51
|
The Application of Human iPSCs in Neurological Diseases: From Bench to Bedside. Stem Cells Int 2016; 2016:6484713. [PMID: 26880979 PMCID: PMC4736583 DOI: 10.1155/2016/6484713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
In principle, induced pluripotent stem cells (iPSCs) are generated from somatic cells by reprogramming and gaining the capacity to self-renew indefinitely as well as the ability to differentiate into cells of different lineages. Human iPSCs have absolute advantages over human embryonic stem cells (ESCs) and animal models in disease modeling, drug screening, and cell replacement therapy. Since Takahashi and Yamanaka first described in 2007 that iPSCs can be generated from human adult somatic cells by retroviral transduction of the four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, disease specific iPSC lines have sprung up worldwide like bamboo shoots after a spring rain, making iPSC one of the hottest and fastest moving topics in modern science. The craze for iPSCs has spread throughout main branches of clinical medicine, covering neurology, hematology, cardiology, endocrinology, hepatology, ophthalmology, and so on. Here in this paper, we will focus on the clinical application of human iPSCs in disease modeling, drug screening, and cell replacement therapy for neurological diseases.
Collapse
|
52
|
Peedicayil J. Preclinical epigenetic models for screening epigenetic drugs for schizophrenia. J Pharmacol Toxicol Methods 2016; 77:1-5. [DOI: 10.1016/j.vascn.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/18/2015] [Accepted: 09/05/2015] [Indexed: 01/09/2023]
|
53
|
Barr CL, Misener VL. Decoding the non-coding genome: elucidating genetic risk outside the coding genome. GENES, BRAIN, AND BEHAVIOR 2016; 15:187-204. [PMID: 26515765 PMCID: PMC4833497 DOI: 10.1111/gbb.12269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders.
Collapse
Affiliation(s)
- C. L. Barr
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - V. L. Misener
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
54
|
A Dishful of a Troubled Mind: Induced Pluripotent Stem Cells in Psychiatric Research. Stem Cells Int 2015; 2016:7909176. [PMID: 26839567 PMCID: PMC4709917 DOI: 10.1155/2016/7909176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Neuronal differentiation of induced pluripotent stem cells and direct reprogramming represent powerful methods for modeling the development of neurons in vitro. Moreover, this approach is also a means for comparing various cellular phenotypes between cell lines originating from healthy and diseased individuals or isogenic cell lines engineered to differ at only one or a few genomic loci. Despite methodological constraints and initial skepticism regarding this approach, the field is expanding at a fast pace. The improvements include the development of new differentiation protocols resulting in selected neuronal populations (e.g., dopaminergic, GABAergic, hippocampal, and cortical), the widespread use of genome editing methods, and single-cell techniques. A major challenge awaiting in vitro disease modeling is the integration of clinical data in the models, by selection of well characterized clinical populations. Ideally, these models will also demonstrate how different diagnostic categories share overlapping molecular disease mechanisms, but also have unique characteristics. In this review we evaluate studies with regard to the described developments, to demonstrate how differentiation of induced pluripotent stem cells and direct reprogramming can contribute to psychiatry.
Collapse
|
55
|
Habela CW, Song H, Ming GL. Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Mol Cell Neurosci 2015; 73:52-62. [PMID: 26655799 DOI: 10.1016/j.mcn.2015.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 02/08/2023] Open
Abstract
Schizophrenia (SCZ) and autism spectrum disorder (ASD) are genetically and phenotypically complex disorders of neural development. Human genetic studies, as well as studies examining structural changes at the cellular level, have converged on glutamatergic synapse formation, function, and maintenance as common pathophysiologic substrates involved in both disorders. Synapses as basic functional units of the brain are continuously modified by experience throughout life, therefore they are particularly attractive candidates for targeted therapy. Until recently we lacked a system to evaluate dynamic changes that lead to synaptic abnormalities. With the development of techniques to generate induced pluripotent stem cells (iPSCs) from patients, we are now able to study neuronal and synaptic development in cells from individual patients in the context of genetic changes conferring disease susceptibility. In this review, we discuss recent studies focusing on neural cells differentiated from SCZ and ASD patient iPSCs. These studies support a central role for glutamatergic synapse formation and function in both disorders and demonstrate that iPSC derived neurons offer a potential system for further evaluation of processes leading to synaptic dysregulation and for the design and screening of future therapies.
Collapse
Affiliation(s)
- Christa W Habela
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
56
|
Lin M, Lachman HM, Zheng D. Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Mol Cell Neurosci 2015; 73:32-42. [PMID: 26631648 DOI: 10.1016/j.mcn.2015.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/31/2015] [Accepted: 11/25/2015] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived neurons and neural progenitors are great resources for studying neural development and differentiation and their disruptions in disease conditions, and hold the promise of future cell therapy. In general, iPSC lines can be established either specifically from patients with neuropsychiatric disorders or from healthy subjects. The iPSCs can then be induced to differentiate into neural lineages and the iPSC-derived neurons are valuable for various types of cell-based assays that seek to understand disease mechanisms and identify and test novel therapies. In addition, it is an ideal system for gene expression profiling (i.e., transcriptomic analysis), an efficient and cost-effective way to explore the genetic programs regulating neurodevelopment. Moreover, transcriptomic comparison, which can be performed between patient-derived samples and controls, or in control lines in which the expression of specific genes has been disrupted, can uncover convergent gene targets and pathways that are downstream of the hundreds of candidate genes that have been associated with neuropsychiatric disorders. The results, especially after integration with spatiotemporal transcriptomic profiles of normal human brain development, have indeed helped to uncover gene networks, molecular pathways, and cellular signaling that likely play critical roles in disease development and progression. On the other hand, despite the great promise, many challenges remain in the usage of iPSC-derived neurons for modeling neuropsychiatric disorders, for example, how to generate relatively homogenous populations of specific neuronal subtypes that are affected in a particular disorder and how to better address the genetic heterogeneity that exists in the patient population.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Herbert M Lachman
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
57
|
Abstract
Schizophrenia is a devastating and prevalent psychiatric illness. Progress in understanding the basic pathophysiological processes underlying this disorder has been hindered by the lack of appropriate models. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to generate live neurons in vitro from somatic tissue of schizophrenia patients. Despite its several limitations, this revolutionary technology has already helped to advance our understanding of schizophrenia. The phenotypic insights garnered with iPSC models of schizophrenia include transcriptional dysregulation, oxidative stress synaptic dysregulation, and neurodevelopmental abnormalities. Potential pitfalls of this work include the possibility of introducing random genetic mutations during the reprogramming process, the inadequacy of using neurons from other patients as controls, the inability to capture the complex environmental contribution to schizophrenia pathogenesis, the difficulty in modelling neurodevelopment, and the difficulty in modelling the interaction of multiple neuronal and non-neuronal cell types. However, with the increasing sophistication of available reprogramming techniques, co-culture technology, and gene correction strategies, iPSC-derived neurons will continue to elucidate how neuronal function is disrupted in schizophrenia.
