51
|
Radiomics Features of the Spleen as Surrogates for CT-Based Lymphoma Diagnosis and Subtype Differentiation. Cancers (Basel) 2022; 14:cancers14030713. [PMID: 35158980 PMCID: PMC8833623 DOI: 10.3390/cancers14030713] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In malignant lymphoma an early and accurate diagnosis is essential for therapy initiation and patient outcome. Within the diagnostic process, imaging plays a crucial role in disease staging. However, an invasive biopsy is required for subtype classification. Involvement of the spleen, a major lymphoid organ, is frequent in malignant lymphoma; this may be reactive or due to infiltration by malignant cells. Using radiomics features of the spleen in a machine learning approach, we investigated the possibility of distinguishing malignant lymphoma patients from other cancer patients and to classify lymphoma subtypes in the case of disease presence. Recent studies have proven the value of radiomics analysis in differentiating lymphoma from non-lymphoma groups on involved sites. Supported by machine learning, imaging could gain importance as a noninvasive diagnostic tool for future lymphoma classification, offering more precise radiological information for an interdisciplinary approach regarding treatment planning. Abstract The spleen is often involved in malignant lymphoma, which manifests on CT as either splenomegaly or focal, hypodense lymphoma lesions. This study aimed to investigate the diagnostic value of radiomics features of the spleen in classifying malignant lymphoma against non-lymphoma as well as the determination of malignant lymphoma subtypes in the case of disease presence—in particular Hodgkin lymphoma (HL), diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), and follicular lymphoma (FL). Spleen segmentations of 326 patients (139 female, median age 54.1 +/− 18.7 years) were generated and 1317 radiomics features per patient were extracted. For subtype classification, we created four different binary differentiation tasks and addressed them with a Random Forest classifier using 10-fold cross-validation. To detect the most relevant features, permutation importance was analyzed. Classifier results using all features were: malignant lymphoma vs. non-lymphoma AUC = 0.86 (p < 0.01); HL vs. NHL AUC = 0.75 (p < 0.01); DLBCL vs. other NHL AUC = 0.65 (p < 0.01); MCL vs. FL AUC = 0.67 (p < 0.01). Classifying malignant lymphoma vs. non-lymphoma was also possible using only shape features AUC = 0.77 (p < 0.01), with the most important feature being sphericity. Based on only shape features, a significant AUC could be achieved for all tasks, however, best results were achieved combining shape and textural features. This study demonstrates the value of splenic imaging and radiomic analysis in the diagnostic process in malignant lymphoma detection and subtype classification.
Collapse
|
52
|
Yi J, Lei X, Zhang L, Zheng Q, Jin J, Xie C, Jin X, Ai Y. The Influence of Different Ultrasonic Machines on Radiomics Models in Prediction Lymph Node Metastasis for Patients with Cervical Cancer. Technol Cancer Res Treat 2022; 21:15330338221118412. [PMID: 35971568 PMCID: PMC9386859 DOI: 10.1177/15330338221118412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective To investigate the effects of different ultrasonic machines on the performance of radiomics models using ultrasound (US) images in the prediction of lymph node metastasis (LNM) for patients with cervical cancer (CC) preoperatively. Methods A total of 536 CC patients with confirmed histological characteristics and lymph node status after radical hysterectomy and pelvic lymphadenectomy were enrolled. Radiomics features were extracted and selected with US images acquired with ATL HDI5000, Voluson E8, MyLab classC, ACUSON S2000, and HI VISION Preirus to build radiomics models for LNM prediction using support vector machine (SVM) and logistic regression, respectively. Results There were 148 patients (training vs validation: 102:46) scanned in machine HDI5000, 75 patients (53:22) in machine Voluson E8, 100 patients (69:31) in machine MyLab classC, 110 patients (76:34) in machine ACUSON S2000, and 103 patients (73:30) in machine HI VISION Preirus, respectively. Few radiomics features were reproducible among different machines. The area under the curves (AUCs) ranged from 0.75 to 0.86, 0.73 to 0.86 in the training cohorts, and from 0.71 to 0.82, 0.70 to 0.80 in the validation cohorts for SVM and logistic regression models, respectively. The highest difference in AUCs for different machines reaches 17.8% and 15.5% in the training and validation cohorts, respectively. Conclusions The performance of radiomics model is dependent on the type of scanner. The problem of scanner dependency on radiomics features should be considered, and their effects should be minimized in future studies for US images.
Collapse
Affiliation(s)
- Jinling Yi
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiyao Lei
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiao Zheng
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juebin Jin
- Department of Medical Engineering, 89657The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congying Xie
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiation and Medical Oncology, 26452The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiance Jin
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Basic Medical Science, 26453Wenzhou Medical University, Wenzhou, China
| | - Yao Ai
- Radiotherapy Center, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
53
|
Kolinger GD, Vállez García D, Kramer GM, Frings V, Zwezerijnen GJC, Smit EF, De Langen AJ, Buvat I, Boellaard R. Effects of tracer uptake time in non-small cell lung cancer 18F-FDG PET radiomics. J Nucl Med 2021; 63:919-924. [PMID: 34933890 DOI: 10.2967/jnumed.121.262660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) radiomics applied to oncology allows the measurement of intra-tumoral heterogeneity. This quantification can be affected by image protocols hence there is an increased interest in understanding how radiomic expression on PET images is affected by different imaging conditions. To address that, this study explores how radiomic features are affected by changes in 18F-FDG uptake time, image reconstruction, lesion delineation, and radiomics binning settings. Methods: Ten non-small cell lung cancer (NSCLC) patients underwent 18F-FDG PET scans on two consecutive days. On each day, scans were obtained at 60min and 90min post-injection and reconstructed following EARL version 1 (EARL1) and with point-spread-function resolution modelling (PSF-EARL2). Lesions were delineated using thresholds at SUV=4.0, 40% of SUVmax, and with a contrast-based isocontour. PET image intensity was discretized with both fixed bin width (FBW) and fixed bin number (FBN) before the calculation of the radiomic features. Repeatability of features was measured with intraclass correlation (ICC), and the change in feature value over time was calculated as a function of its repeatability. Features were then classified on use-case scenarios based on their repeatability and susceptibility to tracer uptake time. Results: With PSF-EARL2 reconstruction, 40% of SUVmax lesion delineation, and FBW intensity discretization, most features (94%) were repeatable at both uptake times (ICC>0.9), 39% being classified for dual-time-point use-case for being sensitive to changes in uptake time, 39% were classified for cross-sectional studies with unclear dependency on time, 20% classified for cross-sectional use while being robust to tracer uptake time changes, and 6% were discarded for poor repeatability. EARL1 images had one less repeatable feature than PSF-EARL2 (Neighborhood Gray-Level Different Matrix Coarseness), the contrast-based delineation had the poorest repeatability of the delineation methods with 45% features being discarded, and FBN resulted in lower repeatability than FBW (45% and 6% features were discarded, respectively). Conclusion: Repeatability was maximized with PSF-EARL2 reconstruction, lesion delineation at 40% of SUVmax, and FBW intensity discretization. Based on their susceptibility to tracer uptake time, radiomic features were classified into specific NSCLC PET radiomics use-cases.
Collapse
Affiliation(s)
| | - David Vállez García
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Netherlands
| | - Gerbrand Maria Kramer
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VU Medical Center, Netherlands
| | - Virginie Frings
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, location VU Medical Center, Netherlands
| | | | - Egbert F Smit
- Department of Pulmonology, Amsterdam University Medical Center, location VU Medical Center, Netherlands
| | | | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, INSERM, Institut Curie, Université Paris-Saclay, France
| | - Ronald Boellaard
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Netherlands
| |
Collapse
|
54
|
Edalat-Javid M, Shiri I, Hajianfar G, Abdollahi H, Arabi H, Oveisi N, Javadian M, Shamsaei Zafarghandi M, Malek H, Bitarafan-Rajabi A, Oveisi M, Zaidi H. Cardiac SPECT radiomic features repeatability and reproducibility: A multi-scanner phantom study. J Nucl Cardiol 2021; 28:2730-2744. [PMID: 32333282 DOI: 10.1007/s12350-020-02109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this work was to assess the robustness of cardiac SPECT radiomic features against changes in imaging settings, including acquisition, and reconstruction parameters. METHODS Four commercial SPECT and SPECT/CT cameras were used to acquire images of a static cardiac phantom mimicking typical myorcardial perfusion imaging using 185 MBq of 99mTc. The effects of different image acquisition and reconstruction parameters, including number of views, view matrix size, attenuation correction, as well as image reconstruction related parameters (algorithm, number of iterations, number of subsets, type of post-reconstruction filter, and its associated parameters, including filter order and cut-off frequency) were studied. In total, 5,063 transverse views were reconstructed by varying the aforementioned factors. Eighty-seven radiomic features including first-, second-, and high-order textures were extracted from these images. To assess reproducibility and repeatability, the coefficient of variation (COV), as a widely adopted metric, was measured for each of the radiomic features over the different imaging settings. RESULTS The Inverse Difference Moment Normalized (IDMN) and Inverse Difference Normalized (IDN) features from the Gray Level Co-occurrence Matrix (GLCM), Run Percentage (RP) from the Gray Level Co-occurrence Matrix (GLRLM), Zone Entropy (ZE) from the Gray Level Size Zone Matrix (GLSZM), and Dependence Entropy (DE) from the Gray Level Dependence Matrix (GLDM) feature sets were the only features that exhibited high reproducibility (COV ≤ 5%) against changes in all imaging settings. In addition, Large Area Low Gray Level Emphasis (LALGLE), Small Area Low Gray Level Emphasis (SALGLE) and Low Gray Level Zone Emphasis (LGLZE) from GLSZM, and Small Dependence Low Gray Level Emphasis (SDLGLE) from GLDM feature sets turned out to be less reproducible (COV > 20%) against changes in imaging settings. The GLRLM (31.88%) and GLDM feature set (54.2%) had the highest (COV < 5%) and lowest (COV > 20%) number of the reproducible features, respectively. Matrix size had the largest impact on feature variability as most of the features were not repeatable when matrix size was modified with 82.8% of them having a COV > 20%. CONCLUSION The repeatability and reproducibility of SPECT/CT cardiac radiomic features under different imaging settings is feature-dependent. Different image acquisition and reconstruction protocols have variable effects on radiomic features. The radiomic features exhibiting low COV are potential candidates for future clinical studies.
Collapse
Affiliation(s)
- Mohammad Edalat-Javid
- Department of Energy Engineering and Physics, Amir Kabir University of Technology, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University, Kerman, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Niki Oveisi
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mohammad Javadian
- Department of Computer Engineering, Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
| | | | - Hadi Malek
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Bitarafan-Rajabi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, 1205, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
55
|
Huerga C, Morcillo A, Alejo L, Marín A, Obesso A, Travaglio D, Bayón J, Rodriguez D, Coronado M. Role of correlated noise in textural features extraction. Phys Med 2021; 91:87-98. [PMID: 34742098 DOI: 10.1016/j.ejmp.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022] Open
Abstract
Predictive models of tumor response based on heterogeneity metrics in medical images, such as textural features, are highly suggestive. However, the demonstrated sensitivity of these features to noise does affect the model being developed. An in-depth analysis of the noise influence on the extraction of texture features was performed based on the assumption that an improvement in information quality can also enhance the predictive model. A heuristic approach was used that recognizes from the beginning that the noise has its own texture and it was analysed how it affects the quantitative signal data. A simple procedure to obtain noise image estimation is shown; one which makes it possible to extract the noise-texture features at each observation. The distance measured between the textural features in signal and estimated noise images allows us to determine the features affected in each observation by the noise and, for example, to exclude some of them from the model. A demonstration was carried out using synthetic images applying realistic noise models found in medical images. Drawn conclusions were applied to a public cohort of clinical images obtained using FDG-PET to show how the predictive model could be improved. A gain in the area under the receiver operating characteristic curve between 10 and 20% when noise texture information is used was shown. An improvement between 20 and 30% can be appreciated in the estimated model quality.
