51
|
Nielsen TH, Nordström CH. Hyperoxia. J Neurosurg 2010; 113:1333-4; author reply 1334-5. [PMID: 20887094 DOI: 10.3171/2010.7.jns101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
52
|
Meyer MJ, Megyesi J, Meythaler J, Murie-Fernandez M, Aubut JA, Foley N, Salter K, Bayley M, Marshall S, Teasell R. Acute management of acquired brain injury part I: an evidence-based review of non-pharmacological interventions. Brain Inj 2010; 24:694-705. [PMID: 20353284 DOI: 10.3109/02699051003692118] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PRIMARY OBJECTIVE To review the literature on non-pharmacological interventions used in acute settings to manage elevated intracranial pressure (ICP) and minimize cerebral damage in patients with acquired brain injury (ABI). MAIN OUTCOMES A literature search of multiple databases (CINAHL, EMBASE, MEDLINE and PSYCHINFO) and hand-searched articles covering the years 1980-2008 was performed. Peer reviewed articles were assessed for methodological quality using the PEDro scoring system for randomized controlled trials (RCTs) and the Downs and Black tool for RCTs and non-randomized trials. Levels of evidence were assigned and recommendations made. RESULTS Five non-invasive interventions for acute ABI management were assessed: adjusting head posture, body rotation (continuous rotational therapy and prone positioning), hyperventilation, hypothermia and hyperbaric oxygen. Two invasive interventions were also reviewed: cerebrospinal fluid (CSF) drainage and decompressive craniectomy (DC). CONCLUSIONS There is a paucity of information regarding non-pharmacological acute management of patients with ABI. Strong levels of evidence were found for only four of the seven interventions (decompressive craniectomy, cerebrospinal fluid drainage, hypothermia and hyperbaric oxygen) and only for specific components of their use. Further research into all interventions is warranted.
Collapse
Affiliation(s)
- Matthew J Meyer
- Aging, Rehabilitation and Geriatric Care Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, Liu J. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 2010; 112:1080-94. [DOI: 10.3171/2009.7.jns09363] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Object
Oxygen delivered in supraphysiological amounts is currently under investigation as a therapy for severe traumatic brain injury (TBI). Hyperoxia can be delivered to the brain under normobaric as well as hyperbaric conditions. In this study the authors directly compare hyperbaric oxygen (HBO2) and normobaric hyperoxia (NBH) treatment effects.
Methods
Sixty-nine patients who had sustained severe TBIs (mean Glasgow Coma Scale Score 5.8) were prospectively randomized to 1 of 3 groups within 24 hours of injury: 1) HBO2, 60 minutes of HBO2 at 1.5 ATA; 2) NBH, 3 hours of 100% fraction of inspired oxygen at 1 ATA; and 3) control, standard care. Treatments occurred once every 24 hours for 3 consecutive days. Brain tissue PO2, microdialysis, and intracranial pressure were continuously monitored. Cerebral blood flow (CBF), arteriovenous differences in oxygen, cerebral metabolic rate of oxygen (CMRO2), CSF lactate and F2-isoprostane concentrations, and bronchial alveolar lavage (BAL) fluid interleukin (IL)–8 and IL-6 assays were obtained pretreatment and 1 and 6 hours posttreatment. Mixed-effects linear modeling was used to statistically test differences among the treatment arms as well as changes from pretreatment to posttreatment.
Results
In comparison with values in the control group, the brain tissue PO2 levels were significantly increased during treatment in both the HBO2 (mean ± SEM, 223 ± 29 mm Hg) and NBH (86 ± 12 mm Hg) groups (p < 0.0001) and following HBO2 until the next treatment session (p = 0.003). Hyperbaric O2 significantly increased CBF and CMRO2 for 6 hours (p ≤ 0.01). Cerebrospinal fluid lactate concentrations decreased posttreatment in both the HBO2 and NBH groups (p < 0.05). The dialysate lactate levels in patients who had received HBO2 decreased for 5 hours posttreatment (p = 0.017). Microdialysis lactate/pyruvate (L/P) ratios were significantly decreased posttreatment in both HBO2 and NBH groups (p < 0.05). Cerebral blood flow, CMRO2, microdialysate lactate, and the L/P ratio had significantly greater improvement when a brain tissue PO2 ≥ 200 mm Hg was achieved during treatment (p < 0.01). Intracranial pressure was significantly lower after HBO2 until the next treatment session (p < 0.001) in comparison with levels in the control group. The treatment effect persisted over all 3 days. No increase was seen in the CSF F2-isoprostane levels, microdialysate glycerol, and BAL inflammatory markers, which were used to monitor potential O2 toxicity.
Conclusions
Hyperbaric O2 has a more robust posttreatment effect than NBH on oxidative cerebral metabolism related to its ability to produce a brain tissue PO2 ≥ 200 mm Hg. However, it appears that O2 treatment for severe TBI is not an all or nothing phenomenon but represents a graduated effect. No signs of pulmonary or cerebral O2 toxicity were present.
Collapse
Affiliation(s)
- Sarah B. Rockswold
- 1Department of Physical Medicine and Rehabilitation
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
| | - Gaylan L. Rockswold
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
- 3Department of Neurosurgery, University of Minnesota; and
| | - David A. Zaun
- 4Analytical Services, Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, Minnesota
| | - Xuewei Zhang
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
| | - Carla E. Cerra
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
| | - Thomas A. Bergman
- 2Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center
- 3Department of Neurosurgery, University of Minnesota; and
| | - Jiannong Liu
- 4Analytical Services, Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, Minnesota
| |
Collapse
|
54
|
Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv Syst 2010; 26:419-30. [PMID: 19937246 DOI: 10.1007/s00381-009-1037-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Secondary neuronal injury is implicated in poor outcome after acute neurological insults. Outcome can be improved with protocol-driven therapy. These therapies have largely been based on monitoring and control of intracranial pressure and the maintenance of an adequate cerebral perfusion pressure. DISCUSSION In recent years, brain tissue oxygen partial pressure (PbtO2) monitoring has emerged as a clinically useful modality and a complement to intracranial pressure monitors. This review examines the physiology of PbtO2 monitors and practical aspects of their use.
Collapse
Affiliation(s)
- Eileen Maloney-Wilensky
- Clinical Research Division, Department of Neurosurgery, University of Pennsylvania, 330 S. 9th Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
55
|
Kumaria A, Tolias CM. Normobaric hyperoxia therapy for traumatic brain injury and stroke: a review. Br J Neurosurg 2010; 23:576-84. [PMID: 19922270 DOI: 10.3109/02688690903050352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) and acute ischaemic stroke are major causes of mortality and morbidity and there is an urgent demand for new neuroprotective strategies following the translational failure of neuroprotective drug trials. Oxygen therapy--especially normobaric, may offer a simple and effective therapeutic strategy which we review in this paper. Firstly we review mechanisms underlying the therapeutic effects of hyperoxia (both normobaric and hyperbaric) including mitochondrial rescue, stabilisation of intracranial pressure, attenuation of cortical spreading depression and inducing favourable endothelial-leukocyte interactions, all effects of which are postulated to decrease secondary injury. Next we survey studies using hyperbaric oxygen therapy for TBI and stroke, which formed the basis for early studies on normobaric hyperoxia. Thirdly, we present clinical studies of the efficacy of normobaric hyperoxia on TBI and stroke, emphasising their safety, efficacy and practicality. Finally we consider safety concerns and side effects, particularly pulmonary pathology, respiratory failure and theoretical risks in paediatric patients. A neuroprotective role of normobaric hyperoxia is extremely promising and further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, King's College Hospital, London, UK.