Collapse
|
58
|
Nestor MW, Phillips AW, Artimovich E, Nestor JE, Hussman JP, Blatt GJ. Human Inducible Pluripotent Stem Cells and Autism Spectrum Disorder: Emerging Technologies. Autism Res 2015; 9:513-35. [DOI: 10.1002/aur.1570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Michael W. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Andre W. Phillips
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Elena Artimovich
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Jonathan E. Nestor
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - John P. Hussman
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| | - Gene J. Blatt
- The Hussman Institute for Autism; 801 W. Baltimore St., Suite 301 Baltimore Maryland 21201
| |
Collapse
|
59
|
Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, van der Ven K, Hsu J, Wolf P, Fleishman M, O’Dushlaine C, Rose S, Chambert K, Lau FH, Ahfeldt T, Rueckert EH, Sheridan SD, Fass DM, Nemesh J, Mullen TE, Daheron L, McCarroll S, Sklar P, Perlis RH, Haggarty SJ. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry 2015; 20:703-17. [PMID: 25733313 PMCID: PMC4440839 DOI: 10.1038/mp.2015.7] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 10/29/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4(+) NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.
Collapse
Affiliation(s)
- Jon M. Madison
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| | - Fen Zhou
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aparna Nigam
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ali Hussain
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Douglas D. Barker
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Karlijn van der Ven
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jenny Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pavlina Wolf
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Colm O’Dushlaine
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Sam Rose
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Frank H. Lau
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Tim Ahfeldt
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Erroll H. Rueckert
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven D. Sheridan
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E. Mullen
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Laurence Daheron
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA
| | - Steve McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela Sklar
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Roy H. Perlis
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA,Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA,Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA,Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA,Correspondence: (JM), (SJH)
| |
Collapse
|
60
|
Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, Paulsen BDS, Belmonte-de-Abreu P, Vieira H, Krepischi AC, Carraro DM, Palha JA, Rehen S, Brentani H. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics 2015; 8:23. [PMID: 25981335 PMCID: PMC4493810 DOI: 10.1186/s12920-015-0098-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0098-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Maschietto
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil.
| | - Ana C Tahira
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil.
| | - Renato Puga
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Leandro Lima
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | - Daniel Mariani
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | | | | | - Henrique Vieira
- Post-graduation Program Institute of Mathematics and Statistics, University of Sao Paulo, São Paulo, SP, Brazil.
| | - Ana Cv Krepischi
- Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| | - Dirce M Carraro
- International Research Center-AC Camargo Cancer Center, São Paulo, Brazil.
| | - Joana A Palha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Stevens Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| | - Helena Brentani
- LIM23 (Medical Investigation Laboratory 23), University of Sao Paulo Medical School (USP), São Paulo, SP, Brazil. .,Institute of Psychiatry-University of Sao Paulo, Medical School (FMUSP), São Paulo, SP, Brazil. .,Department of Psychiatry, University of Sao Paulo, Medical School (FMUSP), Rua Dr Ovídio Pires de Campos,785-CEP 05403-010, São Paulo, SP, Caixa Postal n 3671, Brazil. .,National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, São Paulo, SP, Brazil.
| |
Collapse
|
61
|
Ichida JK, Kiskinis E. Probing disorders of the nervous system using reprogramming approaches. EMBO J 2015; 34:1456-77. [PMID: 25925386 PMCID: PMC4474524 DOI: 10.15252/embj.201591267] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022] Open
Abstract
The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges.
Collapse
Affiliation(s)
- Justin K Ichida
- Department of Stem Cells and Regenerative Medicine, Eli and Edythe Broad, CIRM Center for Regenerative Medicine and Stem Cell Research at USC, University of Southern California, Los Angeles, CA, USA
| | - Evangelos Kiskinis
- The Ken and Ruth Davee Department of Neurology & Clinical Neurological Sciences and Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
62
|
Chen J, Lin M, Hrabovsky A, Pedrosa E, Dean J, Jain S, Zheng D, Lachman HM. ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin. PLoS One 2015; 10:e0124597. [PMID: 25905630 PMCID: PMC4408091 DOI: 10.1371/journal.pone.0124597] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
ZNF804A (Zinc Finger Protein 804A) has been identified as a candidate gene for schizophrenia (SZ), autism spectrum disorders (ASD), and bipolar disorder (BD) in replicated genome wide association studies (GWAS) and by copy number variation (CNV) analysis. Although its function has not been well-characterized, ZNF804A contains a C2H2-type zinc-finger domain, suggesting that it has DNA binding properties, and consequently, a role in regulating gene expression. To further explore the role of ZNF804A on gene expression and its downstream targets, we used a gene knockdown (KD) approach to reduce its expression in neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iPSCs). KD was accomplished by RNA interference (RNAi) using lentiviral particles containing shRNAs that target ZNF804A mRNA. Stable transduced NPC lines were generated after puromycin selection. A control cell line expressing a random (scrambled) shRNA was also generated. Neuronal differentiation was induced, RNA was harvested after 14 days and transcriptome analysis was carried out using RNA-seq. 1815 genes were found to be differentially expressed at a nominally significant level (p<0.05); 809 decreased in expression in the KD samples, while 1106 increased. Of these, 370 achieved genome wide significance (FDR<0.05); 125 were lower in the KD samples, 245 were higher. Pathway analysis showed that genes involved in interferon-signaling were enriched among those that were down-regulated in the KD samples. Correspondingly, ZNF804A KD was found to affect interferon-alpha 2 (IFNA2)-mediated gene expression. The findings suggest that ZNF804A may affect a differentiating neuron’s response to inflammatory cytokines, which is consistent with models of SZ and ASD that support a role for infectious disease, and/or autoimmunity in a subgroup of patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jason Dean
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Swati Jain
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (DZ); (HML)
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (DZ); (HML)
| |
Collapse
|
63
|
Crook JM, Wallace G, Tomaskovic-Crook E. The potential of induced pluripotent stem cells in models of neurological disorders: implications on future therapy. Expert Rev Neurother 2015; 15:295-304. [PMID: 25664599 DOI: 10.1586/14737175.2015.1013096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Collapse
Affiliation(s)
- Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | |
Collapse
|
64
|
Belinsky GS, Antic SD. Mild hypothermia inhibits differentiation of human embryonic and induced pluripotent stem cells. Biotechniques 2015; 55:79-82. [PMID: 23931596 DOI: 10.2144/000114065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/03/2013] [Indexed: 11/23/2022] Open
Abstract
Culture of pluripotent stem cells at 35°C strikingly reduces unwanted spontaneous differentiation during hESC and iPSC maintenance compared with 37°C. Growth at 35°C did not affect expression of pluripotency mRNAs nor induce expression of cold-inducible genes. Colony size was somewhat reduced at 35°C. Thus, growth at 35°C is a convenient, simple method to reduce the labor of removing spontaneously differentiated colonies when maintaining pluripotent cells.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA.
| | | |
Collapse
|
65
|
Hodgetts SI, Edel M, Harvey AR. The State of Play with iPSCs and Spinal Cord Injury Models. J Clin Med 2015; 4:193-203. [PMID: 26237027 PMCID: PMC4470248 DOI: 10.3390/jcm4010193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/08/2014] [Indexed: 01/10/2023] Open
Abstract
The application of induced pluripotent stem cell (iPSC) technologies in cell based strategies, for the repair of the central nervous system (with particular focus on the spinal cord), is moving towards the potential use of clinical grade donor cells. The ability of iPSCs to generate donor neuronal, glial and astrocytic phenotypes for transplantation is highlighted here, and we review recent research using iPSCs in attempts to treat spinal cord injury in various animal models. Also discussed are issues relating to the production of clinical grade iPSCs, recent advances in transdifferentiation protocols for iPSC-derived donor cell populations, concerns about tumourogenicity, and whether iPSC technologies offer any advantages over previous donor cell candidates or tissues already in use as therapeutic tools in experimental spinal cord injury studies.