Collapse
Affiliation(s)
- Carlos Huerga
- Department of Medical Physics and Radiation Protection, Hospital Universitario La Paz, Madrid, Spain.
| | - Ana Morcillo
- Department of Medical Physics and Radiation Protection, Hospital Universitario La Paz, Madrid, Spain
| | - Luis Alejo
- Department of Medical Physics and Radiation Protection, Hospital Universitario La Paz, Madrid, Spain
| | - Alberto Marín
- Department of Medical Physics and Radiation Protection, Hospital Universitario La Paz, Madrid, Spain
| | - Alba Obesso
- Servicio de Radiofísica y Protección Radiológica, ESI/OSI Donostialdea, Donostia, Spain
| | - Daniela Travaglio
- Department of Nuclear Medicine, Hospital Universitario La Paz, Madrid, Spain
| | - Jose Bayón
- Servicio de Radiofísica y Protección Radiológica. Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | | | - Monica Coronado
- Department of Nuclear Medicine, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
56
|
Orlhac F, Nioche C, Klyuzhin I, Rahmim A, Buvat I. Radiomics in PET Imaging:: A Practical Guide for Newcomers. PET Clin 2021; 16:597-612. [PMID: 34537132 DOI: 10.1016/j.cpet.2021.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Radiomics has undergone considerable development in recent years. In PET imaging, very promising results concerning the ability of handcrafted features to predict the biological characteristics of lesions and to assess patient prognosis or response to treatment have been reported in the literature. This article presents a checklist for designing a reliable radiomic study, gives an overview of the steps of the pipeline, and outlines approaches for data harmonization. Tips are provided for critical reading of the content of articles. The advantages and limitations of handcrafted radiomics compared with deep-learning approaches for the characterization of PET images are also discussed.
Collapse
Affiliation(s)
- Fanny Orlhac
- Institut Curie Centre de Recherche, Centre Universitaire, Bat 101B, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France.
| | - Christophe Nioche
- Institut Curie Centre de Recherche, Centre Universitaire, Bat 101B, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| | - Ivan Klyuzhin
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Irène Buvat
- Institut Curie Centre de Recherche, Centre Universitaire, Bat 101B, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| |
Collapse
|
57
|
Orlhac F, Eertink JJ, Cottereau AS, Zijlstra JM, Thieblemont C, Meignan MA, Boellaard R, Buvat I. A guide to ComBat harmonization of imaging biomarkers in multicenter studies. J Nucl Med 2021; 63:172-179. [PMID: 34531263 DOI: 10.2967/jnumed.121.262464] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The impact of PET image acquisition and reconstruction parameters on SUV measurements or radiomic feature values is widely documented. This "scanner" effect is detrimental to the design and validation of predictive or prognostic models and limits the use of large multicenter cohorts. To reduce the impact of this scanner effect, the ComBat method has been proposed and is now used in various contexts. The purpose of this article is to explain and illustrate the use of ComBat based on practical examples. We also give examples in which the ComBat assumptions are not met; thus, ComBat should not be used.
Collapse
Affiliation(s)
- Fanny Orlhac
- Institut Curie, Universite PSL, Inserm, U1288 LITO, Universite Paris Saclay, France
| | - Jakoba J Eertink
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Hematology, Cancer Center, Netherlands
| | | | - Josee M Zijlstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Hematology, Cancer Center, Netherlands
| | - Catherine Thieblemont
- APHP, Hopital Saint-Louis, Service d'hemato-oncologie, DMU DHI, Universite de Paris, France
| | - Michel A Meignan
- AP-HP, Universite Paris-Est, Hopital Henri Mondor, Lysa Imaging, France
| | - Ronald Boellaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, department of Radiology and Nuclear Medicine, Cancer Center, Netherlands
| | - Irene Buvat
- Institut Curie, Universite PSL, Inserm, U1288 LITO, Universite Paris Saclay, France
| |
Collapse
|
58
|
Mali SA, Ibrahim A, Woodruff HC, Andrearczyk V, Müller H, Primakov S, Salahuddin Z, Chatterjee A, Lambin P. Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. J Pers Med 2021; 11:842. [PMID: 34575619 PMCID: PMC8472571 DOI: 10.3390/jpm11090842] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.
Collapse
Affiliation(s)
- Shruti Atul Mali
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Medical Physics, Division of Nuclear Medicine and Oncological Imaging, Hospital Center Universitaire de Liege, 4000 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Vincent Andrearczyk
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland; (V.A.); (H.M.)
| | - Henning Müller
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland; (V.A.); (H.M.)
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
59
|
Du D, Gu J, Chen X, Lv W, Feng Q, Rahmim A, Wu H, Lu L. Reply to Letter to Editor RE: "Integration of PET/CT Radiomics and Semantic Features for Differentiation Between Active Pulmonary Tuberculosis and Lung Cancer". Mol Imaging Biol 2021; 23:975-977. [PMID: 34312805 DOI: 10.1007/s11307-021-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Dongyang Du
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiamei Gu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaohui Chen
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenbing Lv
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.,Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
60
|
Zeydanli T, Kilic HK. Performance of quantitative CT texture analysis in differentiation of gastric tumors. Jpn J Radiol 2021; 40:56-65. [PMID: 34304383 DOI: 10.1007/s11604-021-01181-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/18/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To examine the computed tomography (CT) images of patients with a diagnosis of gastric tumor by texture analysis and to investigate its place in differential diagnosis. MATERIALS AND METHODS Contrast enhanced venous phase CT images of 163 patients with pathological diagnosis of gastric adenocarcinoma (n = 125), gastric lymphoma (n = 12) and gastrointestinal stromal tumors (n = 26) were retrospectively analyzed. Pixel size adjustment, gray-level discretization and gray-level normalization procedures were applied as pre-processing steps. Region of interest (ROI) was determined from the axial slice that represented the largest lesion area and a total of 40 texture features were calculated for each patient. Texture features were compared between the tumor subtypes and between adenocarcinoma grades. Statistically significant texture features were combined into a single parameter by logistic regression analysis. The sensitivity and specificity of these features and the combined parameter were measured to differentiate tumor subtypes by receiver-operating characteristic curve (ROC) analysis. RESULTS Classifications between adenocarcinoma versus lymphoma, adenocarcinoma vs. gastrointestinal stromal tumor (GIST) and well-differentiated adenocarcinoma versus poorly differentiated adenocarcinoma using texture features yielded successful results with high sensitivity (98, 91, 96%, respectively) and specificity (75, 77, 80%, respectively). CONCLUSIONS CT texture analysis is a non-invasive promising method for classifying gastric tumors and predicting gastric adenocarcinoma differentiation.
Collapse
Affiliation(s)
- Tolga Zeydanli
- Radiology Department, Ardahan Devlet Hastanesi, 75000, Ardahan, Turkey.
| | - Huseyin Koray Kilic
- Radiology Department, Gazi University School of Medicine, 06500, Ankara, Turkey
| |
Collapse
|
61
|
Lee JW, Park SH, Ahn H, Lee SM, Jang SJ. Predicting Survival in Patients with Pancreatic Cancer by Integrating Bone Marrow FDG Uptake and Radiomic Features of Primary Tumor in PET/CT. Cancers (Basel) 2021; 13:cancers13143563. [PMID: 34298775 PMCID: PMC8304187 DOI: 10.3390/cancers13143563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary FDG uptake of bone marrow (BM) is known to reflect the degree of host inflammatory response to cancer cells and showed significant association with survival in diverse kinds of cancers. The aim of this retrospective study was to evaluate the prognostic significance of FDG uptake of BM and to investigate whether integrating FDG uptake of BM and radiomic features of primary tumors could improve the prediction of overall survival (OS) in patients with pancreatic cancer. In multivariable survival analysis, along with total lesion glycolysis (TLG) and first-order entropy of primary tumor lesions, FDG uptake of BM was an independent predictor of OS. We designed a PET/CT scoring system based on the cumulative scores of tumor factors (TLG and first-order entropy) and host factors (FDG uptake of BM). This scoring system was able to stratify the patients with three distinct prognostic groups independent of clinical stage and treatment modality. Abstract The purpose of this study was to evaluate the prognostic significance of FDG uptake of bone marrow (BM SUV) and to investigate its role combined with radiomic features of primary tumors in improving the prediction of overall survival (OS) in patients with pancreatic cancer. We retrospectively enrolled 65 pancreatic cancer patients with staging FDG PET/CT. BM SUV and conventional imaging parameters of primary tumors including total lesion glycolysis (TLG) were measured. First-order and higher-order textural features of primary cancer were extracted using PET textural analysis. Associations of PET/CT parameters of bone marrow (BM) and primary cancer with OS were assessed. BM SUV as well as TLG and first-order entropy of pancreatic cancer were significant independent predictors of OS in multivariable analysis. A PET/CT scoring system based on the cumulative scores of these three independent predictors enabled patient stratification into three distinct prognostic groups. The scoring system yielded a good prognostic stratification based on subgroup analysis irrespective of tumor stage and treatment modality. BM SUV was an independent predictor of OS in pancreatic cancer patients. The PET/CT scoring system that integrated PET/CT parameters of primary tumors and BM can provide prognostic information in pancreatic cancer independent of tumor stage and treatment.
Collapse
Affiliation(s)
- Jeong Won Lee
- Department of Nuclear Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon 22711, Korea;
| | - Sang-Heum Park
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
| | - Hyein Ahn
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea;
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
- Correspondence: (S.M.L.); (S.J.J.); Tel.: +82-41-570-3540 (S.M.L.); +82-31-780-5687 (S.J.J.)
| | - Su Jin Jang
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Korea
- Correspondence: (S.M.L.); (S.J.J.); Tel.: +82-41-570-3540 (S.M.L.); +82-31-780-5687 (S.J.J.)
| |
Collapse
|
62
|
Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:833-844. [PMID: 34255206 DOI: 10.1007/s10334-021-00941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION To assess pre-therapeutic MRI-based radiomic analysis to predict the pathological complete response to neoadjuvant chemotherapy (NAC) in women with early triple negative breast cancer (TN). MATERIALS AND METHODS This monocentric retrospective study included 75 TN female patients with MRI (T1-weighted, T2-weighted, diffusion-weighted and dynamic contrast enhancement images) performed before NAC. For each patient, the tumor(s) and the parenchyma were independently segmented and analyzed with radiomic analysis to extract shape, size, and texture features. Several sets of features were realized based on the 4 different sequence images. Performances of 4 classifiers (random forest, multilayer perceptron, support vector machine (SVM) with linear or quadratic kernel) were compared based on pathological complete response (defined on the excised tissues), on 100 draws with 75% as training set and 25% as test. RESULTS The combination of features extracted from different MR images improved the classifier performance (more precisely, the features from T1W, T2W and DWI). The SVM with quadratic kernel showed the best performance with a mean AUC of 0.83, a sensitivity of 0.85 and a specificity of 0.75 in the test set. CONCLUSION MRI-based radiomics may be relevant to predict NAC response in TN cancer. Our results promote the use of multi-contrast MRI sources for radiomics, providing enrich source of information to enhance model generalization.
Collapse
|
63
|
Da-ano R, Lucia F, Masson I, Abgral R, Alfieri J, Rousseau C, Mervoyer A, Reinhold C, Pradier O, Schick U, Visvikis D, Hatt M. A transfer learning approach to facilitate ComBat-based harmonization of multicentre radiomic features in new datasets. PLoS One 2021; 16:e0253653. [PMID: 34197503 PMCID: PMC8248970 DOI: 10.1371/journal.pone.0253653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To facilitate the demonstration of the prognostic value of radiomics, multicenter radiomics studies are needed. Pooling radiomic features of such data in a statistical analysis is however challenging, as they are sensitive to the variability in scanner models, acquisition protocols and reconstruction settings, which is often unavoidable in a multicentre retrospective analysis. A statistical harmonization strategy called ComBat was utilized in radiomics studies to deal with the "center-effect". The goal of the present work was to integrate a transfer learning (TL) technique within ComBat-and recently developed alternate versions of ComBat with improved flexibility (M-ComBat) and robustness (B-ComBat)-to allow the use of a previously determined harmonization transform to the radiomic feature values of new patients from an already known center. MATERIAL AND METHODS The proposed TL approach were incorporated in the four versions of ComBat (standard, B, M, and B-M ComBat). The proposed approach was evaluated using a dataset of 189 locally advanced cervical cancer patients from 3 centers, with magnetic resonance imaging (MRI) and positron emission tomography (PET) images, with the clinical endpoint of predicting local failure. The impact performance of the TL approach was evaluated by comparing the harmonization achieved using only parts of the data to the reference (harmonization achieved using all the available data). It was performed through three different machine learning pipelines. RESULTS The proposed TL technique was successful in harmonizing features of new patients from a known center in all versions of ComBat, leading to predictive models reaching similar performance as the ones developed using the features harmonized with all the data available. CONCLUSION The proposed TL approach enables applying a previously determined ComBat transform to new, previously unseen data.