| | | |
Collapse
|
56
|
Sen AP, Gulati A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010; 7:91-9. [PMID: 20129501 PMCID: PMC5084116 DOI: 10.1016/j.nurt.2009.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022] Open
Abstract
Depletion of magnesium is observed in animal brain and in human blood after brain injury. Treatment with magnesium attenuates the pathological and behavioral changes in rats with brain injury; however, the therapeutic effect of magnesium has not been consistently observed in humans with traumatic brain injury (TBI). Secondary brain insults are observed in patients with brain injury, which adversely affect clinical outcome. Systemic administration studies in rats have shown that magnesium enters the brain; however, inducing hypermagnesemia in humans did not concomitantly increase magnesium levels in the CSF. We hypothesize that the neuroprotective effects of magnesium in TBI patients could be observed by increasing its brain bioavailability with mannitol. Here, we review the role of magnesium in brain injury, preclinical studies in brain injury, clinical safety and efficacy studies in TBI patients, brain bioavailability studies in rat, and pharmacokinetic studies in humans with brain injury. Neurodegeneration after brain injury involves multiple biochemical pathways. Treatment with a single agent has often resulted in poor efficacy at a safe dose or toxicity at a therapeutic dose. A successful neuroprotective therapy needs to be aimed at homeostatic control of these pathways with multiple agents. Other pharmacological agents, such as dexanabinol and progesterone, and physiological interventions, with hypothermia and hyperoxia, have been studied for the treatment of brain injury. Treatment with magnesium and hypothermia has shown favorable outcome in rats with cerebral ischemia. We conclude that coadministration of magnesium and mannitol with pharmacological and physiological agents could be an effective neuroprotective regimen for the treatment of TBI.
Collapse
|
57
|
|
58
|
Yang ZJ, Xie Y, Bosco GM, Chen C, Camporesi EM. Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. Eur J Appl Physiol 2009; 108:513-22. [PMID: 19851780 DOI: 10.1007/s00421-009-1229-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2009] [Indexed: 11/30/2022]
Abstract
The present study examined the effect of hyperbaric oxygen (HBO) on the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), the products of salicylate trapping of hydroxyl free radicals, and glutamate release in the striatum during acute ischemia and reperfusion. Non-HBO rats (n = 8) were subjected to 1-h ischemia. Study rats (n = 8) were treated with HBO at 2.8 ATA for 1 h during ischemia. Artificial CSF solution containing 5 mM sodium salicylate was perfused at 1 microl/min. Samples were continuously collected at 15 min intervals and the levels of 2,3-DHBA, 2,5-DHBA, and glutamate were analyzed. The lesion volume was determined by TTC stain. Occlusion of the middle cerebral artery induced a significant increase in the levels of 2,3-DHBA and 2,5-DHBA. A peak of approximately two and fourfold of baseline levels was reached at 45 min and was maintained at elevated levels during reperfusion. The level of glutamate increased approximately two times at 30 min during ischemia, continued to increase, and reached approximately three times baseline level during reperfusion. HBO significantly alleviated brain injury associated with decreased levels of 2,3-DHBA, 2,5-DHBA and glutamate. This study suggests that the decreased glutamate release and the reduced formation of hydroxyl free radicals might contribute to the neuroprotective effect of HBO.
Collapse
Affiliation(s)
- Zhong-jin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
59
|
Voigt C, Förschler A, Jaeger M, Meixensberger J, Küppers-Tiedt L, Schuhmann MU. Protective effect of hyperbaric oxygen therapy on experimental brain contusions. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 102:441-5. [PMID: 19388363 DOI: 10.1007/978-3-211-85578-2_86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
BACKGROUND We evaluated the effect of hyperbaric oxygen therapy (HBO) on experimental brain contusions in rats using magnetic resonance imaging (MRI). MATERIALS AND METHODS Ten Sprague-Dawley rats were investigated at 24 h and 72 h after controlled cortical impact injury. One hour after trauma, 5 rats were treated for 60 min with 100% oxygen at 2.5 absolute atmosphere (ATA), 5 were kept at normobaric room air. MRI was performed longitudinally at 24 h and 72 h after injury. Lesion volume was determined in T2 weighted MRI scans. Relative apparent diffusion coefficient (ADC) changes were calculated in comparison to the contralateral side. RESULTS Following HBO, T2 lesion volume was smaller at 24 h versus controls (63.1 +/- 16.5 mm3 vs. 87.4 +/- 13.8 mm3, p < 0.05), and decreased further at 72 h (46.8 +/- 17.8 mm3 vs. 92.5 +/- 13.1 mm3, p < 0.01). At 24 h, the mean relative ADC change in the lesion area decreased from + 26.8 +/- 2.3% in controls to + 2.3 +/- 12.2% in HBO animals (p < 0.01). At 72 h, the HBO effect on relative ADC values was less when compared to 24 h. DISCUSSION A 60-minute exposure to hyperbaric oxygen starting 1 h after impact injury significantly attenuated lesion growth and relative increase of ADC values within the contused area for up to 72 h. Thus, a "single-shot" HBO treatment seems to have long-lasting neuroprotective effects on the contused brain and its penumbra.
Collapse
Affiliation(s)
- Cornelia Voigt
- Department of Neurosurgery, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
60
|
Low brain tissue oxygen predicts poor outcome, but does it give insight to possible interventions?*. Crit Care Med 2009; 37:2134-5. [DOI: 10.1097/ccm.0b013e3181a5e841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Lee CH, Chen WC, Wu CI, Hsia TC. Tension pneumocephalus: a rare complication after hyperbaric oxygen therapy. Am J Emerg Med 2009; 27:257.e1-3. [PMID: 19371560 DOI: 10.1016/j.ajem.2008.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 06/26/2008] [Indexed: 10/20/2022] Open
Abstract
The study aimed to describe a patient with multiple skull bone fractures and a cerebrospinal fluid (CSF) leak who received hyperbaric oxygen therapy (HBOT). A 40-year-old man presented with subdural hemorrhage, skull bone fractures, facial bone fractures, sinus fractures, and CSF leakage after a one-story fall. He received HBOT as an adjunctive treatment to reduce brain edema and increase oxygen availability in brain tissue. Tension pneumocephalus developed after HBOT. Bur hole drainage was performed emergently to relieve the tension pneumocephalus. Cranioplasty and repair of skull base fracture were subsequently performed. The patient was discharged in a vegetative state. We proposed a possible mechanism by which tension pneumocephalus developed after HBOT sessions in this patient. Pneumocephalus, untreated skull base fracture, and CSF leakage should be considered contraindications to HBOT.
Collapse
Affiliation(s)
- Ching-Hsing Lee
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taipei, Chang Gung University College of Medicine, Taoyuan, Taiwan, ROC
| | | | | | | |
Collapse
|
62
|
Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res 2009; 31:114-21. [PMID: 19298750 DOI: 10.1179/174313209x389857] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
INTRODUCTION Numerous studies have demonstrated a protective effect of hyperbaric oxygen therapy in experimental ischemic brain injury, and many physiological and molecular mechanisms of hyperbaric oxygen therapy-related neuroprotection have been identified. METHODS Review of articles pertaining to hyperbaric oxygen therapy and cerebral ischemia in the National Library of Medicine and National Institutes of Health database, emphasizing mechanisms of hyperbaric oxygen therapy-related neuroprotection. RESULTS Hyperbaric oxygen therapy has been shown to ameliorate brain injury in a variety of animal models including focal cerebral ischemia, global cerebral ischemia, neonatal hypoxia-ischemia and subarachnoid hemorrhage. Small human trials of hyperbaric oxygen therapy in focal ischemia have not shown benefit, although one trial of hyperbaric oxygen therapy before cardiopulmonary bypass demonstrated improved neuropsychological and inflammatory outcomes with hyperbaric oxygen therapy. Hyperbaric oxygen therapy is associated with improved cerebral oxygenation, reduced blood-brain barrier breakdown, decreased inflammation, reduced cerebral edema, decreased intracranial pressure, reduced oxidative burden, reduced metabolic derangement, decreased apoptotic cell death and increased neural regeneration. CONCLUSION On a molecular level, hyperbaric oxygen therapy leads to activation of ion channels, inhibition of hypoxia inducible factor-1alpha, up-regulation of Bcl-2, inhibition of MMP-9, decreased cyclooxygenase-2 activity, decreased myeloperoxidase activity, up-regulation of superoxide dismutase and inhibition of Nogo-A (an endogenous growth-inhibitory factor). Ongoing research will continue to describe the mechanisms of hyperbaric oxygen therapy-related neuroprotection, and possibly expand hyperbaric oxygen therapy use clinically.