Collapse
Affiliation(s)
- Stuart I Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Michael Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, University of Barcelona, Hospital Clinic, Casanova 143, Barcelona 08036, Spain.
- Faculty of Medicine, The University of Sydney Medical School, Division of Pediatrics and Child Health, Westmead Children's Hospital, Sydney 2010, Australia.
- School of Anatomy, Physiology and Human Biology, and the Harry Perkins Institute for Medical Research (CCTRM), The University of Western Australia, Western Australia 6009, Australia.
| | - Alan R Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
66
|
Yu DX, Marchetto MC, Gage FH. Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 2014; 12:678-88. [PMID: 23746977 DOI: 10.1016/j.stem.2013.05.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatic cellular reprogramming is a fast-paced and evolving field that is changing the way scientists approach neurological diseases. For the first time in the history of neuroscience, it is feasible to study the behavior of live neurons from patients with neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, and neuropsychiatric diseases, such as autism and schizophrenia. In this Perspective, we will discuss reprogramming technology in the context of its potential use for modeling and treating neurological and psychiatric diseases and will highlight areas of caution and opportunities for improvement.
Collapse
Affiliation(s)
- Diana X Yu
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
67
|
Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology. Int J Neuropsychopharmacol 2014; 17:1327-41. [PMID: 24524332 DOI: 10.1017/s146114571400008x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.
Collapse
|
68
|
Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 2014; 75:952-60. [PMID: 23876186 PMCID: PMC3815991 DOI: 10.1016/j.biopsych.2013.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/02/2013] [Accepted: 05/29/2013] [Indexed: 12/23/2022]
Abstract
The advent of somatic cell reprogramming technologies-which enables the generation of patient-specific, induced pluripotent stem cell and other trans-differentiated human neuronal cell models-provides new means of gaining insight into the molecular mechanisms and neural substrates of psychiatric disorders. By allowing a more precise understanding of genotype-phenotype relationship in disease-relevant human cell types, the use of reprogramming technologies in tandem with emerging genome engineering approaches provides a previously "missing link" between basic research and translational efforts. In this review, we summarize advances in applying human pluripotent stem cell and reprogramming technologies to generate specific neural subtypes with a focus on the use of these in vitro systems for the discovery of small molecule-probes and novel therapeutics. Examples are given where human cell models of psychiatric disorders have begun to reveal new mechanistic insight into pathophysiology and simultaneously have provided the foundation for developing disease-relevant, phenotypic assays suitable for both functional genomic and chemical screens. A number of areas for future research are discussed, including the need to develop robust methodology for the reproducible, large-scale production of disease-relevant neural cell types in formats compatible with high-throughput screening modalities, including high-content imaging, multidimensional, signature-based screening, and in vitro network with multielectrode arrays. Limitations, including the challenges in recapitulating neurocircuits and non-cell autonomous phenotypes are discussed. Although these technologies are still in active development, we conclude that, as our understanding of how to efficiently generate and probe the plasticity of patient-specific stem models improves, their utility is likely to advance rapidly.
Collapse
|
69
|
Brennand KJ, Landek-Salgado MA, Sawa A. Modeling heterogeneous patients with a clinical diagnosis of schizophrenia with induced pluripotent stem cells. Biol Psychiatry 2014; 75:936-44. [PMID: 24331955 PMCID: PMC4022707 DOI: 10.1016/j.biopsych.2013.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022]
Abstract
Schizophrenia (SZ) is a devastating complex genetic mental condition that is heterogeneous in terms of clinical etiologies, symptoms, and outcomes. Despite decades of postmortem, neuroimaging, pharmacological, and genetic studies of patients, in addition to animal models, much of the biological mechanisms that underlie the pathology of SZ remain unknown. The ability to reprogram adult somatic cells into human induced pluripotent stem cells (hiPSCs) provides a new tool that supplies live human neurons for modeling complex genetic conditions such as SZ. The purpose of this review is to discuss the technical and clinical constraints currently limiting hiPSC-based studies. We posit that reducing the clinical heterogeneity of hiPSC-based studies, by selecting subjects with common clinical manifestations or rare genetic variants, will help our ability to draw meaningful insights from the necessarily small patient cohorts that can be studied at this time.
Collapse
Affiliation(s)
- Kristen J Brennand
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Akira Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
70
|
Rockowitz S, Lien WH, Pedrosa E, Wei G, Lin M, Zhao K, Lachman HM, Fuchs E, Zheng D. Comparison of REST cistromes across human cell types reveals common and context-specific functions. PLoS Comput Biol 2014; 10:e1003671. [PMID: 24922058 PMCID: PMC4055426 DOI: 10.1371/journal.pcbi.1003671] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 05/01/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that the transcriptional functions of REST are much broader than repressing neuronal genes in non-neuronal systems. Whether REST occupies similar chromatin regions in different cell types and how it interacts with other transcriptional regulators to execute its functions in a context-dependent manner has not been adequately investigated. We have applied ChIP-seq analysis to identify the REST cistrome in human CD4+ T cells and compared it with published data from 15 other cell types. We found that REST cistromes were distinct among cell types, with REST binding to several tumor suppressors specifically in cancer cells, whereas 7% of the REST peaks in non-neuronal cells were ubiquitously called and <25% were identified for ≥ 5 cell types. Nevertheless, using a quantitative metric directly comparing raw ChIP-seq signals, we found the majority (∼80%) was shared by ≥ 2 cell types. Integration with RNA-seq data showed that REST binding was generally correlated with low gene expression. Close examination revealed that multiple contexts were correlated with reduced expression of REST targets, e.g., the presence of a cognate RE1 motif and cellular specificity of REST binding. These contexts were shown to play a role in differential corepressor recruitment. Furthermore, transcriptional outcome was highly influenced by REST cofactors, e.g., SIN3 and EZH2 co-occupancy marked higher and lower expression of REST targets, respectively. Unexpectedly, the REST cistrome in differentiated neurons exhibited unique features not observed in non-neuronal cells, e.g., the lack of RE1 motifs and an association with active gene expression. Finally, our analysis demonstrated how REST could differentially regulate a transcription network constituted of miRNAs, REST complex and neuronal factors. Overall, our findings of contexts playing critical roles in REST occupancy and regulatory outcome provide insights into the molecular interactions underlying REST's diverse functions, and point to novel roles of REST in differentiated neurons.