Collapse
Affiliation(s)
- Ronrick Da-ano
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- * E-mail:
| | - François Lucia
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Radiation Oncology Department, University Hospital, Brest, France
| | - Ingrid Masson
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Department of Radiation Oncology, Institut de cancérologie de l’Ouest René-Gauducheau, Saint-Herblain, France
| | - Ronan Abgral
- Department of Nuclear Medicine, University of Brest, Brest, France
| | - Joanne Alfieri
- Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec
| | - Caroline Rousseau
- Department of Nuclear Medicine, Institut de cancérologie de l’Ouest René-Gauducheau, Saint-Herblain, France
| | - Augustin Mervoyer
- Department of Radiation Oncology, Institut de cancérologie de l’Ouest René-Gauducheau, Saint-Herblain, France
| | - Caroline Reinhold
- Department of Radiology, McGill University Health Centre, Montreal, Canada
- Augmented Intelligence & Precision Health Laboratory of the Research Institute of McGill University Health Centre, Montreal, Canada
| | - Olivier Pradier
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Radiation Oncology Department, University Hospital, Brest, France
| | - Ulrike Schick
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Radiation Oncology Department, University Hospital, Brest, France
| | | | - Mathieu Hatt
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| |
Collapse
|
64
|
Shayesteh S, Nazari M, Salahshour A, Sandoughdaran S, Hajianfar G, Khateri M, Yaghobi Joybari A, Jozian F, Fatehi Feyzabad SH, Arabi H, Shiri I, Zaidi H. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Med Phys 2021; 48:3691-3701. [PMID: 33894058 DOI: 10.1002/mp.14896] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We evaluate the feasibility of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for locally advanced rectal cancer (LARC) patients treated by neoadjuvant chemoradiation therapy (nCRT). MATERIALS AND METHODS This retrospective study included 53 LARC patients divided into a training set (Center#1, n = 36) and external validation set (Center#2, n = 17). T2-weighted (T2W) MRI was acquired for all patients, 2 weeks before and 4 weeks after nCRT. Ninety-six radiomic features, including intensity, morphological and second- and high-order texture features were extracted from segmented 3D volumes from T2W MRI. All features were harmonized using ComBat algorithm. Max-Relevance-Min-Redundancy (MRMR) algorithm was used as feature selector and k-nearest neighbors (KNN), Naïve Bayes (NB), Random forests (RF), and eXtreme Gradient Boosting (XGB) algorithms were used as classifiers. The evaluation was performed using the area under the receiver operator characteristic (ROC) curve (AUC), sensitivity, specificity and accuracy. RESULTS In univariate analysis, the highest AUC in pre-, post-, and delta-radiomic features were 0.78, 0.70, and 0.71, for GLCM_IMC1, shape (surface area and volume) and GLSZM_GLNU features, respectively. In multivariate analysis, RF and KNN achieved the highest AUC (0.85 ± 0.04 and 0.81 ± 0.14, respectively) among pre- and post-treatment features. The highest AUC was achieved for the delta-radiomic-based RF model (0.96 ± 0.01) followed by NB (0.96 ± 0.04). Overall. Delta-radiomics model, outperformed both pre- and post-treatment features (P-value <0.05). CONCLUSION Multivariate analysis of delta-radiomic T2W MRI features using machine learning algorithms could potentially be used for response prediction in LARC patients undergoing nCRT. We also observed that multivariate analysis of delta-radiomic features using RF classifiers can be used as powerful biomarkers for response prediction in LARC.
Collapse
Affiliation(s)
- Sajad Shayesteh
- Department of Physiology, Pharmacology and Medical Physics, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Salahshour
- Department of Radiology, Alborz University of Medical Sciences, Karaj, Iran
| | - Saleh Sandoughdaran
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajianfar
- Rajaie Cardiovascular, Medical & Research Centre, Iran University of Medical Science, Tehran, Iran
| | - Maziar Khateri
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Yaghobi Joybari
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Jozian
- Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.,Geneva University Neurocenter, Geneva University, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
65
|
Crandall JP, Fraum TJ, Lee M, Jiang L, Grigsby P, Wahl RL. Repeatability of 18F-FDG PET Radiomic Features in Cervical Cancer. J Nucl Med 2021; 62:707-715. [PMID: 33008931 PMCID: PMC8844259 DOI: 10.2967/jnumed.120.247999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Knowledge of the intrinsic variability of radiomic features is essential to the proper interpretation of changes in these features over time. The primary aim of this study was to assess the test-retest repeatability of radiomic features extracted from 18F-FDG PET images of cervical tumors. The impact of different image preprocessing methods was also explored. Methods: Patients with cervical cancer underwent baseline and repeat 18F-FDG PET/CT imaging within 7 d. PET images were reconstructed using 2 methods: ordered-subset expectation maximization (PETOSEM) or ordered-subset expectation maximization with point-spread function (PETPSF). Tumors were segmented to produce whole-tumor volumes of interest (VOIWT) and 40% isocontours (VOI40). Voxels were either left at the default size or resampled to 3-mm isotropic voxels. SUV was discretized to a fixed number of bins (32, 64, or 128). Radiomic features were extracted from both VOIs, and repeatability was then assessed using the Lin concordance correlation coefficient (CCC). Results: Eleven patients were enrolled and completed the test-retest PET/CT imaging protocol. Shape, neighborhood gray-level difference matrix, and gray-level cooccurrence matrix features were repeatable, with a mean CCC value of 0.81. Radiomic features extracted from PETOSEM images showed significantly better repeatability than features extracted from PETPSF images (P < 0.001). Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT (P < 0.001). For most features (78.4%), a change in bin number or voxel size resulted in less than a 10% change in feature value. All gray-level emphasis and gray-level run emphasis features showed poor repeatability (CCC values < 0.52) when extracted from VOIWT but were highly repeatable (mean CCC values > 0.96) when extracted from VOI40Conclusion: Shape, gray-level cooccurrence matrix, and neighborhood gray-level difference matrix radiomic features were consistently repeatable, whereas gray-level run length matrix and gray-level zone length matrix features were highly variable. Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT Changes in voxel size or SUV discretization parameters typically resulted in relatively small differences in feature value, though several features were highly sensitive to these changes.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - MinYoung Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Linda Jiang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Perry Grigsby
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| |
Collapse
|
66
|
Muzi M, Wolsztynski E, Fink JR, O'Sullivan JN, O'Sullivan F, Krohn KA, Mankoff DA. Assessment of the Prognostic Value of Radiomic Features in 18F-FMISO PET Imaging of Hypoxia in Postsurgery Brain Cancer Patients: Secondary Analysis of Imaging Data from a Single-Center Study and the Multicenter ACRIN 6684 Trial. ACTA ACUST UNITED AC 2021; 6:14-22. [PMID: 32280746 PMCID: PMC7138522 DOI: 10.18383/j.tom.2019.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypoxia is associated with resistance to radiotherapy and chemotherapy in malignant gliomas, and it can be imaged by positron emission tomography with 18F-fluoromisonidazole (18F-FMISO). Previous results for patients with brain cancer imaged with 18F-FMISO at a single center before conventional chemoradiotherapy showed that tumor uptake via T/Bmax (tissue SUVmax/blood SUV) and hypoxic volume (HV) was associated with poor survival. However, in a multicenter clinical trial (ACRIN 6684), traditional uptake parameters were not found to be prognostically significant, but tumor SUVpeak did predict survival at 1 year. The present analysis considered both study cohorts to reconcile key differences and examine the potential utility of adding radiomic features as prognostic variables for outcome prediction on the combined cohort of 72 patients with brain cancer (30 University of Washington and 42 ACRIN 6684). We used both 18F-FMISO intensity metrics (T/Bmax, HV, SUV, SUVmax, SUVpeak) and assessed radiomic measures that determined first-order (histogram), second-order, and higher-order radiomic features of 18F-FMISO uptake distributions. A multivariate model was developed that included age, HV, and the intensity of 18F-FMISO uptake. HV and SUVpeak were both independent predictors of outcome for the combined data set (P < .001) and were also found significant in multivariate prognostic models (P < .002 and P < .001, respectively). Further model selection that included radiomic features showed the additional prognostic value for overall survival of specific higher order texture features, leading to an increase in relative risk prediction performance by a further 5%, when added to the multivariate clinical model..
Collapse
Affiliation(s)
- Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA
| | - Eric Wolsztynski
- Department of Statistics, University College, Cork, Ireland.,Insight Centre for Data Analytics, Cork, Ireland
| | - James R Fink
- Department of Radiology, University of Washington, Seattle, WA
| | | | | | - Kenneth A Krohn
- Department of Radiology, University of Washington, Seattle, WA
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA and
| |
Collapse
|
67
|
Carles M, Popp I, Starke MM, Mix M, Urbach H, Schimek-Jasch T, Eckert F, Niyazi M, Baltas D, Grosu AL. FET-PET radiomics in recurrent glioblastoma: prognostic value for outcome after re-irradiation? Radiat Oncol 2021; 16:46. [PMID: 33658069 PMCID: PMC7931514 DOI: 10.1186/s13014-020-01744-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose The value of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-positron emission tomography (PET)-radiomics in the outcome assessment of patients with recurrent glioblastoma (rGBM) has not been evaluated until now.
The aim of this study was to evaluate whether a prognostic model based on FET-PET radiomics features (RF) is feasible and can identify rGBM patients that would most benefit from re-irradiation.
Methods We prospectively recruited rGBM patients who underwent FET-PET before re-irradiation (GLIAA-Pilot trial, DRKS00000633). Tumor volume was delineated using a semi-automatic method with a threshold of 1.8 times the standardized-uptake-value of the background. 135 FET-RF (histogram parameters, shape and texture features) were extracted. The analysis involved the characterization of tumor and non-tumor tissue with FET-RF and the evaluation of the prognostic value of FET-RF for time-to-progression (TTP), overall survival (OS) and recurrence location (RL). Results Thirty-two rGBM patients constituted our cohort. FET-RF discriminated significantly between tumor and non-tumor. The texture feature Small-Zone-Low-Gray-Level-Emphasis (SZLGE) showed the best performance for the prediction of TTP (p = 0.001, satisfying Bonferroni-multiple-test significance level). Additionally, two radiomics signatures could predict TTP (TTP-radiomics-signature, p = 0.001) and OS (OS-radiomics-signature, p = 0.038). SZLGE and the TTP-radiomics-signature additionally predicted RL. Specifically, high values for TTP-radiomics-signature and for SZLGE indicated not only earlier progression, but also a RL within the initial FET-PET active volume. Conclusion Our findings suggest that FET-PET radiomics could contribute to the prognostic assessment and selection of rGBM-patients benefiting from re-irradiation. Trial registration DRKS00000633. Registered on 8th of December in 2010. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00000633.
Collapse
Affiliation(s)
- Montserrat Carles
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, University of Freiburg, Robert-Koch Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany. .,Biomedical Imaging Research Group (GIBI230-PREBI), Imaging La Fe Node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), La Fe Health Research Institute, Valencia, Spain.
| | - Ilinca Popp
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Maximilian Starke
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Mix
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Nuclear Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Schimek-Jasch
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Cerman Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Munich, Munich, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center, University of Freiburg, Robert-Koch Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany
| | - Anca L Grosu
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Heidelberg, Germany.,Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
68
|
Yoon H, Ha S, Kwon SJ, Park SY, Kim J, O JH, Yoo IR. Prognostic value of tumor metabolic imaging phenotype by FDG PET radiomics in HNSCC. Ann Nucl Med 2021; 35:370-377. [PMID: 33554314 DOI: 10.1007/s12149-021-01586-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Tumor metabolic phenotype can be assessed with integrated image pattern analysis of 18F-fluoro-deoxy-glucose (FDG) Positron Emission Tomography/Computed Tomography (PET/CT), called radiomics. This study was performed to assess the prognostic value of radiomics PET parameters in head and neck squamous cell carcinoma (HNSCC) patients. METHODS 18F-fluoro-deoxy-glucose (FDG) PET/CT data of 215 patients from HNSCC collection free database in The Cancer Imaging Archive (TCIA), and 122 patients in Seoul St. Mary's Hospital with baseline FDG PET/CT for locally advanced HNSCC were reviewed. Data from TCIA database were used as a training cohort, and data from Seoul St. Mary's Hospital as a validation cohort. With the training cohort, primary tumors were segmented by Nestles' adaptive thresholding method. Segmental tumors in PET images were preprocessed using relative resampling of 64 bins. Forty-two PET parameters, including conventional parameters and texture parameters, were measured. Binary groups of homogeneous imaging phenotypes, clustered by K-means method, were compared for overall survival (OS) and disease-free survival (DFS) by log-rank test. Selected individual radiomics parameters were tested along with clinical factors, including age and sex, by Cox-regression test for OS and DFS, and the significant parameters were tested with multivariate analysis. Significant parameters on multivariate analysis were again tested with multivariate analysis in the validation cohort. RESULTS A total of 119 patients, 70 from training, and 49 from validation cohort, were included in the study. The median follow-up period was 62 and 52 months for the training and the validation cohort, respectively. In the training cohort. binary groups with different metabolic radiomics phenotypes showed significant difference in OS (p = 0.036), and borderline difference in DFS (p = 0.086). Gray-Level Non-Uniformity for zone (GLNUGLZLM) was the most significant prognostic factor for both OS (hazard ratio [HR] 3.1, 95% confidence interval [CI] 1.4-7.3, p = 0.008) and DFS (HR 4.5, CI 1.3-16, p = 0.020). Multivariate analysis revealed GLNUGLZLM as an independent prognostic factor for OS (HR 3.7, 95% CI 1.1-7.5, p = 0.032). GLNUGLZLM remained as an independent prognostic factor in the validation cohort (HR 14.8. 95% CI 3.3-66, p < 0.001). CONCLUSIONS Baseline FDG PET radiomics contain risk information for survival prognosis in HNSCC patients. The metabolic heterogeneity parameter, GLNUGLZLM, may assist clinicians in patient risk assessment as a feasible prognostic factor.