Collapse
Affiliation(s)
- Gerald A Matchett
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
63
|
Abstract
Oxygen is frequently administered to patients with suspected stroke. However, the role of oxygen therapy in ischemic stroke remains controversial in light of the failure of three clinical trials of hyperbaric oxygen therapy to show efficacy, and the fear of exacerbating oxygen free radical injury. The previous trials had several shortcomings, perhaps because they were designed on basis of anecdotal case reports and little preclinical data. Most animal studies concerning oxygen therapy in stroke have been conducted over the last 6 years. Emerging data suggests that hyperbaric and even normobaric oxygen therapy can be effective if used appropriately, and raises the tantalizing possibility that hyperoxia can be used to extend the narrow therapeutic time window for stroke thrombolysis. This article reviews the history, rationale, mechanisms of action and adverse effects of hyperoxia, the key results of previous hyperoxia studies, and the potential role of oxygen therapy in contemporary stroke treatment.
Collapse
Affiliation(s)
- Aneesh B Singhal
- Massachusetts General Hospital, Stroke Research Center, 175 Cambridge Street, Suite 300, Boston, MA 02114, USA.
| |
Collapse
|
64
|
Tisdall MM, Tachtsidis I, Leung TS, Elwell CE, Smith M. Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury. J Neurosurg 2008; 109:424-32. [PMID: 18759572 DOI: 10.3171/jns/2008/109/9/0424] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Traumatic brain injury (TBI) is associated with depressed aerobic metabolism and mitochondrial dysfunction. Normobaric hyperoxia (NBH) has been suggested as a treatment for TBI, but studies in humans have produced equivocal results. In this study the authors used brain tissue O(2) tension measurement, cerebral microdialysis, and near-infrared spectroscopy to study the effects of NBH after TBI. They investigated the effects on cellular and mitochondrial redox states measured by the brain tissue lactate/pyruvate ratio (LPR) and the change in oxidized cytochrome c oxidase (CCO) concentration, respectively. METHODS The authors studied 8 adults with TBI within the first 48 hours postinjury. Inspired oxygen percentage at normobaric pressure was increased from baseline to 60% for 60 minutes and then to 100% for 60 minutes before being returned to baseline for 30 minutes. RESULTS The results are presented as the median with the interquartile range in parentheses. During the 100% inspired oxygen percentage phase, brain tissue O2 tension increased by 7.2 kPa (range 4.5-9.6 kPa) (p < 0.0001), microdialysate lactate concentration decreased by 0.26 mmol/L (range 0.0-0.45 mmol/L) (p = 0.01), microdialysate LPR decreased by 1.6 (range 1.0-2.3) (p = 0.02), and change in oxidized CCO concentration increased by 0.21 mumol/L (0.13-0.38 micromol/L) (p = 0.0003). There were no significant changes in intracranial pressure or arterial or microdialysate glucose concentration. The change in oxidized CCO concentration correlated with changes in brain tissue O(2) tension (r(s)= 0.57, p = 0.005) and in LPR (r(s)= -0.53, p = 0.006). CONCLUSIONS The authors have demonstrated oxidation in cerebral cellular and mitochondrial redox states during NBH in adults with TBI. These findings are consistent with increased aerobic metabolism and suggest that NBH has the potential to improve outcome after TBI. Further studies are warranted.
Collapse
Affiliation(s)
- Martin M Tisdall
- Department of Neuroanaesthesia and Neurocritical Care, The National Hospital for Neurology and Neurosurgery, UK
| | | | | | | | | |
Collapse
|
65
|
Blanco YC, Farias AS, Goelnitz U, Lopes SCP, Arrais-Silva WW, Carvalho BO, Amino R, Wunderlich G, Santos LMB, Giorgio S, Costa FTM. Hyperbaric oxygen prevents early death caused by experimental cerebral malaria. PLoS One 2008; 3:e3126. [PMID: 18769544 PMCID: PMC2518956 DOI: 10.1371/journal.pone.0003126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 08/14/2008] [Indexed: 01/12/2023] Open
Abstract
Background Cerebral malaria (CM) is a syndrome characterized by neurological signs, seizures and coma. Despite the fact that CM presents similarities with cerebral stroke, few studies have focused on new supportive therapies for the disease. Hyperbaric oxygen (HBO) therapy has been successfully used in patients with numerous brain disorders such as stroke, migraine and atherosclerosis. Methodology/Principal Findings C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) were exposed to daily doses of HBO (100% O2, 3.0 ATA, 1–2 h per day) in conditions well-tolerated by humans and animals, before or after parasite establishment. Cumulative survival analyses demonstrated that HBO therapy protected 50% of PbA-infected mice and delayed CM-specific neurological signs when administrated after patent parasitemia. Pressurized oxygen therapy reduced peripheral parasitemia, expression of TNF-α, IFN-γ and IL-10 mRNA levels and percentage of γδ and αβ CD4+ and CD8+ T lymphocytes sequestered in mice brains, thus resulting in a reduction of blood-brain barrier (BBB) dysfunction and hypothermia. Conclusions/Significance The data presented here is the first indication that HBO treatment could be used as supportive therapy, perhaps in association with neuroprotective drugs, to prevent CM clinical outcomes, including death.
Collapse
Affiliation(s)
- Yara C. Blanco
- Department of Microbiology & Immunology, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- Department of Parasitology, UNICAMP, State University of Campinas, Campinas, São Paulo, Brazil
| | - Alessandro S. Farias
- Department of Microbiology & Immunology, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
| | - Uta Goelnitz
- Department of Parasitology – ICB, University of São Paulo – USP, São Paulo, São Paulo, Brazil
| | - Stefanie C. P. Lopes
- Department of Microbiology & Immunology, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- Department of Parasitology, UNICAMP, State University of Campinas, Campinas, São Paulo, Brazil
| | - Wagner W. Arrais-Silva
- Department of Parasitology, UNICAMP, State University of Campinas, Campinas, São Paulo, Brazil
| | - Bruna O. Carvalho
- Department of Microbiology & Immunology, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- Department of Parasitology, UNICAMP, State University of Campinas, Campinas, São Paulo, Brazil
| | - Rogério Amino
- Department of Biochemistry, Federal University of São Paulo – UNIFESP, São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology – ICB, University of São Paulo – USP, São Paulo, São Paulo, Brazil
| | - Leonilda M. B. Santos
- Department of Microbiology & Immunology, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
| | - Selma Giorgio
- Department of Parasitology, UNICAMP, State University of Campinas, Campinas, São Paulo, Brazil
| | - Fabio T. M. Costa
- Department of Microbiology & Immunology, State University of Campinas – UNICAMP, Campinas, São Paulo, Brazil
- Department of Parasitology, UNICAMP, State University of Campinas, Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
66
|
|
67
|
Rosenthal G, Hemphill JC, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med 2008; 36:1917-24. [PMID: 18496376 DOI: 10.1097/ccm.0b013e3181743d77] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. DESIGN Prospective observational study. SETTING Level I trauma center. PATIENTS Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. CONCLUSIONS Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.