Collapse
Affiliation(s)
- Shira Rockowitz
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Wen-Hui Lien
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Gang Wei
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology & Development, The Rockefeller University, New York, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
71
|
Rosa V, Toh WS, Cao T, Shim W. Inducing pluripotency for disease modeling, drug development and craniofacial applications. Expert Opin Biol Ther 2014; 14:1233-40. [PMID: 24850281 DOI: 10.1517/14712598.2014.915306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The induced pluripotent stem cells (iPSCs) have characteristics similar to embryonic stem cells, including the capability of self-renewal and large-scale expansion and the ability to differentiate into all types of cells including germ cells, which defines pluripotency. Using iPSC avoids problems of immunological rejection and ethical controversy. The possible future uses of iPSC are diverse and go beyond the differentiation into somatic cells for regeneration of damaged tissues. AREAS COVERED A unique feature of iPSC is the potential to generate patient disease-specific tissues. Thus, cells from patients can be differentiated into relevant cells of interest for drug screening, characterization of drug effects and cytotoxic assays. This review presents key aspects related to iPSC, such as their generation, potential for disease modeling, treatment, drug development and future contributions to the craniofacial complex. EXPERT OPINION It is undisputable that the evolution in iPSC knowledge will improve the approaches for drug screening and development, help to understand and treat disease origins and mechanisms and provide new strategies to clinical treatment. However, it is necessary to fine-tune protocols to establish iPSCs that are cost-effective and safe for clinical use.
Collapse
Affiliation(s)
- Vinicius Rosa
- National University of Singapore, Faculty of Dentistry, Oral Sciences , 11 Lower Kent Ridge Road, Singapore 119083 , Singapore +65 6779 5555 ext 1650 ; + 65 6778 5742 ;
| | | | | | | |
Collapse
|
72
|
Lukovic D, Moreno-Manzano V, Klabusay M, Stojkovic M, Bhattacharya SS, Erceg S. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells. Front Genet 2014; 5:132. [PMID: 24860598 PMCID: PMC4030195 DOI: 10.3389/fgene.2014.00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2014] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated the important role of non-coding RNAs as regulators of posttranscriptional processes, including stem cells self-renewal and neural differentiation. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show enormous potential in regenerative medicine due to their capacity to differentiate to virtually any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency, self-renewal and neural differentiation will reveal new molecular mechanisms involved in induction and maintenances of pluripotent state as well as triggering these cells toward clinically relevant cells for transplantation. In this brief review we will summarize recently published studies which reveal the role of non-coding RNAs in pluripotency and neural differentiation of hESCs and ihPSC.
Collapse
Affiliation(s)
- Dunja Lukovic
- Retina Group, Cell therapy and Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa Sevilla, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe Valencia, Spain
| | - Martin Klabusay
- Integrated Center of Cellular Therapy and Regenerative Medicine - International Clinical Research Center, St. Anne's University Hospital Brno Brno, Czech Republic
| | - Miodrag Stojkovic
- Spebo Medical Leskovac, Serbia ; Human Genetics Department, Faculty of Medical Sciences, University of Kragujevac Kragujevac, Serbia
| | - Shomi S Bhattacharya
- Retina Group, Cell therapy and Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa Sevilla, Spain
| | - Slaven Erceg
- Retina Group, Cell therapy and Regenerative Medicine, Centro Andaluz de Biología Molecular y Medicina Regenerativa Sevilla, Spain
| |
Collapse
|
73
|
Fass DM, Schroeder FA, Perlis RH, Haggarty SJ. Epigenetic mechanisms in mood disorders: targeting neuroplasticity. Neuroscience 2014; 264:112-30. [PMID: 23376737 PMCID: PMC3830721 DOI: 10.1016/j.neuroscience.2013.01.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/19/2013] [Indexed: 12/22/2022]
Abstract
Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzymes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and beneficially impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencing (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent cell (iPSC) and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticity. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.
Collapse
Affiliation(s)
- D M Fass
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - F A Schroeder
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 149, 13th Street, Charlestown, MA 02129, USA
| | - R H Perlis
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA
| | - S J Haggarty
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Reseach, 185 Cambridge Street, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Center for Human Genetic Research, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
74
|
Valproate reverts zinc and potassium imbalance in schizophrenia-derived reprogrammed cells. Schizophr Res 2014; 154:30-5. [PMID: 24593932 DOI: 10.1016/j.schres.2014.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 02/04/2023]
Abstract
Schizophrenia has been considered a devastating clinical syndrome rather than a single disease. Nevertheless, the mechanisms behind the onset of schizophrenia have been only partially elucidated. Several studies propose that levels of trace elements are abnormal in schizophrenia; however, conflicting data generated from different biological sources prevent conclusions being drawn. In this work, we used synchrotron radiation X-ray microfluorescence spectroscopy to compare trace element levels in neural progenitor cells (NPCs) derived from two clones of induced pluripotent stem cell lines of a clozapine-resistant schizophrenic patient and two controls. Our data reveal the presence of elevated levels of potassium and zinc in schizophrenic NPCs. Neural cells treated with valproate, an adjunctive medication for schizophrenia, brought potassium and zinc content back to control levels. These results expand the understanding of atomic element imbalance related to schizophrenia and may provide novel insights for the screening of drugs to treat mental disorders.
Collapse
|
75
|
Srikanth P, Young-Pearse TL. Stem cells on the brain: modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells. J Neurogenet 2014; 28:5-29. [PMID: 24628482 PMCID: PMC4285381 DOI: 10.3109/01677063.2014.881358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seven years have passed since the initial report of the generation of induced pluripotent stem cells (iPSCs) from adult human somatic cells, and in the intervening time the field of neuroscience has developed numerous disease models using this technology. Here, we review progress in the field and describe both the advantages and potential pitfalls of modeling neurodegenerative and neurodevelopmental diseases using this technology. We include tables with information on neural differentiation protocols and studies that developed human iPSC lines to model neurological diseases. We also discuss how one can: investigate effects of genetic mutations with iPSCs, examine cell fate-specific phenotypes, best determine the specificity of a phenotype, and bring in vivo relevance to this in vitro technique.
Collapse
Affiliation(s)
- Priya Srikanth
- Center for Neurologic Diseases, Brigham and Women's Hospital , Boston, Massachusetts , USA
| | | |
Collapse
|
76
|
Abstract
One of the landmark events of the past 25 years in neuroscience research was the establishment of neural stem cells (NSCs) as a life-long source of neurons and glia, a concept that shattered the dogma that the nervous system lacked regenerative power. Stem cells afford the plasticity to generate, repair, and change nervous system function. Combined with reprogramming technology, human somatic cell-derived NSCs and their progeny can model neurological diseases with improved accuracy. As technology advances, we anticipate further important discoveries and novel therapies based on the knowledge and application of these powerful cells.