Collapse
Affiliation(s)
- Hyukjin Yoon
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Soo Jin Kwon
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sonya Youngju Park
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jihyun Kim
- Division of Nuclear Medicine, Department of Radiology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, South Korea
| | - Joo Hyun O
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ie Ryung Yoo
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
69
|
Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, Gallivanone F, Cozzi A, D'Amico NC, Sardanelli F. AI applications to medical images: From machine learning to deep learning. Phys Med 2021; 83:9-24. [PMID: 33662856 DOI: 10.1016/j.ejmp.2021.02.006] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context. METHODS A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections. RESULTS We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way. CONCLUSIONS Biomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
Collapse
Affiliation(s)
- Isabella Castiglioni
- Department of Physics, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy; Institute of Biomedical Imaging and Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Leonardo Rundo
- Department of Radiology, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom.
| | - Marina Codari
- Department of Radiology, Stanford University School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| | - Giovanni Di Leo
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy.
| | - Christian Salvatore
- Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy; DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milano, Italy.
| | - Matteo Interlenghi
- DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milano, Italy.
| | - Francesca Gallivanone
- Institute of Biomedical Imaging and Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Andrea Cozzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| | - Natascha Claudia D'Amico
- Department of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano S.p.A., Via Saint Bon 20, 20147 Milano, Italy; Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy.
| | - Francesco Sardanelli
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| |
Collapse
|
70
|
Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Phys Med 2021; 83:108-121. [PMID: 33765601 DOI: 10.1016/j.ejmp.2021.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
|
71
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
72
|
Radiomics feature robustness as measured using an MRI phantom. Sci Rep 2021; 11:3973. [PMID: 33597610 PMCID: PMC7889870 DOI: 10.1038/s41598-021-83593-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Radiomics involves high-throughput extraction of large numbers of quantitative features from medical images and analysis of these features to predict patients’ outcome and support clinical decision-making. However, radiomics features are sensitive to several factors, including scanning protocols. The purpose of this study was to investigate the robustness of magnetic resonance imaging (MRI) radiomics features with various MRI scanning protocol parameters and scanners using an MRI radiomics phantom. The variability of the radiomics features with different scanning parameters and repeatability measured using a test–retest scheme were evaluated using the coefficient of variation and intraclass correlation coefficient (ICC) for both T1- and T2-weighted images. For variability measures, the features were categorized into three groups: large, intermediate, and small variation. For repeatability measures, the average T1- and T2-weighted image ICCs for the phantom (0.963 and 0.959, respectively) were higher than those for a healthy volunteer (0.856 and 0.849, respectively). Our results demonstrated that various radiomics features are dependent on different scanning parameters and scanners. The radiomics features with a low coefficient of variation and high ICC for both the phantom and volunteer can be considered good candidates for MRI radiomics studies. The results of this study will assist current and future MRI radiomics studies.
Collapse
|
73
|
Kang J, Lee JH, Lee HS, Cho ES, Park EJ, Baik SH, Lee KY, Park C, Yeu Y, Clemenceau JR, Park S, Xu H, Hong C, Hwang TH. Radiomics Features of 18F-Fluorodeoxyglucose Positron-Emission Tomography as a Novel Prognostic Signature in Colorectal Cancer. Cancers (Basel) 2021; 13:392. [PMID: 33494345 PMCID: PMC7866240 DOI: 10.3390/cancers13030392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
The aim of this study was to investigate the prognostic value of radiomics signatures derived from 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) in patients with colorectal cancer (CRC). From April 2008 to Jan 2014, we identified CRC patients who underwent 18F-FDG-PET before starting any neoadjuvant treatments and surgery. Radiomics features were extracted from the primary lesions identified on 18F-FDG-PET. Patients were divided into a training and validation set by random sampling. A least absolute shrinkage and selection operator Cox regression model was applied for prognostic signature building with progression-free survival (PFS) using the training set. Using the calculated radiomics score, a nomogram was developed, and its clinical utility was assessed in the validation set. A total of 381 patients with surgically resected CRC patients (training set: 228 vs. validation set: 153) were included. In the training set, a radiomics signature labeled as a rad_score was generated using two PET-derived features, such as gray-level run length matrix long-run emphasis (GLRLM_LRE) and gray-level zone length matrix short-zone low-gray-level emphasis (GLZLM_SZLGE). Patients with a high rad_score in the training and validation set had a shorter PFS. Multivariable analysis revealed that the rad_score was an independent prognostic factor in both training and validation sets. A radiomics nomogram, developed using rad_score, nodal stage, and lymphovascular invasion, showed good performance in the calibration curve and comparable predictive power with the staging system in the validation set. Textural features derived from 18F-FDG-PET images may enable detailed stratification of prognosis in patients with CRC.
Collapse
Affiliation(s)
- Jeonghyun Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (E.J.P.); (S.H.B.)
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| | - Jae-Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Eun-Suk Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Eun Jung Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (E.J.P.); (S.H.B.)
| | - Seung Hyuk Baik
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; (E.J.P.); (S.H.B.)
| | - Kang Young Lee
- Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Chihyun Park
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
- Interdisciplinary Graduate Program in Medical Bigdata Convergence, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| | - Jean R. Clemenceau
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| | - Sunho Park
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| | - Hongming Xu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| | - Changjin Hong
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.P.); (Y.Y.); (J.R.C.); (S.P.); (H.X.); (C.H.)
| |
Collapse
|
74
|
Recommendations for Standardizing Thorax PET-CT in Non-Human Primates by Recent Experience from Macaque Studies. Animals (Basel) 2021; 11:ani11010204. [PMID: 33467761 PMCID: PMC7830664 DOI: 10.3390/ani11010204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the possibilities of routine clinical measures and assays on readily accessible bio-samples, it is not always essential in animals to investigate the dynamics of disease longitudinally. In this regard, minimally invasive imaging methods provide powerful tools in preclinical research. They can contribute to the ethical principle of gathering as much relevant information per animal as possible. Besides, with an obvious parallel to clinical diagnostic practice, such imaging platforms are potent and valuable instruments leading to a more refined use of animals from a welfare perspective. Non-human primates comprise highly relevant species for preclinical research to enhance our understanding of disease mechanisms and/or the development of improved prophylactic or therapeutic regimen for various human diseases. In this paper, we describe parameters that critically affect the quality of integrated positron emission tomography and computed tomography (PET-CT) in non-human primates. Lessons learned are exemplified by results from imaging experimental infectious respiratory disease in macaques; specifically tuberculosis, influenza, and SARS-CoV-2 infection. We focus on the thorax and use of 18F-fluorodeoxyglucose as a PET tracer. Recommendations are provided to guide various stages of PET-CT-supported research in non-human primates, from animal selection, scan preparation, and operation, to processing and analysis of imaging data.
Collapse
|
75
|
Zeng C, Zhai T, Chen J, Guo L, Huang B, Guo H, Liu G, Zhuang T, Liu W, Luo T, Wu Y, Peng G, Li D, Chen C. Imaging biomarkers of contrast-enhanced computed tomography predict survival in oesophageal cancer after definitive concurrent chemoradiotherapy. Radiat Oncol 2021; 16:8. [PMID: 33436018 PMCID: PMC7805131 DOI: 10.1186/s13014-020-01699-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the predictive potential of contrast-enhanced computed tomography (CT)-based imaging biomarkers (IBMs) for the treatment outcomes of patients with oesophageal squamous cell carcinoma (OSCC) after definitive concurrent chemoradiotherapy (CCRT). METHODS Altogether, 154 patients with OSCC who underwent definitive CCRT were included in this retrospective study. All patients were randomised to the training cohort (n = 99) or the validation cohort (n = 55). Pre-treatment contrast-enhanced CT scans were obtained for all patients and used for the extraction of IBMs. An IBM score, was constructed by using the least absolute shrinkage and selection operator with Cox regression analysis, which was equal to the log-partial hazard of the Cox model in the training cohort and tested in the validation cohort. IBM nomograms were built based on IBM scores for individualised survival estimation. Finally, a decision curve analysis was performed to estimate the clinical usefulness of the nomograms. RESULTS Altogether, 96 IBMs were extracted from each contrast-enhanced CT scan. IBM scores were constructed from 11 CT-based IBMs for overall survival (OS) and 8 IBMs for progression-free survival (PFS), using the LASSO-Cox regression method in the training cohort. Multivariate analysis revealed that IBM score was an independent prognostic factor correlated with OS and PFS. In the training cohort, the C-indices of IBM scores were 0.734 (95% CI 0.664-0.804) and 0.658 (95% CI 0.587-0.729) for OS and PFS, respectively. In the validation cohort, C-indices were 0.672 (95% CI 0.578-0.766) and 0.666 (95% CI 0.574-0.758) for OS and PFS, respectively. Kaplan-Meier survival analysis showed a significant difference between risk subgroups in the training and validation cohorts. Decision curve analysis confirmed the clinical usefulness of the IBM score. CONCLUSIONS The IBM score based on pre-treatment contrast-enhanced CT could predict the OS and PFS for patients with OSCC after definitive CCRT. Further multicentre studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Chengbing Zeng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Tiantian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Jianzhou Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Longjia Guo
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Baotian Huang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Hong Guo
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Guozhi Liu
- Department of Radiation Oncology, Zhongshan City People's Hospital, Zhongshan City, China
| | - Tingting Zhuang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Weitong Liu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Ting Luo
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Yanxuan Wu
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Guobo Peng
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Derui Li
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China
| | - Chuangzhen Chen
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou City, China.
| |
Collapse
|
76
|
Prognostic Value of Baseline Radiomic Features of 18F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma. Diagnostics (Basel) 2020; 11:diagnostics11010036. [PMID: 33379166 PMCID: PMC7824203 DOI: 10.3390/diagnostics11010036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigates whether baseline 18F-FDG PET radiomic features can predict survival outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively enrolled 83 patients diagnosed with DLBCL who underwent 18F-FDG PET scans before treatment. The patients were divided into the training cohort (n = 58) and the validation cohort (n = 25). Eighty radiomic features were extracted from the PET images for each patient. Least absolute shrinkage and selection operator regression were used to reduce the dimensionality within radiomic features. Cox proportional hazards model was used to determine the prognostic factors for progression-free survival (PFS) and overall survival (OS). A prognostic stratification model was built in the training cohort and validated in the validation cohort using Kaplan-Meier survival analysis. In the training cohort, run length non-uniformity (RLN), extracted from a gray level run length matrix (GLRLM), was independently associated with PFS (hazard ratio (HR) = 15.7, p = 0.007) and OS (HR = 8.64, p = 0.040). The International Prognostic Index was an independent prognostic factor for OS (HR = 2.63, p = 0.049). A prognostic stratification model was devised based on both risk factors, which allowed identification of three risk groups for PFS and OS in the training (p < 0.001 and p < 0.001) and validation (p < 0.001 and p = 0.020) cohorts. Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM, is an independent prognostic factor for survival outcomes. Furthermore, we propose a prognostic stratification model that may enable tailored therapeutic strategies for patients with DLBCL.