Collapse
Affiliation(s)
- Guy Rosenthal
- Department of Neurosurgery, University of California, San Francisco, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW For decades it was assumed that cerebral ischemia was a major cause of secondary brain injury in traumatic brain injury, and management focused on improving cerebral perfusion and blood flow. Following the observation of mitochondrial dysfunction in traumatic brain injury and the widespread use of brain tissue oxygen tension (P(br)O(2) monitoring, however, recent work has focused on the use of hyperoxia to reduce the impact of traumatic brain injury. RECENT FINDINGS Previous work on normobaric hyperoxia utilized very indirect measures of cerebral oxygen metabolism (intracranial pressure, brain oxygen tension and microdialysis) as outcome variables. Interpretation of these measures is controversial, making it difficult to determine the impact of hyperoxia. A recent study, however, utilized positron emission tomography to study the impact of hyperoxia on patients with acute severe traumatic brain injury and found no improvement on cerebral metabolic rate for oxygen with this intervention. SUMMARY Despite suggestive data from microdialysis studies, direct measurement of the ability of the brain to utilize oxygen indicates that hyperoxia does not increase oxygen utilization. This, combined with the real risk of oxygen toxicity, suggests that routine clinical use is not appropriate at this time and should await appropriate prospective outcome studies.
Collapse
Affiliation(s)
- Michael N Diringer
- Neurology/Neurosurgery Intensive Care Unit, Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
69
|
|
70
|
Nakamura T, Kuroda Y, Yamashita S, Kawakita K, Kawai N, Tamiya T, Itano T, Nagao S. Hyperbaric oxygen therapy for consciousness disturbance following head injury in subacute phase. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 102:21-24. [PMID: 19388281 DOI: 10.1007/978-3-211-85578-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Hyperbaric oxygen (HBO) therapy has been shown to improve outcome after brain injury, however its mechanisms are not understood. The purpose of the present study was to investigate the effect of hyperbaric oxygen (HBO) therapy on the cerebral circulation and metabolism of patients with disturbances in consciousness after head injury in the subacute phase. METHODS Seven head injury patients underwent HBO treatment after leaving the intensive care unit. Oxygen (100% O2, 2.7 atm absolute) was delivered to patients in a hyperbaric chamber for 60 min every 24 h (total five treatments/patient). Cerebral circulation monitoring (mean flow velocity: mFV, and pulsatility index: PI at horizontal portion of middle cerebral artery by transcranial Doppler) and cerebral metabolism monitoring (arterio-jugular venous difference of oxygen: AJDO2 and jugular venous lactate: lac-JV) before and after the series of treatments were evaluated. FINDINGS Both PI and lac-JV were significantly decreased after HBO theatment, while there were no significant changes in mFV and AJDO2. The decreased PI and lac-JV after HBO therapy might indicate that this treatment couples cerebral circulation and metabolism. CONCLUSIONS The measurement of cerebral circulation and metabolism parameters, especially PI and lac-JV, is useful for estimation of effect of HBO therapy in patients with distubances in consciousness after head injury in the subacute phase.
Collapse
Affiliation(s)
- Takehiro Nakamura
- Department of Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0173, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Rockswold GL, Rockswold SB. Hyperoxia. J Neurosurg 2007; 107:898-9; author reply 899. [DOI: 10.3171/jns-07/10/0898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
72
|
Henze D, Köthe L, Scharf A, Clausen T. Reliability of the microdialysis pump CMA 107 under hyperbaric conditions. J Neurosci Methods 2007; 164:312-9. [PMID: 17560660 DOI: 10.1016/j.jneumeth.2007.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/25/2007] [Accepted: 05/01/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Microdialysis measurements of extracellular substances under hyperbaric conditions were manifold used in several investigations. However, to our knowledge there is no analysis, which verified the applicability of microdialysis pumps under hyperbaric conditions. Thus, a goal of this study was to investigate the reliability of the microdialysis pump (MDP) CMA 107 in a hyperbaric environment up to 2.4bar absolute pressure. METHODS The CMA 107 with a perfusion rate of 2microL/min was stored in a decompression chamber. The ambient pressure was increased from 1 to 2.4bar absolute within 15min, maintained for 90min and then decreased to 1bar within 15min. The vials were changed every 15min, weighed before as well as after collecting the sample volume and the absolute recovery of glutamate, pyruvate, lactate, glucose and glycerol was determined. The same setup was performed under normobaric conditions. RESULTS The pumping capacity was 1.7% greater than expected under normobaric conditions, 36.5% less than expected in the compression phase, 10.5% less than expected in the isopression phase and 26.3% greater than expected in the decompression phase under hyperbaric conditions. The absolute recoveries under hyperbaric conditions were affected during the isopression phase with a deviation from -6 to +20% compared to normobaric environments. CONCLUSION The study demonstrated that an absolute ambient pressure up to 2.4bar did influence the pumping capacity and the reliability of the absolute recovery. These results need to be taken into consideration when interpreting microdialysis studies performed under hyperbaric conditions.
Collapse
Affiliation(s)
- Dirk Henze
- Department of Anesthesiology and Intensive Care Medicine, Martin-Luther-University Halle-Wittenberg, Dryanderstr. 4-7, 06108 Halle (Saale), Germany.
| | | | | | | |
Collapse
|
73
|
Abstract
OBJECTIVES This critical literature review examines historical and current investigations on the efficacy and mechanisms of hyperbaric oxygen (HBO) treatment in traumatic brain injury (TBI). Potential safety risks and oxygen toxicity, as well as HBO's future potential, are also discussed. METHODS Directed literature review. RESULTS Historically, cerebral vasoconstriction and increased oxygen availability were seen as the primary mechanisms of HBO in TBI. HBO now appears to be improving cerebral aerobic metabolism at a cellular level, namely, by enhancing damaged mitochondrial recovery. HBO given at the ideal treatment paradigm, 1.5 ATA for 60 minutes, does not appear to produce oxygen toxicity and is relatively safe. DISCUSSION The use of HBO in TBI remains controversial. Growing evidence, however, shows that HBO may be a potential treatment for patients with severe brain injury. Further investigations, including a multicenter prospective randomized clinical trial, will be required to definitively define the role of HBO in severe TBI.
Collapse
Affiliation(s)
- Sarah B Rockswold
- Division of Neurosurgery, Department of Surgery, Hennepin County Medical Center, Department of Neurosurgery, University of Minnesota, 701 Park Avenue, Minneapolis, MN 55415, USA
| | | | | |
Collapse
|
74
|
Abstract
Hyperbaric oxygen (HBO) therapy is defined by the Undersea and Hyperbaric Medical Society (UHMS) as a treatment in which a patient intermittingly breathes 100% oxygen under a pressure that is greater than the pressure at sea level [a pressure greater than 1 atmosphere absolute (ATA)]. HBO has been shown to be a potent means to increase the oxygen content of blood and has been advocated for the treatment of various ailments, including air embolism, carbon monoxide poisoning, wound healing and ischemic stroke. However, definitive established mechanisms of action are still lacking. This has led to uncertainty among clinicians, who have understandingly become hesitant in regard to using HBO therapy, even in situations where it could prove beneficial. Therefore, this review will summarize the literature regarding the effects of HBO on brain oxygenation, cerebral blood flow and intracranial pressure in both the healthy and injured brains, as well as discuss how changes in these three factors can impart protection.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Division of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, USA.
| | | | | |
Collapse
|
75
|
Abstract
During the past few decades, management of acute traumatic brain injury has advanced substantially on several fronts. Implementation of rapid transport systems and the advent of trauma centres, together with advances in emergency medicine, critical care medicine and trauma neurosurgery, have improved outcome following head injury. Technological advances made during the past years in the field of invasive neuromonitoring that provide real-time information on brain oxygenation may further improve outcome by enabling individualized therapies for intracranial hypertension. Furthermore, these recent technological advances will provide insights into the pathophysiological processes that are active in traumatic brain injury and a better understanding of the biochemical effects of specific therapeutic regimens.