Collapse
Affiliation(s)
- Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
77
|
Prilutsky D, Palmer NP, Smedemark-Margulies N, Schlaeger TM, Margulies DM, Kohane IS. iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls. Trends Mol Med 2013; 20:91-104. [PMID: 24374161 DOI: 10.1016/j.molmed.2013.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022]
Abstract
The elucidation of disease etiologies and establishment of robust, scalable, high-throughput screening assays for autism spectrum disorders (ASDs) have been impeded by both inaccessibility of disease-relevant neuronal tissue and the genetic heterogeneity of the disorder. Neuronal cells derived from induced pluripotent stem cells (iPSCs) from autism patients may circumvent these obstacles and serve as relevant cell models. To date, derived cells are characterized and screened by assessing their neuronal phenotypes. These characterizations are often etiology-specific or lack reproducibility and stability. In this review, we present an overview of efforts to study iPSC-derived neurons as a model for autism, and we explore the plausibility of gene expression profiling as a reproducible and stable disease marker.
Collapse
Affiliation(s)
- Daria Prilutsky
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan P Palmer
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - David M Margulies
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Divisions of Genetics and Developmental Medicine, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac S Kohane
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
78
|
Imaizumi Y, Okano H. Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem 2013; 129:388-99. [PMID: 24286589 DOI: 10.1111/jnc.12625] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 02/06/2023]
Abstract
Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained knowledge in the form of actual examples.
Collapse
Affiliation(s)
- Yoichi Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; Next Generation Systems CFU, Eisai Co. Ltd., Ibaraki, Japan
| | | |
Collapse
|
79
|
English JA, Harauma A, Föcking M, Wynne K, Scaife C, Cagney G, Moriguchi T, Cotter DR. Omega-3 fatty acid deficiency disrupts endocytosis, neuritogenesis, and mitochondrial protein pathways in the mouse hippocampus. Front Genet 2013; 4:208. [PMID: 24194745 PMCID: PMC3809566 DOI: 10.3389/fgene.2013.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/30/2013] [Indexed: 11/13/2022] Open
Abstract
Omega-3 fatty acid (n-3 FA) deficiency is an environmental risk factor for schizophrenia, yet characterization of the consequences of deficiency at the protein level in the brain is limited. We aimed to identify the protein pathways disrupted as a consequence of chronic n-3 deficiency in the hippocampus of mice. Fatty acid analysis of the hippocampus following chronic dietary deficiency revealed a 3-fold decrease (p < 0.001) in n-3 FA levels. Label free LC-MS/MS analysis identified and profiled 1008 proteins, of which 114 were observed to be differentially expressed between n-3 deficient and control groups (n = 8 per group). The cellular processes that were most implicated were neuritogenesis, endocytosis, and exocytosis, while specific protein pathways that were most significantly dysregulated were mitochondrial dysfunction and clathrin mediated endocytosis (CME). In order to characterize whether these processes and pathways are ones influenced by antipsychotic medication, we used LC-MS/MS to test the differential expression of these 114 proteins in the hippocampus of mice chronically treated with the antipsychotic agent haloperidol. We observed 23 of the 114 proteins to be differentially expressed, 17 of which were altered in the opposite direction to that observed following n-3 deficiency. Overall, our findings point to disturbed synaptic function, neuritogenesis, and mitochondrial function as a consequence of dietary deficiency in n-3 FA. This study greatly aids our understanding of the molecular mechanism by which n-3 deficiency impairs normal brain function, and provides clues as to how n-3 FA exert their therapeutic effect in early psychosis.
Collapse
Affiliation(s)
- Jane A English
- Department of Psychiatry, Royal College of Surgeons in Ireland, ERC Beaumont Hospital Dublin, Ireland ; Proteome Research Centre, School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College of Dublin Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Chen J, Lin M, Foxe JJ, Pedrosa E, Hrabovsky A, Carroll R, Zheng D, Lachman HM. Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts. PLoS One 2013; 8:e75682. [PMID: 24098394 PMCID: PMC3789755 DOI: 10.1371/journal.pone.0075682] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is providing an opportunity to study neuropsychiatric disorders through the capacity to grow patient-specific neurons in vitro. Skin fibroblasts obtained by biopsy have been the most reliable source of cells for reprogramming. However, using other somatic cells obtained by less invasive means would be ideal, especially in children with autism spectrum disorders (ASD) and other neurodevelopmental conditions. In addition to fibroblasts, iPSCs have been developed from cord blood, lymphocytes, hair keratinocytes, and dental pulp from deciduous teeth. Of these, dental pulp would be a good source for neurodevelopmental disorders in children because obtaining material is non-invasive. We investigated its suitability for disease modeling by carrying out gene expression profiling, using RNA-seq, on differentiated neurons derived from iPSCs made from dental pulp extracted from deciduous teeth (T-iPSCs) and fibroblasts (F-iPSCs). This is the first RNA-seq analysis comparing gene expression profiles in neurons derived from iPSCs made from different somatic cells. For the most part, gene expression profiles were quite similar with only 329 genes showing differential expression at a nominally significant p-value (p<0.05), of which 63 remained significant after correcting for genome-wide analysis (FDR <0.05). The most striking difference was the lower level of expression detected for numerous members of the all four HOX gene families in neurons derived from T-iPSCs. In addition, an increased level of expression was seen for several transcription factors expressed in the developing forebrain (FOXP2, OTX1, and LHX2, for example). Overall, pathway analysis revealed that differentially expressed genes that showed higher levels of expression in neurons derived from T-iPSCs were enriched for genes implicated in schizophrenia (SZ). The findings suggest that neurons derived from T-iPSCs are suitable for disease-modeling neuropsychiatric disorder and may have some advantages over those derived from F-iPSCs.