Collapse
|
77
|
Abstract
Carrying out large multicenter studies is one of the key goals to be achieved towards a faster transfer of the radiomics approach in the clinical setting. This requires large-scale radiomics data analysis, hence the need for integrating radiomic features extracted from images acquired in different centers. This is challenging as radiomic features exhibit variable sensitivity to differences in scanner model, acquisition protocols and reconstruction settings, which is similar to the so-called 'batch-effects' in genomics studies. In this review we discuss existing methods to perform data integration with the aid of reducing the unwanted variation associated with batch effects. We also discuss the future potential role of deep learning methods in providing solutions for addressing radiomic multicentre studies.
Collapse
Affiliation(s)
- R Da-Ano
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - D Visvikis
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| | - M Hatt
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
- equally contributed
| |
Collapse
|
78
|
Is FDG-PET texture analysis related to intratumor biological heterogeneity in lung cancer? Eur Radiol 2020; 31:4156-4165. [PMID: 33247345 DOI: 10.1007/s00330-020-07507-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/04/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We aimed at investigating the origin of the correlations between tumor volume and 18F-FDG-PET texture indices in lung cancer. METHODS Eighty-five consecutive patients with newly diagnosed non-small cell lung cancer (NSCLC) underwent a 18F-FDG-PET/CT scan before treatment. Seven phantom spheres uniformly filled with 18F-FDG, and covering a range of activities and volumes similar to that found in lung tumors, were also scanned. Established texture indices were computed for lung tumors and homogeneous spheres. The dependence between textural indices and volume in homogeneous spheres was modeled and then used to predict texture indices in lung tumors. Correlation analyses were carried out between predicted and texture features measured in lung tumors. Cox proportional hazards regression was used to investigate the associations between overall survival and volume-adjusted textural features. RESULTS All textural features showed strong, non-linear correlations with volume, both in tumors and homogeneous spheres. Correlations between predicted versus measured texture features were very high for contrast (r2 = 0.91), dissimilarity (r2 = 0.90), ZP (r2 = 0.90), GLNN (r2 = 0.86), and homogeneity (r2 = 0.82); high for entropy (r2 = 0.50) and HILAE (r2 = 0.53); and low for energy (r2 = 0.30). Cox regressions showed that among volume-adjusted features, only HILAE was associated with overall survival (b = - 0.35, p = 0.008). CONCLUSION We have shown that texture indices previously found to be correlated with a number of clinically relevant outcomes might not provide independent information apart from that driven by their correlation with tumor volume, suggesting that these metrics might not be suitable as intratumor heterogeneity markers. KEY POINTS • Associations between texture FDG-PET indices and overall survival have been widely reported in lung cancer, with tumor volume also being associated with overall survival, and therefore, it is still unclear whether the predictive power of textural indices is simply driven by this correlation. • Our results demonstrated strong non-linear correlations between textural indices and volume, showing an analogous behavior for lung tumors from patients and homogeneous spheres inserted in phantoms. • Our findings showed that texture FDG-PET indices might not provide independent information apart from that driven by their correlation with tumor volume.
Collapse
|
79
|
Simpson G, Ford JC, Llorente R, Portelance L, Yang F, Mellon EA, Dogan N. Impact of quantization algorithm and number of gray level intensities on variability and repeatability of low field strength magnetic resonance image-based radiomics texture features. Phys Med 2020; 80:209-220. [PMID: 33190077 DOI: 10.1016/j.ejmp.2020.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of this work was to investigate the impact of quantization preprocessing parameter selection on variability and repeatability of texture features derived from low field strength magnetic resonance (MR) images. METHODS Texture features were extracted from low field strength images of a daily image QA phantom with four texture inserts. Feature variability over time was quantified using all combinations of three quantization algorithms and four different numbers of gray level intensities. In addition, texture features were extracted using the same combinations from the low field strength MR images of the gross tumor volume (GTV) and left kidney of patients with repeated set up scans. The impact of region of interest (ROI) preprocessing on repeatability was investigated with a test-retest study design. RESULTS The phantom ROIs quantized to 64 Gy level intensities using the histogram equalization method resulted in the greatest number of features with the least variability. There was no clear method that resulted in the highest repeatability in the GTV or left kidney. However, eight texture features extracted from the GTV were repeatable regardless of ROI processing combination. CONCLUSION Low field strength MR images can provide a stable basis for texture analysis with ROIs quantized to 64 Gy levels using histogram equalization, but there is no clear optimal combination for repeatability.
Collapse
Affiliation(s)
- Garrett Simpson
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - John C Ford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Ricardo Llorente
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Lorraine Portelance
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Fei Yang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, 1475 NW 12(th) Ave, Miami, FL 33136, USA.
| |
Collapse
|
80
|
Tankyevych O, Tixier F, Antonorsi N, Filali Razzouki A, Mondon R, Pinto-Leite T, Visvikis D, Hatt M, Cheze Le Rest C. Can alternative PET reconstruction schemes improve the prognostic value of radiomic features in non-small cell lung cancer? Methods 2020; 188:73-83. [PMID: 33197567 DOI: 10.1016/j.ymeth.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To evaluate the potential benefit of using alternative reconstruction schemes of PET images for the prognostic value of radiomic features. METHODS Patients (n=91) with non-small cell lung cancer were prospectively included. All had a PET/CT examination before treatment. Three different PET images were reconstructed for each patient: the standard clinical protocol (i.e., 4×4×4 mm3 voxels, 5mm Gaussian filter, denoted '200G5'), as well as using smaller voxels (i.e., 2×2×2 mm3 with a larger reconstruction matrix, denoted 400G1) and/or 1mm post-reconstruction Gaussian filter, denoted 200G1). Metabolic volumes of the primary tumors were semi-automatically delineated on the PET images and IBSI compliant radiomic features (intensity, shape, textural) were extracted. First, the distributions of 200G1 and 400G1 features were compared to the reference clinical protocol (200G5) through Bland-Altman tests and the use of linear mixed models. Then, the prognostic value of the features from each of the 3 reconstructions was evaluated in a univariate analysis, through their stratification power in Kaplan-Meier curves through a threshold set at the median. RESULTS The 3 reconstructions led to different distributions for most of the features. The larger shifts and standard deviations of differences was observed between 200G5 and 400G1, which was also confirmed through linear mixed models. However, these relatively important differences in distributions did not translate into a significant impact on the stratification power of the features in terms of prognosis, although a trend in decreasing prognostic value could be observed (smaller number of features with HR above 2, overall lower HR values). Most prognostic features displayed high correlation with either volume or SUVmax, although there was great variability of prognostic value for similar levels of correlation with these basic metrics. CONCLUSIONS Using smaller voxels or less strong filtering options in the reconstruction settings of PET images compared to the standard clinical protocols led to different distributions of the resulting radiomic features. However, the hierarchy between patients according to these distributions remained overall the same and therefore the resulting stratification power of the radiomic features was not significantly altered. These results should be compared to those obtained in the context of other pathologies where radiomic features displaying lower correlation with volume or SUVmax may have predictive value, such as in cervical cancer.
Collapse
Affiliation(s)
- Olena Tankyevych
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France; Nuclear medicine department, CHU Milétrie, Poitiers, France
| | | | - Nils Antonorsi
- Nuclear medicine department, CHU Milétrie, Poitiers, France
| | | | - Raphael Mondon
- Nuclear medicine department, CHU Milétrie, Poitiers, France
| | | | | | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France.
| | - Catherine Cheze Le Rest
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France; Nuclear medicine department, CHU Milétrie, Poitiers, France
| |
Collapse
|
81
|
Hatt M, Cheze Le Rest C, Antonorsi N, Tixier F, Tankyevych O, Jaouen V, Lucia F, Bourbonne V, Schick U, Badic B, Visvikis D. Radiomics in PET/CT: Current Status and Future AI-Based Evolutions. Semin Nucl Med 2020; 51:126-133. [PMID: 33509369 DOI: 10.1053/j.semnuclmed.2020.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This short review aims at providing the readers with an update on the current status, as well as future perspectives in the quickly evolving field of radiomics applied to the field of PET/CT imaging. Numerous pitfalls have been identified in study design, data acquisition, segmentation, features calculation and modeling by the radiomics community, and these are often the same issues across all image modalities and clinical applications, however some of these are specific to PET/CT (and SPECT/CT) imaging and therefore the present paper focuses on those. In most cases, recommendations and potential methodological solutions do exist and should therefore be followed to improve the overall quality and reproducibility of published studies. In terms of future evolutions, the techniques from the larger field of artificial intelligence (AI), including those relying on deep neural networks (also known as deep learning) have already shown impressive potential to provide solutions, especially in terms of automation, but also to maybe fully replace the tools the radiomics community has been using until now in order to build the usual radiomics workflow. Some important challenges remain to be addressed before the full impact of AI may be realized but overall the field has made striking advances over the last few years and it is expected advances will continue at a rapid pace.
Collapse
Affiliation(s)
- Mathieu Hatt
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | - Catherine Cheze Le Rest
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; Nuclear Medicine Department, CHU Milétrie, Poitiers, France
| | - Nils Antonorsi
- Nuclear Medicine Department, CHU Milétrie, Poitiers, France
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States of America
| | | | - Vincent Jaouen
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France; IMT-Atlantique, Plouzané, France
| | - Francois Lucia
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | | | - Ulrike Schick
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | - Bogdan Badic
- LaTIM, INSERM, UMR 1101, University of Brest, CHRU Brest, France
| | | |
Collapse
|
82
|
Alis D, Yergin M, Asmakutlu O, Topel C, Karaarslan E. The influence of cardiac motion on radiomics features: radiomics features of non-enhanced CMR cine images greatly vary through the cardiac cycle. Eur Radiol 2020; 31:2706-2715. [PMID: 33051731 DOI: 10.1007/s00330-020-07370-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The cardiac cycle might impair the reproducibility of radiomics features of cardiac magnetic resonance (CMR) cine images, yet this issue has not been addressed in the previous research. We aim to evaluate whether radiomics features of CMR cine images vary during the cardiac cycle and investigate the reproducibility of radiomics features of CMR cine images. METHODS This retrospective study enrolled 59 healthy adults who underwent CMR examination. Two observers segmented the myocardium on a 4D stack of three consecutive mid-ventricular short-axis cine images covering the cardiac cycle. A total of 352 radiomics features were extracted. The coefficient of variation and intraclass correlation coefficient were used to assess the feature variability through the cycle and inter-observer reproducibility, respectively. RESULTS Approximately 55% of radiomics features showed large variability through the cardiac cycle. The original features showed more variability than the Laplacian of Gaussian-filtered features (73.8% vs. 48%). The features of 4D stack cine images had a higher proportion of reproducible features (92.0%, 87.7%, and 76.1%) compared with the end-diastolic (77.8%, 62.2%, and 41.7%) and the end-systolic images (81.5%, 74.1%, and 58.8%) for intraclass correlation cut-off values of 30.80, > 0.85, and > 0.90, respectively. CONCLUSIONS Radiomics features of CMR cine images greatly vary during the cardiac cycle. The radiomics features of 4D stack of cine images are more robust compared with end-diastolic and end-systolic cine images in terms of reproducibility. The impact of the cardiac cycle on the reproducibility of the features should be considered when employing CMR cine images radiomics. KEY POINTS • There is limited evidence on the impact of cardiac motion on radiomics features of CMR cine images and the reproducibility of the radiomics features of CMR cine images. • Radiomics features of non-enhanced CMR cine images greatly vary during the cardiac cycle, and the number of "reproducible" features shows significant variations according to the cardiac phases. • The impact of cardiac cycle on the reproducibility of the radiomics features should be considered when employing CMR cine images radiomics.