Collapse
Affiliation(s)
- C S De Deyne
- Department of Anesthesia and Critical Care Medicine, Eastern Limburg General Hospital ZOL, Genk, Belgium.
| |
Collapse
|
76
|
Zhou Z, Daugherty WP, Sun D, Levasseur JE, Altememi N, Hamm RJ, Rockswold GL, Bullock MR. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J Neurosurg 2007; 106:687-94. [PMID: 17432723 DOI: 10.3171/jns.2007.106.4.687] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hyperbaric oxygen (HBO2) has been shown to improve outcome after severe traumatic brain injury, but its underlying mechanisms are unknown. Following lateral fluid-percussion injury (FPI), the authors tested the effects of HBO2 treatment as well as enhanced normobaric oxygenation on mitochondrial function, as measured by both cognitive recovery and cellular adenosine triphosphate (ATP) levels. METHODS Adult male Sprague-Dawley rats were subjected to moderate lateral FPI or sham injury and were allocated to one of four treatment groups: 1) FPI treated with 4 hours of normobaric 30% O2; 2) FPI treated with 4 hours of normobaric 100% O2; 3) FPI treated with 1 hour of HBO2 plus 3 hours of normobaric 100% O2; and 4) sham-injured treated with normobaric 30% O2. Cognitive outcome was assessed using the Morris water maze (MWM) on Days 11 to 15 after injury. Animals were then killed 21 days postinjury to assess hippocampal neuronal loss. Adenosine triphosphate was extracted from the neocortex and measured using high-performance liquid chromatography. The results showed that injured animals treated with HBO2 or normobaric 100% O2 alone had significantly higher levels of cerebral ATP as compared with animals treated using normobaric 30% O2 (p < or = 0.05). The injured animals treated with HBO2 had significant improvements in cognitive recovery, as characterized by a shorter latency in MWM performance (p < or = 0.05), and decreased neuronal loss in the CA2/3 and hilar regions as compared with those treated with 30% or 100% O2, (p < or = 0.05). CONCLUSIONS Both hyperbaric and normobaric hyperoxia increased cerebral ATP levels after lateral FPI. In addition, HBO2 treatment improved cognitive recovery and reduced hippocampal neuronal cell loss after brain injury in the rat.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0631, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Diringer MN, Aiyagari V, Zazulia AR, Videen TO, Powers WJ. Effect of hyperoxia on cerebral metabolic rate for oxygen measured using positron emission tomography in patients with acute severe head injury. J Neurosurg 2007; 106:526-9. [PMID: 17432700 DOI: 10.3171/jns.2007.106.4.526] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Recent observations indicate that traumatic brain injury (TBI) may be associated with mitochondrial dysfunction. This, along with growing use of brain tissue PO2 monitors, has led to considerable interest in the potential use of ventilation with 100% oxygen to treat patients who have suffered a TBI. To date, the impact of normobaric hyperoxia has only been evaluated using indirect measures of its impact on brain metabolism. To determine if normobaric hyperoxia improves brain oxygen metabolism following acute TBI, the authors directly measured the cerebral metabolic rate for oxygen (CMRO2) with positron emission tomography before and after ventilation with 100% oxygen.
Methods
Baseline measurements of arterial and jugular venous blood gases, mean arterial blood pressure, intracranial pressure, cerebral blood flow (CBF), cerebral blood volume, oxygen extraction fraction, and CMRO2 were made at baseline while the patients underwent ventilation with a fraction of inspired oxygen (FiO2) of 0.3 to 0.5. The FiO2 was then increased to 1.0, and 1 hour later all measurements were repeated.
Five patients were studied a mean of 17.9 ±5.8 hours (range 12–23 hours) after trauma. The median admission Glasgow Coma Scale score was 7 (range 3–9). During ventilation with 100% oxygen, there was a marked rise in PaO2 (from 117 ± 31 to 371 ± 99 mm Hg, p < 0.0001) and a small rise in arterial oxygen content (12.7 ± 4.0 to 13.3 ± 4.6 vol %, p = 0.03). There were no significant changes in systemic hemodynamic or other blood gas measurements. At the baseline evaluation, bihemispheric CBF was 39 ± 12 ml/100 g/min and bihemispheric CMRO2 was 1.9 ± 0.6 ml/100 g/min. During hyperoxia there was no significant change in either of these measurements. (Values are given as the mean ± standard deviation throughout.)
Conclusions
Normobaric hyperoxia did not improve brain oxygen metabolism. In the absence of outcome data from clinical trials, these preliminary data do not support the use of 100% oxygen in patients with acute TBI, although larger confirmatory studies are needed.
Collapse
Affiliation(s)
- Michael N Diringer
- Department of Neurology, Neurology/Neurosurgery Intensive Care Unit, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
78
|
Abstract
OBJECTIVE The purpose of this study was to determine whether oxygen treatment could attenuate the alterations in cerebral energy metabolism found in the brain following hypoxia-ischemia. DESIGN Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 hrs of hypoxia (8% oxygen at 37 degrees C). The concentrations of high-energy phosphate compounds and glycolytic intermediates and the activity of Na+/K+-adenosine triphosphatase were measured at 4-72 hrs of recovery. Brain weight was used to determine the severity of the brain injury at 2 wks after insult. SETTING Experimental setting. SUBJECTS Rat pups. INTERVENTIONS Pups were treated with 100% oxygen 1 hr after the insult at 2.5 atmospheres absolute (hyperbaric oxygen) or at normobaric pressure for a duration of 2 hrs. MEASUREMENTS AND MAIN RESULTS During the initial period of recovery from hypoxia-ischemia, values of adenosine triphosphate and phosphocreatine remained at levels below normal, whereas the levels of glucose and other glycolytic intermediates were elevated. Hyperbaric oxygen and normobaric oxygen both attenuated brain injury, restored the levels of adenosine triphosphate and phosphocreatine, decreased the levels of the glycolytic intermediates, and increased the utilization of energy. CONCLUSIONS These results suggest that oxygen treatment during the initial period of recovery from a hypoxia-ischemic insult is able to attenuate energy deficits in the brain, which ultimately leads to a reduction in brain injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | |
Collapse
|
79
|
Haitsma IK, Maas AIR. Monitoring cerebral oxygenation in traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:207-16. [PMID: 17618979 DOI: 10.1016/s0079-6123(06)61014-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Ischemia is a common problem after traumatic brain injury (TBI) that eludes detection with standard monitoring. In this review we will discuss four available techniques (SjVO2, PET, NIRS and PbrO2) to monitor cerebral oxygenation. We present technical data including strengths and weaknesses of these systems, information from clinical studies and formulate a vision for the future.