Collapse
Affiliation(s)
- Jian Chen
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - John J. Foxe
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Reed Carroll
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert M. Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
81
|
Belinsky GS, Rich MT, Sirois CL, Short SM, Pedrosa E, Lachman HM, Antic SD. Patch-clamp recordings and calcium imaging followed by single-cell PCR reveal the developmental profile of 13 genes in iPSC-derived human neurons. Stem Cell Res 2013; 12:101-18. [PMID: 24157591 DOI: 10.1016/j.scr.2013.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 12/13/2022] Open
Abstract
Molecular genetic studies are typically performed on homogenized biological samples, resulting in contamination from non-neuronal cells. To improve expression profiling of neurons we combined patch recordings with single-cell PCR. Two iPSC lines (healthy subject and 22q11.2 deletion) were differentiated into neurons. Patch electrode recordings were performed on 229 human cells from Day-13 to Day-88, followed by capture and single-cell PCR for 13 genes: ACTB, HPRT, vGLUT1, βTUBIII, COMT, DISC1, GAD1, PAX6, DTNBP1, ERBB4, FOXP1, FOXP2, and GIRK2. Neurons derived from both iPSC lines expressed βTUBIII, fired action potentials, and experienced spontaneous depolarizations (UP states) ~2 weeks before vGLUT1, GAD1 and GIRK2 appeared. Multisite calcium imaging revealed that these UP states were not synchronized among hESC-H9-derived neurons. The expression of FOXP1, FOXP2 and vGLUT1 was lost after 50 days in culture, in contrast to other continuously expressed genes. When gene expression was combined with electrophysiology, two subsets of genes were apparent; those irrelevant to spontaneous depolarizations (including vGLUT1, GIRK2, FOXP2 and DISC1) and those associated with spontaneous depolarizations (GAD1 and ERBB4). The results demonstrate that in the earliest stages of neuron development, it is useful to combine genetic analysis with physiological characterizations, on a cell-to-cell basis.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Matthew T Rich
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Carissa L Sirois
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Shaina M Short
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Srdjan D Antic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
82
|
Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry 2013; 18:1067-76. [PMID: 23732879 DOI: 10.1038/mp.2013.67] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/19/2013] [Accepted: 04/08/2013] [Indexed: 02/08/2023]
Abstract
One of the prevailing hypotheses suggests schizophrenia as a neurodevelopmental disorder, involving dysfunction of dopaminergic and glutamatergic systems. Accumulating evidence suggests mitochondria as an additional pathological factor in schizophrenia. An attractive model to study processes related to neurodevelopment in schizophrenia is reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) and differentiating them into different neuronal lineages. iPSCs from three schizophrenia patients and from two controls were reprogrammed from hair follicle keratinocytes, because of their accessibility and common ectodermal origin with neurons. iPSCs were differentiated into Pax6(+)/Nestin(+) neural precursors and then further differentiated into β3-Tubulin(+)/tyrosine hydroxylase(+)/DAT(+) dopaminergic neurons. In addition, iPSCs were differentiated through embryonic bodies into β3-Tubulin(+)/Tbox brain1(+) glutamatergic neurons. Schizophrenia-derived dopaminergic cells showed severely impaired ability to differentiate, whereas glutamatergic cells were unable to maturate. Mitochondrial respiration and its sensitivity to dopamine-induced inhibition were impaired in schizophrenia-derived keratinocytes and iPSCs. Moreover, we observed dissipation of mitochondrial membrane potential (Δψm) and perturbations in mitochondrial network structure and connectivity in dopaminergic along the differentiation process and in glutamatergic cells. Our data unravel perturbations in neural differentiation and mitochondrial function, which may be interconnected, and of relevance to dysfunctional neurodevelopmental processes in schizophrenia.
Collapse
|
83
|
Filippich C, Wolvetang EJ, Mowry BJ. Will brain cells derived from induced pluripotent stem cells or directly converted from somatic cells (iNs) be useful for schizophrenia research? Schizophr Bull 2013; 39:948-54. [PMID: 23884351 PMCID: PMC3756797 DOI: 10.1093/schbul/sbt103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reprogramming of nonneuronal somatic cells to induced pluripotent stem cells and their derivation to functional brain cells as well as the related methods for direct conversion of somatic cells to neurons have opened up the possibility of conducting research on cellular disease models from living schizophrenia patients. We review the published literature on schizophrenia that has used this rapidly developing technology, highlighting the need for specific aims and reproducibility. The key issues for consideration for future schizophrenia research in this field are discussed and potential investigations using this technology are put forward for critical assessment by the reader.
Collapse
Affiliation(s)
- Cheryl Filippich
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia;,Queensland Centre for Mental Health Research, The Park-Centre for Mental Health, Brisbane, Queensland 4076, Australia
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bryan J. Mowry
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia;,Queensland Centre for Mental Health Research, The Park-Centre for Mental Health, Brisbane, Queensland 4076, Australia;,*To whom correspondence should be addressed; Queensland Brain Institute, Building 79, Upland Road, the University of Queensland, Brisbane, Queensland 4072, Australia; tel: 61-7-3346-6351, fax: 61-7-3346-8836, e-mail:
| |
Collapse
|
84
|
Young F, Sloan A, Song B. Dental pulp stem cells and their potential roles in central nervous system regeneration and repair. J Neurosci Res 2013; 91:1383-93. [PMID: 23996516 DOI: 10.1002/jnr.23250] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
Functional recovery from injuries to the brain or spinal cord represents a major clinical challenge. The transplantation of stem cells, traditionally isolated from embryonic tissue, may help to reduce damage following such events and promote regeneration and repair through both direct cell replacement and neurotrophic mechanisms. However, the therapeutic potential of using embryonic stem/progenitor cells is significantly restricted by the availability of embryonic tissues and associated ethical issues. Populations of stem cells reside within the dental pulp, representing an alternative source of cells that can be isolated with minimal invasiveness, and thus should illicit fewer moral objections, as a replacement for embryonic/fetal-derived stem cells. Here we discuss the similarities between dental pulp stem cells (DPSCs) and the endogenous stem cells of the central nervous system (CNS) and their ability to differentiate into neuronal cell types. We also consider in vitro and in vivo studies demonstrating the ability of DPSCs to help protect against and repair neuronal damage, suggesting that dental pulp may provide a viable alternative source of stem cells for replacement therapy following CNS damage.
Collapse
Affiliation(s)
- Fraser Young
- Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
85
|
Abstract
Over the last few years there have been a number of major breakthroughs in the development of stem cells for diseases of the CNS. One of these has been in the ability to reprogram adult somatic cells to a more pluripotent state as well as directly to neurons and, by so doing, use patient-derived cells to study disease. In addition, the capacity to engineer embryonic stem cells to defined neuronal fates in the absence of proliferative contaminant cells is now feasible, which opens up the possibility of using these cells for cell transplantation. In this review, we will discuss how these developments have come about, particularly in the context of Parkinson's disease, and what this means for the future of this whole field over the next few years.
Collapse
Affiliation(s)
- Roger A Barker
- Cambridge Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 OPY, UK.
| |
Collapse
|
86
|
Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neurosci Biobehav Rev 2013; 37:2424-37. [PMID: 23628741 DOI: 10.1016/j.neubiorev.2013.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/17/2013] [Indexed: 01/12/2023]
Abstract
Genetic research targeting schizophrenia has undergone tremendous development during recent years. Supported by recently developed high-throughput genotyping technologies, both rare and common genetic variants have been identified that show consistent association with schizophrenia. These results have been replicated by independent studies and refined in meta-analyses. The genetic variation uncovered consists of common alleles, i.e. single nucleotide polymorphisms (SNPs) conveying small effects (odds ratios below 1.1) on disease risk. The source of rare variants is copy number variations (CNVs), only detectable in a small proportion of patients (3-5% for all known CNVs) with schizophrenia, furthermore extremely rare de novo mutations captured by next generation sequencing, the most recent technological advancement in the field. Despite these findings, the search for the genetic architecture underlying schizophrenia continues since these variants explain only a small proportion of the overall phenotypic variance. Gene-environment interactions provide a compelling model for resolving this paradox and interpreting the risk factors of schizophrenia. Epidemiologically proven risk factors, such as prenatal infection, obstetric complications, urbanicity, cannabis, and trauma have been demonstrated to interact with genetic risk, giving rise to higher prevalence rates or more severe symptomatology in individuals with direct or indirect genetic predisposition for schizophrenia. Further research will have to explain how the different forms of genetic variation interact and how environmental factors modulate their effects. Moreover, the challenging question lying ahead of us is how genetic and environmental factors translate to molecular disease pathways. New approaches, including animal studies and in vitro disease modeling, as well as innovative real-world environment assessment methods, will help to understand the complex etiology of schizophrenia.