Collapse
Affiliation(s)
- Deniz Alis
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey.
| | - Mert Yergin
- Department of Software Engineering and Applied Sciences, Bahcesehir University, Istanbul, Turkey
| | - Ozan Asmakutlu
- Department of Radiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Halkali, Istanbul, Turkey
| | - Cagdas Topel
- Department of Radiology, Istanbul Mehmet Akif Ersoy Thoracic and Cardiovascular Surgery Training and Research Hospital, Halkali, Istanbul, Turkey
| | - Ercan Karaarslan
- Department of Radiology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
83
|
Yamashita S, Okuda K, Nakaichi T, Yamamoto H, Yokoyama K. Texture Feature Comparison Between Step-and-Shoot and Continuous-Bed-Motion 18F-FDG PET. J Nucl Med Technol 2020; 49:58-64. [PMID: 33020230 DOI: 10.2967/jnmt.120.246157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Our objective was to investigate the differences in texture features between step-and-shoot (SS) and continuous-bed-motion (CBM) imaging in phantom and clinical studies. Methods: A National Electrical Manufacturers Association body phantom was filled with 18F-FDG solution at a sphere-to-background ratio of 4:1. SS and CBM were performed using the same acquisition duration, and the data were reconstructed using 3-dimensional ordered-subset expectation maximization with time-of-flight algorithms. Texture features were extracted using the software LIFEx. A volume of interest was delineated on the 22-, 28-, and 37-mm spheres with a threshold of 42% of the maximum SUV. The voxel intensities were discretized using 2 resampling methods, namely a fixed bin size and a fixed bin number discretization. The discrete resampling values were set to 64 and 128. In total, 31 texture features were calculated with gray-level cooccurrence matrix (GLCM), gray-level run length matrix, neighborhood gray-level different matrix, and gray-level zone length matrix. The texture features of the SS and CBM images were compared for all settings using the paired t test and the coefficient of variation. In a clinical study, 27 lesions from 20 patients were examined using the same acquisition and image processing as were used during the phantom study. The percentage difference (%Diff) and correlation between the texture features from SS and CBM images were calculated to evaluate agreement between the 2 scanning techniques. Results: In the phantom study, the 11 features exhibited no significant difference between SS and CBM images, and the coefficient of variation was no more than 10%, depending on resampling conditions, whereas entropy and dissimilarity from GLCM fulfilled the criteria for all settings. In the clinical study, the entropy and dissimilarity from GLCM exhibited a low %Diff and excellent correlation in all resampling conditions. The %Diff of entropy was lower than that of dissimilarity. Conclusion: Differences between the texture features of SS and CBM images varied depending on the type of feature. Because entropy for GLCM exhibits minimal differences between SS and CBM images irrespective of resampling conditions, entropy may be the optimal feature to reduce the differences between the 2 scanning techniques.
Collapse
Affiliation(s)
- Shozo Yamashita
- Division of Radiology, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| | - Koichi Okuda
- Department of Physics, Kanazawa Medical University, Kahoku, Japan; and
| | - Tetsu Nakaichi
- Division of Radiology, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| | - Haruki Yamamoto
- Division of Radiology, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| | - Kunihiko Yokoyama
- PET Imaging Center, Public Central Hospital of Matto Ishikawa, Ishikawa, Japan
| |
Collapse
|
84
|
How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 2020; 31:2272-2280. [PMID: 32975661 DOI: 10.1007/s00330-020-07284-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Test a practical realignment approach to compensate the technical variability of MR radiomic features. METHODS T1 phantom images acquired on 2 scanners, FLAIR and contrast-enhanced T1-weighted (CE-T1w) images of 18 brain tumor patients scanned on both 1.5-T and 3-T scanners, and 36 T2-weighted (T2w) images of prostate cancer patients scanned in one of two centers were investigated. The ComBat procedure was used for harmonizing radiomic features. Differences in statistical distributions in feature values between 1.5- and 3-T images were tested before and after harmonization. The prostate studies were used to determine the impact of harmonization to distinguish between Gleason grades (GGs). RESULTS In the phantom data, 40 out of 42 radiomic feature values were significantly different between the 2 scanners before harmonization and none after. In white matter regions, the statistical distributions of features were significantly different (p < 0.05) between the 1.5- and 3-T images for 37 out of 42 features in both FLAIR and CE-T1w images. After harmonization, no statistically significant differences were observed. In brain tumors, 41 (FLAIR) or 36 (CE-T1w) out of 42 features were significantly different between the 1.5- and 3-T images without harmonization, against 1 (FLAIR) or none (CE-T1w) with harmonization. In prostate studies, 636 radiomic features were significantly different between GGs after harmonization against 461 before. The ability to distinguish between GGs using radiomic features was increased after harmonization. CONCLUSION ComBat harmonization efficiently removes inter-center technical inconsistencies in radiomic feature values and increases the sensitivity of studies using data from several scanners. KEY POINTS • Radiomic feature values obtained using different MR scanners or imaging protocols can be harmonized by combining off-the-shelf image standardization and feature realignment procedures. • Harmonized radiomic features enable one to pool data from different scanners and centers without a substantial loss of statistical power caused by intra- and inter-center variability. • The proposed realignment method is applicable to radiomic features from different MR sequences and tumor types and does not rely on any phantom acquisition.
Collapse
|
85
|
Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review. Biomedicines 2020; 8:biomedicines8090304. [PMID: 32846986 PMCID: PMC7556033 DOI: 10.3390/biomedicines8090304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Radiomics or textural feature extraction obtained from positron emission tomography (PET) images through complex mathematical models of the spatial relationship between multiple image voxels is currently emerging as a new tool for assessing intra-tumoral heterogeneity in medical imaging. In this paper, available literature on texture analysis using FDG PET imaging in patients suffering from tumors of the gastro-intestinal tract is reviewed. While texture analysis of FDG PET images appears clinically promising, due to the lack of technical specifications, a large variability in the implemented methodology used for texture analysis and lack of statistical robustness, at present, no firm conclusions can be drawn regarding the predictive or prognostic value of FDG PET texture analysis derived indices in patients suffering from gastro-enterologic tumors. In order to move forward in this field, a harmonized image acquisition and processing protocol as well as a harmonized protocol for texture analysis of tumor volumes, allowing multi-center studies excluding statistical biases should be considered. Furthermore, the complementary and additional value of CT-imaging, as part of the PET/CT imaging technique, warrants exploration.
Collapse
|
86
|
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11:91. [PMID: 32785796 PMCID: PMC7423816 DOI: 10.1186/s13244-020-00887-2] [Citation(s) in RCA: 726] [Impact Index Per Article: 145.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical "how-to" guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
87
|
Intratumor Heterogeneity Assessed by 18F-FDG PET/CT Predicts Treatment Response and Survival Outcomes in Patients with Hodgkin Lymphoma. Acad Radiol 2020; 27:e183-e192. [PMID: 31761665 DOI: 10.1016/j.acra.2019.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
RATIONALE AND OBJECTIVES Radiomic analysis of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images enables the extraction of quantitative information of intratumour heterogeneity. This study investigated whether the baseline 18F-FDG PET/CT radiomics can predict treatment response and survival outcomes in patients with Hodgkin lymphoma (HL). MATERIALS AND METHODS Thirty-five patients diagnosed with HL who underwent 18F-FDG PET/CT scans before and during chemotherapy were retrospectively enrolled in this investigation. For each patient, we extracted 709 radiomic features from pretreatment PET/CT images. Clinical variables (age, gender, B symptoms, bulky tumor, and disease stage) and radiomic signatures (intensity, texture, and wavelet) were analyzed according to response to therapy, progression-free survival (PFS), and overall survival (OS). Receiver operating characteristic curve, logistic regression, and Cox proportional hazards model were used to examine potential predictive and prognostic factors. RESULTS High-intensity run emphasis (HIR) of PET and run-length nonuniformity (RLNU) of CT extracted from gray-level run-length matrix (GLRM) in high-frequency wavelets were independent predictive factors for the treatment response (odds ratio [OR] = 36.4, p = 0.014; OR = 30.4, p = 0.020). Intensity nonuniformity (INU) of PET and wavelet short run emphasis (SRE) of CT from GLRM and Ann Arbor stage were independently related to PFS (hazard ratio [HR] = 9.29, p = 0.023; HR = 18.40, p = 0.012; HR = 7.46, p = 0.049). Zone-size nonuniformity (ZSNU) of PET from gray-level size zone matrix (GLSZM) was independently associated with OS (HR = 41.02, p = 0.001). Based on these factors, a prognostic stratification model was devised for the risk stratification of patients. The proposed model allowed the identification of four risk groups for PFS and OS (p < 0.001 and p < 0.001). CONCLUSION HIR_GLRMPET and RLNU_GLRMCT in high-frequency wavelets serve as independent predictive factors for treatment response. ZSNU_GLSZMPET, INU_GLRMPET, and wavelet SRE_GLRMCT serve as independent prognostic factors for survival outcomes. The present study proposes a prognostic stratification model that may be clinically beneficial in guiding risk-adapted treatment strategies for patients with HL.
Collapse
|
88
|
Gao X, Tham IWK, Yan J. Quantitative accuracy of radiomic features of low-dose 18F-FDG PET imaging. Transl Cancer Res 2020; 9:4646-4655. [PMID: 35117828 PMCID: PMC8797853 DOI: 10.21037/tcr-20-1715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/08/2020] [Indexed: 01/12/2023]
Abstract
Background 18F-FDG PET based radiomics is promising for precision oncology imaging. This work aims to explore quantitative accuracies of radiomic features (RFs) for low-dose 18F-FDG PET imaging. Methods Twenty lung cancer patients were prospectively enrolled and underwent 18F-FDG PET/CT scans. Low-dose PET situations (true counts: 20×106, 15×106, 10×106, 7.5×106, 5×106, 2×106, 1×106, 0.5×106, 0.25×106) were simulated by randomly discarding counts from the acquired list-mode data. Each PET image was created using the scanner default reconstruction parameters. Each lesion volume of interest (VOI) was obtained via an adaptive contouring method with a threshold of 50% peak standardized uptake value (SUVpeak) in the PET images with full count data and VOIs were copied to the PET images at the reduced count level. Conventional SUV measures, features calculated from first-order statistics (FOS) and texture features (TFs) were calculated. Texture based RF include features calculated from gray-level co-occurrence matrix (GLCM), gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), neighboring gray-level dependence matrix (NGLDM) and neighbor gray-tone difference matrix (NGTDM). Bias percentage (BP) at different count levels for each RF was calculated. Results Fifty-seven lesions with a volume greater than 1.5 cm3 were found (mean volume, 25.7 cm3, volume range, 1.5–245.4 cm3). In comparison with normal total counts, mean SUV (SUVmean) in the lesions, normal lungs and livers, Entropy and sum entropy from GLCM, busyness from NGTDM and run-length non-uniformity from GLRLM were the most robust features, with a BP of 5% at the count level of 1×106 (equivalent to an effective dose of 0.04 mSv) RF including cluster shade from GLCM, long-run low grey-level emphasis, high grey-level run emphasis and short-run low grey-level emphasis from GLRM exhibited the worst performance with 50% of bias with 20×106 counts (equivalent to an effective dose of 0.8 mSv). Conclusions In terms of the lesions included in this study, SUVmean, entropy and sum entropy from GLCM, busyness from NGTDM and run-length non-uniformity from GLRLM were the least sensitive features to lowering count.
Collapse
Affiliation(s)
- Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Ivan W K Tham
- ASTAR-NUS, Clinical Imaging Research Center, Singapore, Singapore.,Department of Radiation Oncology, National University Hospital, Singapore, Singapore.,Department of Radiation Oncology, Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - Jianhua Yan
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Molecular Imaging Precision Medicine Collaborative Innovation Center, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
89
|
Cheng NM, Hsieh CE, Fang YHD, Liao CT, Ng SH, Wang HM, Chou WC, Lin CY, Yen TC. Development and validation of a prognostic model incorporating [ 18F]FDG PET/CT radiomics for patients with minor salivary gland carcinoma. EJNMMI Res 2020; 10:74. [PMID: 32632638 PMCID: PMC7338312 DOI: 10.1186/s13550-020-00631-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The aim of this study was to develop and validate a prognostic model incorporating [18F]FDG PET/CT radiomics for patients of minor salivary gland carcinoma (MSGC). METHODS We retrospectively reviewed the pretreatment [18F]FDG PET/CT images of 75 MSGC patients treated with curative intent. Using a 1.5:1 ratio, the patients were randomly divided into a training and validation group. The main outcome measurements were overall survival (OS) and relapse-free survival (RFS). All of the patients were followed up for at least 30 months or until death. Following segmentation of tumors and lymph nodes on PET images, radiomic features were extracted. The prognostic significance of PET radiomics and clinical parameters in the training group was examined using receiver operating characteristic curve analysis. Variables showing a significant impact on OS and RFS were entered into multivariable Cox regression models. Recursive partitioning analysis was subsequently implemented to devise a prognostic index, whose performance was examined in the validation group. Finally, the performance of the index was compared with clinical variables in the entire cohort and nomograms for surgically treated cases. RESULTS The training and validation groups consisted of 45 and 30 patients, respectively. The median follow-up time in the entire cohort was 59.5 months. Eighteen relapse, 19 dead, and thirteen relapse, eight dead events were found in the training and validation cohorts, respectively. In the training group, two factors were identified as independently associated with poor OS, i.e., (1) tumors with both high maximum standardized uptake value (SUVmax) and discretized intensity entropy and (2) poor performance status or N2c-N3 stage. A prognostic model based on the above factors was devised and showed significant higher concordance index (C-index) for OS than those of AJCC stage and high-risk histology (C-index: 0.83 vs. 0.65, P = 0.005; 0.83 vs. 0.54, P < 0.001, respectively). This index also demonstrated superior performance than nomogram for OS (C-index: 0.88 vs. 0.70, P = 0.017) and that for RFS (C-index: 0.87 vs. 0.72, P = 0.004). CONCLUSIONS We devised a novel prognostic model that incorporates [18F]FDG PET/CT radiomics and may help refine outcome prediction in patients with MSGC.