Collapse
Affiliation(s)
- Iain K Haitsma
- Department of Neurosurgery, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | |
Collapse
|
80
|
Natale JE, Joseph JG, Pretzlaff RK, Silber TJ, Guerguerian AM. Clinical trials in pediatric traumatic brain injury: unique challenges and potential responses. Dev Neurosci 2006; 28:276-90. [PMID: 16943651 DOI: 10.1159/000094154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 03/11/2006] [Indexed: 11/19/2022] Open
Abstract
In order to optimize pediatric traumatic brain injury translational and clinical research, scientific and ethical challenges need to be recognized and addressed. Having recently conducted a multisite phase II safety/feasibility trial of magnesium sulfate as a neuroprotective agent, we supplement our own experience by a mini review of similar studies, identifying challenges and possible responses from the perspective of families, investigators, funding agencies and society.
Collapse
Affiliation(s)
- JoAnne E Natale
- Critical Care Medicine, Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA 95817, USA, and Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.
| | | | | | | | | |
Collapse
|
81
|
Harch PG. Medicine that Overlooks the Evidence. Arch Phys Med Rehabil 2006; 87:592-3; author reply 593. [PMID: 16571403 DOI: 10.1016/j.apmr.2006.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 01/20/2006] [Indexed: 11/22/2022]
|
82
|
Singhal AB, Lo EH, Dalkara T, Moskowitz MA. Advances in stroke neuroprotection: hyperoxia and beyond. Neuroimaging Clin N Am 2006; 15:697-720, xii-xiii. [PMID: 16360598 DOI: 10.1016/j.nic.2005.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Refinements in patient selection, improved methods of drug delivery, use of more clinically relevant animal stroke models, and the use of combination therapies that target the entire neurovascular unit make stroke neuroprotection an achievable goal. This article provides an overview of the major mechanisms of neuronal injury and the status of neuroprotective drug trials and reviews emerging strategies for treatment of acute ischemic stroke. Advances in the fields of stem cell transplantation, stroke recovery, molecular neuroimaging, genomics, and proteomics will provide new therapeutic avenues in the near future. These and other developments over the past decade raise expectations that successful stroke neuroprotection is imminent.
Collapse
|
83
|
Vlodavsky E, Palzur E, Soustiel JF. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol 2006; 32:40-50. [PMID: 16409552 DOI: 10.1111/j.1365-2990.2005.00698.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acute inflammatory response plays an important role in secondary brain damage after traumatic brain injury (TBI). Neutrophils provide the main source of matrix metalloproteinases (MMPs) which also play a deleterious role in TBI. Numerous preclinical studies have suggested that hyperbaric oxygen therapy (HBOT) may by beneficial in various noncerebral and cerebral inflammatory diseases. The goal of this study was to evaluate the effects of HBOT on inflammatory infiltration and the expression of MMPs in correlation with secondary cell death in the rat model of dynamic cortical deformation (DCD). Twenty animals underwent DCD with subsequent HBOT (2.8 ATA, two sessions of 45 min each); 10 animals: DCD and normobaric oxygenation (1 ATA), 10 animals: not treated after DCD. Cell death was evaluated by TUNEL. Neutrophils were revealed by myeloperoxidase staining. Immunohistochemical staining for MMP-2 and -9 and tissue inhibitors of MMP-1 (TIMP-1) and -2 was also performed and the results were quantitatively evaluated by image analysis. In the animals treated by HBOT, a significant decrease in the number of TUNEL-positive cells and neutrophilic inflammatory infiltration was seen in comparison with nontreated animals and those treated by normobaric oxygen. The expression of MMP-9 was also significantly lower in the treated group. Staining for MMP-2 and TIMP-2 did not change significantly. Our results demonstrate that HBOT decreased the extent of secondary cell death and reactive neuroinflammation in the TBI model. The decline of MMP-9 expression after HBOT may also contribute to protection of brain tissue in the perilesional area. Further research should be centred on the evaluation of long-term functional and morphological results of HBOT.
Collapse
Affiliation(s)
- E Vlodavsky
- Institute of Pathology, Rambam Medical Center, Haifa 31096, Israel.
| | | | | |
Collapse
|
84
|
Rockswold GL, Quickel RR, Rockswold SB. Hypoxia and Traumatic Brain Injury. J Neurosurg 2006; 104:170-1; author reply 171-2. [PMID: 16509162 DOI: 10.3171/jns.2006.104.1.170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
85
|
Kihara K, Ueno S, Sakoda M, Aikou T. Effects of hyperbaric oxygen exposure on experimental hepatic ischemia reperfusion injury: relationship between its timing and neutrophil sequestration. Liver Transpl 2005; 11:1574-80. [PMID: 16315298 DOI: 10.1002/lt.20533] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent studies have shown that hyperbaric oxygen therapy (HBOT) reduces neutrophil endothelial adherence in venules and also blocks the progressive arteriolar vasoconstriction associated with ischemia-reperfusion (I-R) injury in the extremities and the brain. In order to elucidate the effects of HBOT after I-R in digestive organs, particularly in the liver, we evaluated the following: 1) the relationship between timing of HBOT and tissue damage; and 2) HBOT's effects on neutrophil sequestration. Using a hepatic I-R (45 minute) model in male rats, survival rate, liver tissue damage, and neutrophil accumulation within the sinusoids in the HBOT-treated group (Group H) were compared to those in the nontreated group (Group C). For the HBOT-treated group, HBOT was administered as 100% oxygen, at 2.5 atm absolute, for 60 minutes. When HBOT was given 30 minute after I-R, the survival rate was much better in Group H than in Group C. HBOT performed within 3 hours of I-R markedly suppressed increases in the malondialdehyde level in tissues of the liver and lessened the congestion in the sinusoids. In addition, HBOT just after I-R caused decreased number of cells stained by the naphthol AS-D chloroacetate esterase infiltrating into the sinusoids. HBOT 3 hours after reperfusion, however, showed no clear effects upon neutrophil sequestration compared to Group C. These results indicate that HBOT performed within 3 hours of I-R alleviates hepatic dysfunction and improves the survival rate after I-R. Herein, we propose 1 possible mechanism for these beneficial effects: early HBOT given before neutrophil-mediated injury phase may suppress the accumulation of neutrophils after I-R. In conclusion, we believe that the present study should lead to an improved understanding of HBOT's potential role in hepatic surgery.
Collapse
Affiliation(s)
- Kenji Kihara
- Department of Surgical Oncology and Digestive Surgery, Kagoshima University Graduate School of Medicine and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890, Japan
| | | | | | | |
Collapse
|
86
|
Al-Waili NS, Butler GJ, Beale J, Abdullah MS, Hamilton RWB, Lee BY, Lucus P, Allen MWW, Petrillo RL, Carrey Z, Finkelstein M. Hyperbaric oxygen in the treatment of patients with cerebral stroke, brain trauma, and neurologic disease. Adv Ther 2005; 22:659-78. [PMID: 16510383 DOI: 10.1007/bf02849960] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyperbaric oxygen (HBO) therapy has been used to treat patients with numerous disorders, including stroke. This treatment has been shown to decrease cerebral edema, normalize water content in the brain, decrease the severity of brain infarction, and maintain blood-brain barrier integrity. In addition, HBO therapy attenuates motor deficits, decreases the risks of sequelae, and prevents recurrent cerebral circulatory disorders, thereby leading to improved outcomes and survival. Hyperbaric oxygen also accelerates the regression of atherosclerotic lesions, promotes antioxidant defenses, and suppresses the proliferation of macrophages and foam cells in atherosclerotic lesions. Although no medical treatment is available for patients with cerebral palsy, in some studies, HBO therapy has improved the function of damaged cells, attenuated the effects of hypoxia on the neonatal brain, enhanced gross motor function and fine motor control, and alleviated spasticity. In the treatment of patients with migraine, HBO therapy has been shown to reduce intracranial pressure significantly and abort acute attacks of migraine, reduce migraine headache pain, and prevent cluster headache. In studies that investigated the effects of HBO therapy on the damaged brain, the treatment was found to inhibit neuronal death, arrest the progression of radiation-induced neurologic necrosis, improve blood flow in regions affected by chronic neurologic disease as well as aerobic metabolism in brain injury, and accelerate the resolution of clinical symptoms. Hyperbaric oxygen has also been reported to accelerate neurologic recovery after spinal cord injury by ameliorating mitochondrial dysfunction in the motor cortex and spinal cord, arresting the spread of hemorrhage, reversing hypoxia, and reducing edema. HBO has enhanced wound healing in patients with chronic osteomyelitis. The results of HBO therapy in the treatment of patients with stroke, atherosclerosis, cerebral palsy, intracranial pressure, headache, and brain and spinal cord injury are promising and warrant further investigation.