Collapse
|
87
|
Neurobiology meets genomic science: the promise of human-induced pluripotent stem cells. Dev Psychopathol 2013; 24:1443-51. [PMID: 23062309 DOI: 10.1017/s095457941200082x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The recent introduction of the induced pluripotent stem cell technology has made possible the derivation of neuronal cells from somatic cells obtained from human individuals. This in turn has opened new areas of investigation that can potentially bridge the gap between neuroscience and psychopathology. For the first time we can study the cell biology and genetics of neurons derived from any individual. Furthermore, by recapitulating in vitro the developmental steps whereby stem cells give rise to neuronal cells, we can now hope to understand factors that control typical and atypical development. We can begin to explore how human genes and their variants are transcribed into messenger RNAs within developing neurons and how these gene transcripts control the biology of developing cells. Thus, human-induced pluripotent stem cells have the potential to uncover not only what aspects of development are uniquely human but also variations in the series of events necessary for normal human brain development that predispose to psychopathology.
Collapse
|
88
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
89
|
Mackay-Sim A. Patient-derived stem cells: pathways to drug discovery for brain diseases. Front Cell Neurosci 2013; 7:29. [PMID: 23543597 PMCID: PMC3608922 DOI: 10.3389/fncel.2013.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/06/2013] [Indexed: 12/12/2022] Open
Abstract
The concept of drug discovery through stem cell biology is based on technological developments whose genesis is now coincident. The first is automated cell microscopy with concurrent advances in image acquisition and analysis, known as high content screening (HCS). The second is patient-derived stem cells for modeling the cell biology of brain diseases. HCS has developed from the requirements of the pharmaceutical industry for high throughput assays to screen thousands of chemical compounds in the search for new drugs. HCS combines new fluorescent probes with automated microscopy and computational power to quantify the effects of compounds on cell functions. Stem cell biology has advanced greatly since the discovery of genetic reprograming of somatic cells into induced pluripotent stem cells (iPSCs). There is now a rush of papers describing their generation from patients with various diseases of the nervous system. Although the majority of these have been genetic diseases, iPSCs have been generated from patients with complex diseases (schizophrenia and sporadic Parkinson’s disease). Some genetic diseases are also modeled in embryonic stem cells (ESCs) generated from blastocysts rejected during in vitro fertilization. Neural stem cells have been isolated from post-mortem brain of Alzheimer’s patients and neural stem cells generated from biopsies of the olfactory organ of patients is another approach. These “olfactory neurosphere-derived” cells demonstrate robust disease-specific phenotypes in patients with schizophrenia and Parkinson’s disease. HCS is already in use to find small molecules for the generation and differentiation of ESCs and iPSCs. The challenges for using stem cells for drug discovery are to develop robust stem cell culture methods that meet the rigorous requirements for repeatable, consistent quantities of defined cell types at the industrial scale necessary for HCS.
Collapse
Affiliation(s)
- Alan Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute for Cell and Molecular Therapies, Griffith University Brisbane, QLD, Australia
| |
Collapse
|
90
|
The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Mol Psychiatry 2013; 18:38-52. [PMID: 22547114 DOI: 10.1038/mp.2012.34] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of halting progress, recent large genome-wide association studies (GWAS) are finally shining light on the genetic architecture of schizophrenia. The picture emerging is one of sobering complexity, involving large numbers of risk alleles across the entire allelic spectrum. The aims of this article are to summarize the key genetic findings to date and to compare and contrast methods for identifying additional risk alleles, including GWAS, targeted genotyping and sequencing. A further aim is to consider the challenges and opportunities involved in determining the functional basis of genetic associations, for instance using functional genomics, cellular models, animal models and imaging genetics. We conclude that diverse approaches will be required to identify and functionally characterize the full spectrum of risk variants for schizophrenia. These efforts should adhere to the stringent standards of statistical association developed for GWAS and are likely to entail very large sample sizes. Nonetheless, now more than any previous time, there are reasons for optimism and the ultimate goal of personalized interventions and therapeutics, although still distant, no longer seems unattainable.
Collapse
|
91
|
Parkinson's Disease in a Dish: What Patient Specific-Reprogrammed Somatic Cells Can Tell Us about Parkinson's Disease, If Anything? Stem Cells Int 2012; 2012:926147. [PMID: 23316244 PMCID: PMC3539381 DOI: 10.1155/2012/926147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 12/03/2012] [Indexed: 01/17/2023] Open
Abstract
Technologies allowing for the derivation of patient-specific neurons from somatic cells are emerging as powerful in vitro tools to investigate the intrinsic cellular pathological behaviours of the diseases that affect these patients. While the use of patient-derived neurons to model Parkinson's disease (PD) has only just begun, these approaches have allowed us to begin investigating disease pathogenesis in a unique way. In this paper, we discuss the advances made in the field of cellular reprogramming to model PD and discuss the pros and cons associated with the use of such cells.
Collapse
|
92
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
93
|
Abstract
GABAergic interneurons of the cerebral cortex (cINs) play crucial roles in many aspects of cortical function. The diverse types of cINs are classified into subgroups according to their morphology, intrinsic physiology, neurochemical markers and synaptic targeting. Recent advances in mouse genetics, imaging and electrophysiology techniques have greatly advanced our efforts to understand the role of normal cIN function and its dysfunction in neuropsychiatric disorders. In schizophrenia (SCZ), a wealth of data suggests that cIN function is perturbed, and that interneuron dysfunction may underlie key symptoms of the disease. In this review, we discuss the link between cINs and SCZ, focusing on the evidence for GABAergic signaling deficits from both SCZ patients and mouse models.
Collapse
|
94
|
Paulsen BDS, da Silveira MS, Galina A, Rehen SK. Pluripotent stem cells as a model to study oxygen metabolism in neurogenesis and neurodevelopmental disorders. Arch Biochem Biophys 2012; 534:3-10. [PMID: 23111185 DOI: 10.1016/j.abb.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 10/17/2012] [Indexed: 01/19/2023]
Abstract
Reactive oxygen species (ROS) and oxygen (O2) have been implicated in neurogenesis and self-renewal of neural progenitor cells (NPCs). On the other hand, oxidative unbalance, either by an impairment of antioxidant defenses or by an intensified production of ROS, is increasingly related to risk factors of neurodevelopmental disorders, such as schizophrenia. In this scenario, human induced pluripotent stem cells (hiPSCs) emerged as an interesting platform for the study of cellular and molecular aspects of this mental disorder, by complementing other experimental models, with exclusive advantages such as the recapitulation of brain development. Herein we discuss the role of O2/ROS signaling for neuronal differentiation and how its unbalance could be related to neurodevelopmental disorders, such as schizophrenia. Identifying the role of O2/ROS in neurogenesis as well as tackling oxidative stress and its disturbances in schizophrenic patients' derived cells will provide an interesting opportunity for the study of neural stem cells differentiation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Bruna da Silveira Paulsen
- Laboratório Nacional de Células-Tronco Embrionárias, Instituto de Ciências Biomédicas, UFRJ, Rio de Janeiro RJ 21941-913, Brazil
| | | | | | | |
Collapse
|
95
|
Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 2012; 13:713-26. [PMID: 23034453 DOI: 10.1038/nrm3448] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and age-associated disorders, particularly of the cardiovascular, neural and metabolic systems. This has not been met by commensurate development of new drugs and therapies, which is in part owing to the difficulty in modelling human diseases in laboratory assays or experimental animals. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable.