Collapse
Affiliation(s)
- Nai-Ming Cheng
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Department of Nuclear Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-En Hsieh
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Hua Dean Fang
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Ta Liao
- Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chien-Yu Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Department of Nuclear Medicine, Xiamen Chang Gung Hospital, Xiamen, China.
| |
Collapse
|
90
|
Mayerhoefer ME, Umutlu L, Schöder H. Functional imaging using radiomic features in assessment of lymphoma. Methods 2020; 188:105-111. [PMID: 32634555 DOI: 10.1016/j.ymeth.2020.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Lymphomas are typically large, well-defined, and relatively homogeneous tumors, and therefore represent ideal targets for the use of radiomics. Of the available functional imaging tests, [18F]FDG-PET for body lymphoma and diffusion-weighted MRI (DWI) for central nervous system (CNS) lymphoma are of particular interest. The current literature suggests that two main applications for radiomics in lymphoma show promise: differentiation of lymphomas from other tumors, and lymphoma treatment response and outcome prognostication. In particular, encouraging results reported in the limited number of presently available studies that utilize functional imaging suggest that (1) MRI-based radiomics enables differentiation of CNS lymphoma from glioblastoma, and (2) baseline [18F]FDG-PET radiomics could be useful for survival prognostication, adding to or even replacing commonly used metrics such as standardized uptake values and metabolic tumor volume. However, due to differences in biological and clinical characteristics of different lymphoma subtypes and an increasing number of treatment options, more data are required to support these findings. Furthermore, a consensus on several critical steps in the radiomics workflow -most importantly, image reconstruction and post processing, lesion segmentation, and choice of classification algorithm- is desirable to ensure comparability of results between research institutions.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| |
Collapse
|
91
|
Da-Ano R, Masson I, Lucia F, Doré M, Robin P, Alfieri J, Rousseau C, Mervoyer A, Reinhold C, Castelli J, De Crevoisier R, Rameé JF, Pradier O, Schick U, Visvikis D, Hatt M. Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies. Sci Rep 2020; 10:10248. [PMID: 32581221 PMCID: PMC7314795 DOI: 10.1038/s41598-020-66110-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Abstract
Multicenter studies are needed to demonstrate the clinical potential value of radiomics as a prognostic tool. However, variability in scanner models, acquisition protocols and reconstruction settings are unavoidable and radiomic features are notoriously sensitive to these factors, which hinders pooling them in a statistical analysis. A statistical harmonization method called ComBat was developed to deal with the "batch effect" in gene expression microarray data and was used in radiomics studies to deal with the "center-effect". Our goal was to evaluate modifications in ComBat allowing for more flexibility in choosing a reference and improving robustness of the estimation. Two modified ComBat versions were evaluated: M-ComBat allows to transform all features distributions to a chosen reference, instead of the overall mean, providing more flexibility. B-ComBat adds bootstrap and Monte Carlo for improved robustness in the estimation. BM-ComBat combines both modifications. The four versions were compared regarding their ability to harmonize features in a multicenter context in two different clinical datasets. The first contains 119 locally advanced cervical cancer patients from 3 centers, with magnetic resonance imaging and positron emission tomography imaging. In that case ComBat was applied with 3 labels corresponding to each center. The second one contains 98 locally advanced laryngeal cancer patients from 5 centers with contrast-enhanced computed tomography. In that specific case, because imaging settings were highly heterogeneous even within each of the five centers, unsupervised clustering was used to determine two labels for applying ComBat. The impact of each harmonization was evaluated through three different machine learning pipelines for the modelling step in predicting the clinical outcomes, across two performance metrics (balanced accuracy and Matthews correlation coefficient). Before harmonization, almost all radiomic features had significantly different distributions between labels. These differences were successfully removed with all ComBat versions. The predictive ability of the radiomic models was always improved with harmonization and the improved ComBat provided the best results. This was observed consistently in both datasets, through all machine learning pipelines and performance metrics. The proposed modifications allow for more flexibility and robustness in the estimation. They also slightly but consistently improve the predictive power of resulting radiomic models.
Collapse
Affiliation(s)
- R Da-Ano
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France.
| | - I Masson
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Department of Radiation Oncology, Institut de cancérologie de l'Ouest René-Gauducheau, Saint-Herblain, France
| | - F Lucia
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Radiation Oncology Department, University Hospital, Brest, France
| | - M Doré
- Department of Radiation Oncology, Institut de cancérologie de l'Ouest René-Gauducheau, Saint-Herblain, France
| | - P Robin
- Department of Nuclear Medicine, University of Brest, Brest, France
| | - J Alfieri
- Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - C Rousseau
- Department of Nuclear Medicine, Institut de cancerologie de l'Ouest René-Gauducheau, Saint-Herblain, France
- CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| | - A Mervoyer
- Department of Radiation Oncology, Institut de cancérologie de l'Ouest René-Gauducheau, Saint-Herblain, France
| | - C Reinhold
- Department of Radiology, McGill University Health Centre, Montreal, Canada
| | - J Castelli
- Radiotherapy Department Cancer, Institute Eugene Marquis, Rennes, France
- University of Rennes 1, LTSI, Rennes, France
| | - R De Crevoisier
- Radiotherapy Department Cancer, Institute Eugene Marquis, Rennes, France
- University of Rennes 1, LTSI, Rennes, France
| | - J F Rameé
- Department of Medical Oncology, Centre Hospitalier de Vendee, La Roche sur Yon, France
| | - O Pradier
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Radiation Oncology Department, University Hospital, Brest, France
| | - U Schick
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
- Radiation Oncology Department, University Hospital, Brest, France
| | - D Visvikis
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| | - M Hatt
- INSERM, UMR 1101, LaTIM, University of Brest, Brest, France
| |
Collapse
|
92
|
Liu Q, Sun D, Li N, Kim J, Feng D, Huang G, Wang L, Song S. Predicting EGFR mutation subtypes in lung adenocarcinoma using 18F-FDG PET/CT radiomic features. Transl Lung Cancer Res 2020; 9:549-562. [PMID: 32676319 PMCID: PMC7354146 DOI: 10.21037/tlcr.2020.04.17] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Identification of epidermal growth factor receptor (EGFR) mutation types is crucial before tyrosine kinase inhibitors (TKIs) treatment. Radiomics is a new strategy to noninvasively predict the genetic status of cancer. In this study, we aimed to develop a predictive model based on 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) radiomic features to identify the specific EGFR mutation subtypes. Methods We retrospectively studied 18F-FDG PET/CT images of 148 patients with isolated lung lesions, which were scanned in two hospitals with different CT scan setting (slice thickness: 3 and 5 mm, respectively). The tumor regions were manually segmented on PET/CT images, and 1,570 radiomic features (1,470 from CT and 100 from PET) were extracted from the tumor regions. Seven hundred and ninety-four radiomic features insensitive to different CT settings were first selected using the Mann white U test, and collinear features were further removed from them by recursively calculating the variation inflation factor. Then, multiple supervised machine learning models were applied to identify prognostic radiomic features through: (I) a multi-variate random forest to select features of high importance in discriminating different EGFR mutation status; (II) a logistic regression model to select features of the highest predictive value of the EGFR subtypes. The EGFR mutation predicting model was constructed from prognostic radiomic features using the popular Xgboost machine-learning algorithm and validated using 3-fold cross-validation. The performance of predicting model was analyzed using the receiver operating characteristic curve (ROC) and measured with the area under the curve (AUC). Results Two sets of prognostic radiomic features were found for specific EGFR mutation subtypes: 5 radiomic features for EGFR exon 19 deletions, and 5 radiomic features for EGFR exon 21 L858R missense. The corresponding radiomic predictors achieved the prediction accuracies of 0.77 and 0.92 in terms of AUC, respectively. Combing these two predictors, the overall model for predicting EGFR mutation positivity was also constructed, and the AUC was 0.87. Conclusions In our study, we established predictive models based on radiomic analysis of 18F-FDG PET/CT images. And it achieved a satisfying prediction power in the identification of EGFR mutation status as well as the certain EGFR mutation subtypes in lung cancer.
Collapse
Affiliation(s)
- Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dazhen Sun
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinman Kim
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Dagan Feng
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Biomedical and Multimedia Information Technology Research Group, School of Computer Science, University of Sydney, Sydney, Australia.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lisheng Wang
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
93
|
2-[ 18F]FDG PET/CT radiomics in lung cancer: An overview of the technical aspect and its emerging role in management of the disease. Methods 2020; 188:84-97. [PMID: 32497604 DOI: 10.1016/j.ymeth.2020.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cancer, worldwide, and a major health issue with a remarkable mortality rate. 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) plays an indispensable role in the management of lung cancer patients. Long-established quantitative parameters such as size, density, and metabolic activity have been and are being employed in the current practice to enhance interpretation and improve diagnostic and prognostic value. The introduction of radiomics analysis revolutionized the quantitative evaluation of medical imaging, revealing data within images beyond visual interpretation. The "big data" are extracted from high-quality images and are converted into information that correlates to relevant genetic, pathologic, clinical, or prognostic features. Technically advanced, diverse methods have been implemented in different studies. The standardization of image acquisition, segmentation and features analysis is still a debated issue. Importantly, a body of features has been extracted and employed for diagnosis, staging, risk stratification, prognostication, and therapeutic response. 2-[18F]FDG PET/CT-derived features show promising value in non-invasively diagnosing the malignant nature of pulmonary nodules, differentiating lung cancer subtypes, and predicting response to different therapies as well as survival. In this review article, we aimed to provide an overview of the technical aspects used in radiomics analysis in non-small cell lung cancer (NSCLC) and elucidate the role of 2-[18F]FDG PET/CT-derived radiomics in the diagnosis, prognostication, and therapeutic response.
Collapse
|
94
|
Development and validation of an 18F-FDG PET radiomic model for prognosis prediction in patients with nasal-type extranodal natural killer/T cell lymphoma. Eur Radiol 2020; 30:5578-5587. [PMID: 32435928 DOI: 10.1007/s00330-020-06943-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) radiomics-based model for predicting progression-free survival (PFS) and overall survival (OS) of nasal-type extranodal natural killer/T cell lymphoma (ENKTL). METHODS In this retrospective study, a total of 110 ENKTL patients were divided into a training cohort (n = 82) and a validation cohort (n = 28). Forty-one features were extracted from pretreatment PET images of the patients. Least absolute shrinkage and selection operator (LASSO) regression was used to develop the radiomic signatures (R-signatures). A radiomics-based model was built and validated in the two cohorts and compared with a metabolism-based model. RESULTS The R-signatures were constructed with moderate predictive ability in the training and validation cohorts (R-signaturePFS: AUC = 0.788 and 0.473; R-signatureOS: AUC = 0.637 and 0.730). For PFS, the radiomics-based model showed better discrimination than the metabolism-based model in the training cohort (C-index = 0.811 vs. 0.751) but poorer discrimination in the validation cohort (C-index = 0.588 vs. 0.693). The calibration of the radiomics-based model was poorer than that of the metabolism-based model (training cohort: p = 0.415 vs. 0.428, validation cohort: p = 0.228 vs. 0.652). For OS, the performance of the radiomics-based model was poorer (training cohort: C-index = 0.818 vs. 0.828, p = 0.853 vs. 0.885; validation cohort: C-index = 0.628 vs. 0.753, p < 0.05 vs. 0.913). CONCLUSIONS Radiomic features derived from PET images can predict the outcomes of patients with ENKTL, but the performance of the radiomics-based model was inferior to that of the metabolism-based model. KEY POINTS • The R-signatures calculated by using 18F-FDG PET radiomic features can predict the survival of patients with ENKTL. • The radiomics-based models integrating the R-signatures and clinical factors achieved good predictive values. • The performance of the radiomics-based model was inferior to that of the metabolism-based model in the two cohorts.