Collapse
Affiliation(s)
- Noori S Al-Waili
- Life Support Technologies, Inc., and NewTechnologies, Inc., The Mount Vernon Hospital, Westchester Medical Center, New York Medical College, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Stoller KP. Quantification of neurocognitive changes before, during, and after hyperbaric oxygen therapy in a case of fetal alcohol syndrome. Pediatrics 2005; 116:e586-91. [PMID: 16166387 DOI: 10.1542/peds.2004-2851] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is the most common nonhereditary cause of mental retardation, with deficits in general intellectual functioning, learning, memory, attention, and problem-solving. Presented here is the first case in which measured neurocognitive abilities were determined before, during, and after hyperbaric oxygen therapy in a case of FAS involving a teenage male patient. Memory, reaction time, and visual motor speed assessments were compared. After 40 hyperbaric treatments with 100% oxygen at 1.5 atmospheres absolute, the patient's performance in 6 of 6 categories of the computer-administered test battery improved. Word composite (verbal) scores improved from 55% to 73%, memory composite (visual) scores improved from 38% to 55%, reaction time composites improved from 1.03 to 0.53 seconds, impulse control composite scores improved from 8 to 5, and visual motor speed scores improved from 18.6 to 19.03. The patient's subjective symptoms diminished 94%. Six months after these treatments, the patient's verbal memory was maintained at 73% without any other interventions; impulsivity continued to improve, whereas other indices did not. Thirty-three additional treatments continued to improve test performance, with verbal memory at 95%, visual memory at 57%, and a 100% reduction of subjective symptoms. This patient, with 15-year-matured FAS, benefited from a short course of low-pressure hyperbaric oxygen therapy, sustained durable cognitive improvements, and continued to exhibit improvement with another short course of treatments.
Collapse
Affiliation(s)
- Kenneth P Stoller
- Department of Pediatrics, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| |
Collapse
|
88
|
Rogatsky GG, Kamenir Y, Mayevsky A. Effect of hyperbaric oxygenation on intracranial pressure elevation rate in rats during the early phase of severe traumatic brain injury. Brain Res 2005; 1047:131-6. [PMID: 15904900 DOI: 10.1016/j.brainres.2005.02.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 02/03/2005] [Accepted: 02/12/2005] [Indexed: 11/23/2022]
Abstract
Intracranial pressure (ICP) was monitored to evaluate the therapeutic effect of hyperbaric oxygen (HBO(2)) treatment following traumatic brain injury (TBI). This subject is controversial. The aim of our study was to determine whether HBO(2) treatment has a therapeutic effect on ICP dynamics and survival following severe fluid percussion brain injury (FPBI) in rats. Changes in ICP level were analyzed every 30 min during an 8-h monitoring period following trauma and at the end of experiment (20 h). The control (A) and experimental (B) groups consisted of 7 and 4 rats, respectively. Group B was subjected to 1.5 atmospheres absolute (ATA) 100% oxygen for 60 min beginning 2 h after FPBI. No significant differences in ICP were noted between groups A and B before and after HBO(2) treatment until 3.5 h after trauma. At 4 h, for the first time, the difference became significant (P = 0.025; n = 11) and remained significant (P < 0.05) for all measurement points until end of monitoring, when mean ICP values reached 37.17 +/- 14.25 and 20.25 +/- 2.63 mm Hg in groups A and B, respectively. Linear approximation models showed different trends (b1 = 3.80 +/- 0.23; r(2) = 0.65, P < 0.001 and b1 = 1.56 +/- 0.25; r(2) = 0.77, P < 0.001) for groups A and B, respectively. Covariance analysis confirmed significant differences between slopes for groups A and B (F = 148.04, P < 0.001; df = 2,177), i.e., a significant difference in mean rate of ICP elevation. By the end of the experiment, 3 out of 7 rats from group A had died, but none from group B. We conclude that the application of HBO(2) during the early phase of severe FPBI significantly diminished ICP elevation rate and decreased mortality level.
Collapse
|
89
|
Ostrowski RP, Colohan ART, Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 2005; 25:554-71. [PMID: 15703702 DOI: 10.1038/sj.jcbfm.9600048] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute cerebral ischemia occurs after subarachnoid hemorrhage (SAH) because of increased intracranial pressure (ICP) and decreased cerebral perfusion pressure (CPP). The effect of hyperbaric oxygen (HBO) on physiological and clinical outcomes after SAH, as well as the expressions of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, such as BNIP3 and VEGF was evaluated. Eighty-five male SD rats (300 to 350 g) were randomly assigned to sham, SAH, and SAH+HBO groups. Subarachnoid hemorrhage was induced by endovascular perforation. Cortical cerebral blood flow (CBF), ICP, brain water content, brain swelling, neurologic function, and mortality were assessed. HBO (100% O2, 2.8 ATA for 2 h) was initiated at 1 h after SAH. Rats were sacrificed at 24 h to harvest tissues for Western blot or for histology. Apoptotic morphology accompanied by strong immunostaining of HIF-1alpha, VEGF, and BNIP3 were observed in the hippocampus and the cortex after SAH. Increased expressions of HIF-1alpha, VEGF, and BNIP3 were quantified by Western blot. HBO reduced the expressions of HIF-1alpha, VEGF, and BNIP3, diminished neuronal damage and improved CBF and neurologic function. HBO reduced early brain injury after SAH, probably by inhibition of HIF-1alpha and its target genes, which led to the decrease of apoptosis and preservation of the blood-brain barrier function.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology, Loma Linda University, Loma Linda, California, USA
| | | | | |
Collapse
|
90
|
Sahni T, Jain M. Hyperbaric Oxygen Therapy – Research Indications and Emerging Role in Neurological Illnesses. APOLLO MEDICINE 2005. [DOI: 10.1016/s0976-0016(12)60055-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
91
|
Daugherty WP, Levasseur JE, Sun D, Rockswold GL, Bullock MR. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J Neurosurg 2004; 101:499-504. [PMID: 15352608 DOI: 10.3171/jns.2004.101.3.0499] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In the current study, the authors examined the effects of hyperbaric O2 (HBO) following fluid-percussion brain injury and its implications on brain tissue oxygenation (PO2) and O2 consumption (VO2) and mitochondrial function (redox potential). METHODS Cerebral tissue PO2 was measured following induction of a lateral fluid-percussion brain injury in rats. Hyperbaric O2 treatment (100% O2 at 1.5 ata) significantly increased brain tissue PO2 in both injured and sham-injured animals. For VO2 and redox potential experiments, animals were treated using 30% O2 or HBO therapy for 1 or 4 hours (that is, 4 hours 30% O2 or 1 hour HBO and 3 hours 100% O2). Microrespirometer measurements of VO2 demonstrated significant increases following HBO treatment in both injured and sham-injured animals when compared with animals that underwent 30% O2 treatment. Mitochondrial redox potential, as measured by Alamar blue fluorescence, demonstrated injury-induced reductions at 1 hour postinjury. These reductions were partially reversed at 4 hours postinjury in animals treated with 30% O2 and completely reversed at 4 hours postinjury in animals on HBO therapy when compared with animals treated for only 1 hour. CONCLUSIONS Analysis of data in the current study demonstrates that HBO significantly increases brain tissue PO2 after injury. Nonetheless, treatment with HBO was insufficient to overcome injury-induced reductions in mitochondrial redox potential at 1 hour postinjury but was able to restore redox potential by 4 hours postinjury. Furthermore, HBO induced an increase in VO2 in both injured and sham-injured animals. Taken together, these data demonstrate that mitochondrial function is depressed by injury and that the recovery of aerobic metabolic function may be enhanced by treatment with HBO.
