patients was 86.2%. T stage (1, 2 vs. 3, 4), N stage (0, 1 vs. 2, 3), M stage (0 vs. 1), ER status (+ vs. –), SUVmax (≤ 5.6 vs. > 5.6), MTV (≤ 8.55 cm3 vs. > 8.55 cm3), TLG (≤ 14.43 vs. > 14.43), and HF (< 0.34 vs. ≥ 0.34) affected the OS on univariate analysis. After adjustment for the effects of TNM stage and ER status, the HF and MTV were significant predictors of OS. Among the PET parameters, the best prognostic factor for OS was the HF. Conclusions Intratumoral metabolic heterogeneity correlated closely with the MTV and significantly affected the OS in IDC patients. The HF may act as a robust surrogate marker for the prediction of OS in IDC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50 Samduk-dong 2-ga, Jung-gu, Daegu 700-721, Republic of Korea.
| |
Collapse
|
73
|
Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res 2014; 181:335-49. [PMID: 24673257 DOI: 10.1667/rr13590.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The problem of tumor hypoxia has been recognized and studied by the oncology community for over 60 years. From radiation and chemotherapy resistance to the increased risk of metastasis, low oxygen concentrations in tumors have caused patients with many types of tumors to respond poorly to conventional cancer therapies. It is clear that patients with high levels of tumor hypoxia have a poorer overall treatment response and that the magnitude of hypoxia is an important prognostic factor. As a result, the development of methods to measure tumor hypoxia using invasive and noninvasive techniques has become desirable to the clinical oncology community. A variety of imaging modalities have been established to visualize hypoxia in vivo. Positron emission tomography (PET) imaging, in particular, has played a key role for imaging tumor hypoxia because of the development of hypoxia-specific radiolabelled agents. Consequently, this technique is increasingly used in the clinic for a wide variety of cancer types. Following a broad overview of the complexity of tumor hypoxia and measurement techniques to date, this article will focus specifically on the accuracy and reproducibility of PET imaging to quantify tumor hypoxia. Despite numerous advances in the field of PET imaging for hypoxia, we continue to search for the ideal hypoxia tracer to both qualitatively and quantitatively define the tumor hypoxic volume in a clinical setting to optimize treatments and predict response in cancer patients.
Collapse
Affiliation(s)
- Olivia J Kelada
- a Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut; and
| | | |
Collapse
|
74
|
Magometschnigg HF, Helbich T, Brader P, Abeyakoon O, Baltzer P, Füger B, Wengert G, Polanec S, Bickel H, Pinker K. Molecular imaging for the characterization of breast tumors. Expert Rev Anticancer Ther 2014; 14:711-22. [DOI: 10.1586/14737140.2014.885383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Merchant S, Witney TH, Aboagye EO. Imaging as a pharmacodynamic and response biomarker in cancer. Clin Transl Imaging 2014. [DOI: 10.1007/s40336-014-0049-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
76
|
Fakhrejahani E, Toi M. Antiangiogenesis therapy for breast cancer: an update and perspectives from clinical trials. Jpn J Clin Oncol 2014; 44:197-207. [PMID: 24474817 PMCID: PMC3941646 DOI: 10.1093/jjco/hyt201] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The development of new blood vessels is a crucial step in breast cancer growth, progression and dissemination, making it a promising therapeutic target. Breast cancer has a heterogeneous nature and the diversity of responsible angiogenic pathways between different tumors has been studied for many years. Inhibiting different targets in these pathways has been under investigation in preclinical and clinical studies for more than decades, among which antibody against vascular endothelial growth factor is the most studied. However, the clinical impact from antiangiogenic treatment alone or in combination with standard chemotherapeutic regimens has been relatively small till today. In this review, we summarize the most clinically relevant data from breast cancer treatment clinical trials and discuss safety and efficacy of common antiangiogenic therapies as well as biological predictive markers.
Collapse
Affiliation(s)
- Elham Fakhrejahani
- *Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|