Collapse
|
95
|
Haider SP, Burtness B, Yarbrough WG, Payabvash S. Applications of radiomics in precision diagnosis, prognostication and treatment planning of head and neck squamous cell carcinomas. CANCERS OF THE HEAD & NECK 2020; 5:6. [PMID: 32391171 PMCID: PMC7197186 DOI: 10.1186/s41199-020-00053-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Recent advancements in computational power, machine learning, and artificial intelligence technology have enabled automated evaluation of medical images to generate quantitative diagnostic and prognostic biomarkers. Such objective biomarkers are readily available and have the potential to improve personalized treatment, precision medicine, and patient selection for clinical trials. In this article, we explore the merits of the most recent addition to the “-omics” concept for the broader field of head and neck cancer – “Radiomics”. This review discusses radiomics studies focused on (molecular) characterization, classification, prognostication and treatment guidance for head and neck squamous cell carcinomas (HNSCC). We review the underlying hypothesis, general concept and typical workflow of radiomic analysis, and elaborate on current and future challenges to be addressed before routine clinical application.
Collapse
Affiliation(s)
- Stefan P Haider
- 1Department of Radiology and Biomedical Imaging, Division of Neuroradiology, Yale School of Medicine, New Haven, CT USA.,2Department of Otorhinolaryngology, University Hospital of Ludwig Maximilians University of Munich, Munich, Germany
| | - Barbara Burtness
- 3Department of Internal Medicine, Division of Medical Oncology, Yale School of Medicine, New Haven, CT USA
| | - Wendell G Yarbrough
- 4Department of Otolaryngology/Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC USA
| | - Seyedmehdi Payabvash
- 1Department of Radiology and Biomedical Imaging, Division of Neuroradiology, Yale School of Medicine, New Haven, CT USA
| |
Collapse
|
96
|
Rai R, Holloway LC, Brink C, Field M, Christiansen RL, Sun Y, Barton MB, Liney GP. Multicenter evaluation of MRI-based radiomic features: A phantom study. Med Phys 2020; 47:3054-3063. [PMID: 32277703 DOI: 10.1002/mp.14173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION This work describes the development of a novel radiomics phantom designed for magnetic resonance imaging (MRI) that can be used in a multicenter setting. The purpose of this study is to assess the stability and reproducibility of MRI-based radiomic features using this phantom across different MRI scanners. METHODS & MATERIALS A set of phantoms were three-dimensional (3D) printed using MRI visible materials. One set of phantoms were imaged on seven MRI scanners and one was imaged on one MRI scanner. Radiomics analysis of the phantoms, which included first-order features, shape and texture features was performed. Intraclass correlation coefficient (ICC) was used to assess the stability of radiomic features across eight scanners and the reproducibility of two printed models on one scanner. Coefficient of variation (COV) was used to assess the reproducibility of radiomics measurements in the phantom on a single scanner. RESULTS The phantom models provide sufficient signal-to-noise and contrast in all the tumor models permitting robust automatic segmentation. During a 12-month period of monitoring, the phantom material was stable with T1 and T2 of 150.7 ± 6.7 ms and 56.1 ± 3.9 ms, respectively. Of all the radiomic features computed, 34 of 69 had COV < 10%. Features from first-order statistics were the most robust in stability across the eight scanners with eight of 12 (67%) having high stability. About 29 of 50 (58%) texture features had high stability and no shape features had high stability features across the eight scanners. CONCLUSION A novel MRI radiomics phantom has been developed to assess the reproducibility and stability of MRI-based radiomic features across multiple institutions. The variation in radiomic feature stability demonstrates the need for caution when interpreting these features for clinical studies.
Collapse
Affiliation(s)
- Robba Rai
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Lois C Holloway
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,Centre of Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Carsten Brink
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Matthew Field
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Rasmus L Christiansen
- Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Yu Sun
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Michael B Barton
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Gary P Liney
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW, 2170, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,Centre of Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
97
|
Krarup MMK, Nygård L, Vogelius IR, Andersen FL, Cook G, Goh V, Fischer BM. Heterogeneity in tumours: Validating the use of radiomic features on 18F-FDG PET/CT scans of lung cancer patients as a prognostic tool. Radiother Oncol 2020; 144:72-78. [PMID: 31733491 DOI: 10.1016/j.radonc.2019.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
AIM The aim was to validate promising radiomic features (RFs)1 on 18F-flourodeoxyglucose positron emission tomography/computed tomography-scans (18F-FDG PET/CT) of non-small cell lung cancer (NSCLC) patients undergoing definitive chemo-radiotherapy. METHODS 18F-FDG PET/CT scans performed for radiotherapy (RT) planning were retrieved. Auto-segmentation with visual adaption was used to define the primary tumour on PET images. Six pre-selected prognostic and reproducible PET texture -and shape-features were calculated using texture respectively shape analysis. The correlation between these RFs and metabolic active tumour volume (MTV)3, gross tumour volume (GTV)4 and maximum and mean of standardized uptake value (SUV)5 was tested with a Spearman's Rank test. The prognostic value of RFs was tested in a univariate cox regression analysis and a multivariate cox regression analysis with GTV, clinical stage and histology. P-value ≤ 0.05 were considered significant. RESULTS Image analysis was performed for 233 patients: 145 males and 88 females, mean age of 65.7 and clinical stage II-IV. Mean GTV was 129.87 cm3 (SD 130.30 cm3). Texture and shape-features correlated more strongly to MTV and GTV compared to SUV-measurements. Four RFs predicted PFS in the univariate analysis. No RFs predicted PFS in the multivariate analysis, whereas GTV and clinical stage predicted PFS (p = 0.001 and p = 0.008 respectively). CONCLUSION The pre-selected RFs were insignificant in predicting PFS in combination with GTV, clinical stage and histology. These results might be due to variations in technical parameters. However, it is relevant to question whether RFs are stable enough to provide clinically useful information.
Collapse
Affiliation(s)
- Marie Manon Krebs Krarup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Lotte Nygård
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Ivan Richter Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, Copenhagen University, Denmark.
| | - Flemming Littrup Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark.
| | - Gary Cook
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| | - Vicky Goh
- PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Denmark; PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, United Kingdom.
| |
Collapse
|
98
|
Liu R, Elhalawani H, Radwan Mohamed AS, Elgohari B, Court L, Zhu H, Fuller CD. Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer. Clin Transl Radiat Oncol 2020; 21:11-18. [PMID: 31886423 PMCID: PMC6920497 DOI: 10.1016/j.ctro.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Accurate segmentation of tumors and quantification of tumor features are important for cancer detection, diagnosis, monitoring, and planning therapeutic intervention. Due to inherent noise components in multi-parametric imaging and inter-observer and intra-observer variations, it is common that various segmentation methods may produce large segmentation errors in tumor volumes and their associated radiomic features. The purpose of this study is to carry out the stability analysis for radiomic features with respect to segmentation variation in oropharyngeal cancer (OPC). METHODS In this study, 436 contrast-enhanced computed tomography (CT) axial images were collected from patients with OPC. In order to derive various segmentations of tumor volumes, two additional segmentations were obtained via resizing the original segmented regions of interest (ROIs) based on their geometric information on the boundary. For three ROI image groups, we calculated 109 radiomic features. Then, a logistic regression model was built to investigate the correlation between the radiomic features extracted from GTVp and the response to chemotherapy and radiation in terms of overall survival (OS). Finally, in order to evaluate the stability of each feature with respect to segmentation results, based on the prediction probabilities, we assessed the inter-rater reliability and reproducibility by calculating the intra-class correlation coefficients (ICC) and concordance correlation coefficients (CCC). RESULTS Most radiomic features in this study varied a lot when the ROIs were not well segmented. For both the representation agreement and predictive agreement, the ICC and CCC were below 0.5 for all the features. We still found some robust features with relatively high ICC and CCC compared to most features. For example, 25percentile (ICC = 0.38, CCC = 0.37 in representation agreement and ICC = CCC = 0.27 in predictive agreement) is a quantile based feature, which is robust to the extremely high or low values; and Hu_1_std (ICC = 0.31, CCC = 0.31 in representation agreement) is a feature calculated based on the first Hu moment, which is invariant to the transformation of ROIs. CONCLUSION In OPC studies, the tumor segmentation variation affects the radiomic features from CT images in terms of both representation and prediction. Some features that are robust to the extreme values or invariant to the transformation of ROIs may be treated as radiomic markers to assist with OPC treatment monitoring and prognostic prediction.
Collapse
Affiliation(s)
- Rongjie Liu
- Department of Statistics, Rice University, Houston, TX 77005, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdallah Sherif Radwan Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Almansoura, Almansoura, Egypt
| | - Laurence Court
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongtu Zhu
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
99
|
Konert T, Everitt S, La Fontaine MD, van de Kamer JB, MacManus MP, Vogel WV, Callahan J, Sonke JJ. Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? PLoS One 2020; 15:e0228793. [PMID: 32097418 PMCID: PMC7041813 DOI: 10.1371/journal.pone.0228793] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
In locally advanced lung cancer, established baseline clinical variables show limited prognostic accuracy and 18F-fluorodeoxyglucose positron emission tomography (FDG PET) radiomics features may increase accuracy for optimal treatment selection. Their robustness and added value relative to current clinical factors are unknown. Hence, we identify robust and independent PET radiomics features that may have complementary value in predicting survival endpoints. A 4D PET dataset (n = 70) was used for assessing the repeatability (Bland-Altman analysis) and independence of PET radiomics features (Spearman rank: |ρ|<0.5). Two 3D PET datasets combined (n = 252) were used for training and validation of an elastic net regularized generalized logistic regression model (GLM) based on a selection of clinical and robust independent PET radiomics features (GLMall). The fitted model performance was externally validated (n = 40). The performance of GLMall (measured with area under the receiver operating characteristic curve, AUC) was highest in predicting 2-year overall survival (0.66±0.07). No significant improvement was observed for GLMall compared to a model containing only PET radiomics features or only clinical variables for any clinical endpoint. External validation of GLMall led to AUC values no higher than 0.55 for any clinical endpoint. In this study, robust independent FDG PET radiomics features did not have complementary value in predicting survival endpoints in lung cancer patients. Improving risk stratification and clinical decision making based on clinical variables and PET radiomics features has still been proven difficult in locally advanced lung cancer patients.
Collapse
Affiliation(s)
- Tom Konert
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sarah Everitt
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Matthew D. La Fontaine
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeroen B. van de Kamer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael P. MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Wouter V. Vogel
- Nuclear Medicine Department, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jason Callahan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
100
|
Scalco E, Belfatto A, Mastropietro A, Rancati T, Avuzzi B, Messina A, Valdagni R, Rizzo G. T2w‐MRI signal normalization affects radiomics features reproducibility. Med Phys 2020; 47:1680-1691. [DOI: 10.1002/mp.14038] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Elisa Scalco
- CNR, Institute of Biomedical Technologies (ITB) Segrate Italy
- CNR, Institute of Molecular Bioimaging and Physiology (IBFM) Segrate Italy
| | - Antonella Belfatto
- CNR, Institute of Molecular Bioimaging and Physiology (IBFM) Segrate Italy
| | - Alfonso Mastropietro
- CNR, Institute of Biomedical Technologies (ITB) Segrate Italy
- CNR, Institute of Molecular Bioimaging and Physiology (IBFM) Segrate Italy
| | - Tiziana Rancati
- Fondazione IRCCS Istituto Nazionale dei Tumori Prostate Cancer Program Milano Italy
| | - Barbara Avuzzi
- Radiation Oncology 1 Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
| | - Antonella Messina
- Radiology Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
| | - Riccardo Valdagni
- Fondazione IRCCS Istituto Nazionale dei Tumori Prostate Cancer Program Milano Italy
- Radiation Oncology 1 Fondazione IRCCS Istituto Nazionale dei Tumori Milano Italy
- Department of Oncology and Hemato‐oncology Università degli Studi di Milano Milano Italy
| | - Giovanna Rizzo
- CNR, Institute of Biomedical Technologies (ITB) Segrate Italy
- CNR, Institute of Molecular Bioimaging and Physiology (IBFM) Segrate Italy
| |
Collapse
|