Collapse
Affiliation(s)
- Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
96
|
Zhang R, Yan JD, Valenzuela RK, Lu SM, Du XY, Zhong B, Ren J, Zhao SH, Gao CG, Wang L, Guo TW, Ma J. Further evidence for the association of genetic variants of ZNF804A with schizophrenia and a meta-analysis for genome-wide significance variant rs1344706. Schizophr Res 2012; 141:40-7. [PMID: 22871346 DOI: 10.1016/j.schres.2012.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/19/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022]
Abstract
Recent accumulating evidence has indicated that ZNF804A (zinc finger protein 804A) may be one of the most robustly implicated genes in schizophrenia. In this report, we examined ZNF804A single nucleotide polymorphisms (SNPs) encompassing exon 4 by performing an association study that used a Han Chinese sample comprised of 492 schizophrenia patients and 516 healthy control subjects. A meta-analysis based on previous studies was also performed. For markers rs4667000 and rs1366842, significant differences in allele frequencies were found between cases and controls (Mantel-Haenszel corrected P=0.014 and P=0.025, respectively). Analysis of haplotype rs61739290-rs1366842 showed significant association with schizophrenia (global P=0.0018). Moreover, several other two-, three-, and four-SNP tests of haplotype association were also significant. A meta-analysis comprised of studies that utilized sample sets of either European and/or Han Chinese origin revealed statistically significant associations for two SNPs (rs1366842, P=0.002; and rs3731834, P=0.03) and schizophrenia. In addition, we observed a significant association between marker rsl344706 and schizophrenia (P<1.0×10(-5)) in combined populations. When we separately analyzed the studies by population, consistent and significant differences were found between cases and controls both in the European samples (P<1.0×10(-4)) and in the Chinese samples (P=0.03). In summary, we have added new evidence supporting the association between ZNF804A and schizophrenia in our Han Chinese sample. Further functional exploration of ZNF804A will greatly help us to elucidate the pathogenesis of schizophrenia and find promising new approaches for the treatment of this disorder.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
Induced pluripotent stem cells (iPSCs) hold great hopes for therapeutic application in various diseases. Although ongoing research is dedicated to achieving clinical translation of iPSCs, further understanding of the mechanisms that underlie complex pathogenic conditions is required. Compared with other classical models for studying diseases, iPSCs provide considerable advantages. A newly emerging application of iPSCs is in vitro disease modeling, which can significantly improve the never-ending search for new pharmacological cures. Here, we will discuss current efforts to create iPSC-dependent patient-specific disease models. Furthermore, we will review the use of iPSCs for development and testing of new therapeutic agents and the implications for high-throughput drug screening.
Collapse
Affiliation(s)
- Antje D. Ebert
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, California, USA
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ping Liang
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, California, USA
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Joseph C. Wu
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, California, USA
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
98
|
Lin M, Hrabovsky A, Pedrosa E, Wang T, Zheng D, Lachman HM. Allele-biased expression in differentiating human neurons: implications for neuropsychiatric disorders. PLoS One 2012; 7:e44017. [PMID: 22952857 PMCID: PMC3431331 DOI: 10.1371/journal.pone.0044017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/30/2012] [Indexed: 12/23/2022] Open
Abstract
Stochastic processes and imprinting, along with genetic factors, lead to monoallelic or allele-biased gene expression. Stochastic monoallelic expression fine-tunes information processing in immune cells and the olfactory system, and imprinting plays an important role in development. Recent studies suggest that both stochastic events and imprinting may be more widespread than previously considered. We are interested in allele-biased gene expression occurring in the brain because parent-of-origin effects suggestive of imprinting appear to play a role in the transmission of schizophrenia (SZ) and autism spectrum disorders (ASD) in some families. In addition, allele-biased expression could help explain monozygotic (MZ) twin discordance and reduced penetrance. The ability to study allele-biased expression in human neurons has been transformed with the advent of induced pluripotent stem cell (iPSC) technology and next generation sequencing. Using transcriptome sequencing (RNA-Seq) we identified 801 genes in differentiating neurons that were expressed in an allele-biased manner. These included a number of putative SZ and ASD candidates, such as A2BP1 (RBFOX1), ERBB4, NLGN4X, NRG1, NRG3, NRXN1, and NLGN1. Overall, there was a modest enrichment for SZ and ASD candidate genes among those that showed evidence for allele-biased expression (chi-square, p = 0.02). In addition to helping explain MZ twin discordance and reduced penetrance, the capacity to group many candidate genes affecting a variety of molecular and cellular pathways under a common regulatory process – allele-biased expression – could have therapeutic implications.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | | | | | | | | | | |
Collapse
|
99
|
Kim KY, Jung YW, Sullivan GJ, Chung L, Park IH. Cellular reprogramming: a novel tool for investigating autism spectrum disorders. Trends Mol Med 2012; 18:463-71. [PMID: 22771169 DOI: 10.1016/j.molmed.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/05/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interaction and communication, as well as the manifestation of stereotyped behaviors. Despite much effort, ASDs are not yet fully understood. Advanced genetics and genomics technologies have recently identified novel ASD genes, and approaches using genetically engineered murine models or postmortem human brain have facilitated understanding ASD. Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) provides unprecedented opportunities in generating human disease models. Here, we present an overview of applying iPSCs in developing cellular models for understanding ASD. We also discuss future perspectives in the use of iPSCs as a source of cell therapy and as a screening platform for identifying small molecules with efficacy for alleviating ASD.
Collapse
Affiliation(s)
- Kun-Yong Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, 10 Amistad, 201B, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
100
|
Mellios N, Sur M. The Emerging Role of microRNAs in Schizophrenia and Autism Spectrum Disorders. Front Psychiatry 2012; 3:39. [PMID: 22539927 PMCID: PMC3336189 DOI: 10.3389/fpsyt.2012.00039] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/11/2012] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs conserved throughout evolution whose perceived importance for brain development and maturation is increasingly being understood. Although a plethora of new discoveries have provided novel insights into miRNA-mediated molecular mechanisms that influence brain plasticity, their relevance for neuropsychiatric diseases with known deficits in synaptic plasticity, such as schizophrenia and autism, has not been adequately explored. In this review we discuss the intersection between current and old knowledge on the role of miRNAs in brain plasticity and function with a focus in the potential involvement of brain expressed miRNAs in the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nikolaos Mellios
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|