Collapse
Affiliation(s)
- Wilson P Daugherty
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
92
|
Tolias CM, Reinert M, Seiler R, Gilman C, Scharf A, Bullock MR. Normobaric hyperoxia--induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg 2004; 101:435-44. [PMID: 15352601 DOI: 10.3171/jns.2004.101.3.0435] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECT The effect of normobaric hyperoxia (fraction of inspired O2 [FIO2] concentration 100%) in the treatment of patients with traumatic brain injury (TBI) remains controversial. The aim of this study was to investigate the effects of normobaric hyperoxia on five cerebral metabolic indices, which have putative prognostic significance following TBI in humans. METHODS At two independent neurointensive care units, the authors performed a prospective study of 52 patients with severe TBI who were treated for 24 hours with 100% FIO2, starting within 6 hours of admission. Data for these patients were compared with data for a cohort of 112 patients who were treated in the past; patients in the historical control group matched the patients in our study according to their Glasgow Coma Scale scores after resuscitation and their intracranial pressure within the first 8 hours after admission. Patients were monitored with the aid of intracerebral microdialysis and tissue O2 probes. Normobaric hyperoxia treatment resulted in a significant improvement in biochemical markers in the brain compared with the baseline measures for patients treated in our study (patients acting as their own controls) and also compared with findings from the historical control group. In the dialysate the glucose levels increased (369.02 +/- 20.1 micromol/L in the control group and 466.9 +/- 20.39 micromol/L in the 100% O2 group, p = 0.001), whereas the glutamate and lactate levels significantly decreased (p < 0.005). There were also reductions in the lactate/glucose and lactate/pyruvate ratios. Intracranial pressure in the treatment group was reduced significantly both during and after hyperoxia treatment compared with the control groups (15.03 +/- 0.8 mm Hg in the control group and 12.13 +/- 0.75 mm Hg in the 100% O2 group, p < 0.005) with no changes in cerebral perfusion pressure. Outcomes of the patients in the treatment group improved. CONCLUSIONS The results of the study support the hypothesis that normobaric hyperoxia in patients with severe TBI improves the indices of brain oxidative metabolism. Based on these data further mechanistic studies and a prospective randomized controlled trial are warranted.
Collapse
Affiliation(s)
- Christos M Tolias
- Harold F. Young Neurosurgical Center, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
93
|
McDonagh M, Helfand M, Carson S, Russman BS. Hyperbaric oxygen therapy for traumatic brain injury: a systematic review of the evidence. Arch Phys Med Rehabil 2004; 85:1198-204. [PMID: 15241774 DOI: 10.1016/j.apmr.2003.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To identify the benefits and harms of hyperbaric oxygen therapy (HBOT) to treat traumatic brain injury (TBI). DATA SOURCES MEDLINE, EMBASE, the Cochrane Library, HealthSTAR, CINAHL, MANTIS, professional society databases, and reference lists. Databases were searched from inception through December 2003. STUDY SELECTION We included English-language studies of patients with TBI given HBOT and evaluating functional health outcomes. DATA EXTRACTION Data were abstracted by 1 reviewer and checked by a second. Study quality was rated as good, fair, or poor. DATA SYNTHESIS Two fair-quality randomized controlled trials of patients with severe brain injury reported conflicting results. One found no difference in mortality (48% HBOT vs 55% control) or morbidity at 1 year. In young patients with brainstem contusion, significantly more regained consciousness at 1 month with HBOT (67%) than control (11%) (P<.03). The other found a significant decrease in mortality in the HBOT group at 1 year (17%) compared with controls (31%) (P=.037). This decrease in mortality was accompanied by an increase in proportion of patients with severe disability. Patients with intracranial pressure (ICP) greater than 20 mmHg or a Glasgow Coma Scale score of 4 to 6 had significantly lower mortality at 1 year than controls. Five observational studies did not provide better evidence of effectiveness or adverse events. Two indicated a potential for initially reducing elevated ICP in some patients. However, rebound elevations higher than pretreatment levels occurred in some patients. Adverse events, including seizures, pulmonary symptoms, and neurologic deterioration, were reported; however, no study systematically assessed adverse events, and none reported adverse events in control groups. CONCLUSIONS The evidence for HBOT for TBI is insufficient to prove effectiveness or ineffectiveness, and more high-quality studies are needed. The evidence indicates that there is a small chance of a mortality benefit, which may depend on subgroup selection. The effect on functional status and the incidence and clinical significance of adverse effects are unclear.
Collapse
Affiliation(s)
- Marian McDonagh
- Department of Medical Informatics and Clinical Epidemiology, Oregon Evidence-Based Practice Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
94
|
Rogatsky GG, Shifrin EG, Mayevsky A. Acute respiratory distress syndrome in patients after blunt thoracic trauma: the influence of hyperbaric oxygen therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 540:77-85. [PMID: 15174605 DOI: 10.1007/978-1-4757-6125-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
95
|
Palzur E, Vlodavsky E, Mulla H, Arieli R, Feinsod M, Soustiel JF. Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: an animal model of brain contusion. J Neurotrauma 2004; 21:41-8. [PMID: 14987464 DOI: 10.1089/089771504772695931] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cerebral contusions are one the most frequent traumatic lesions and the most common indication for secondary surgical decompression. The purpose of this study was to investigate the physiology of perilesional secondary brain damage and evaluate the value of hyperbaric oxygen therapy (HBOT) in the treatment of these lesions. Five groups of five Sprague-Dawley rats each were submitted to dynamic cortical deformation (DCD) induced by negative pressure applied to the cortex. Cerebral lesions produced by DCD at the vacuum site proved to be reproducible. The study protocol entailed the following: (1) DCD alone, (2) DCD and HBOT, (3) DCD and post-operative hypoxia and HBOT, (4) DCD, post-operative hypoxia and HBOT, and (5) DCD and normobaric hyperoxia. Animals were sacrificed after 4 days. Histological sections showed localized gross tissue loss in the cortex at injury site, along with hemorrhage. In all cases, the severity of secondary brain damage was assessed by counting the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and caspase 3-positive cells in successive perilesional layers, each 0.5 mm thick. Perilesional TUNEL positive cells suggested the involvement of apoptosis in group 1 (12.24% of positive cells in layer 1). These findings were significantly enhanced by post-operative hypoxia (31.75%, p < 0.001). HBOT significantly reduced the severity and extent of secondary brain damage expressed by the number of TUNEL positive cells in each layer and the volume of the lesion (4.7% and 9% of TUNEL positive cells in layer 1 in groups 2 and 4 respectively, p < 0.0001 and p < 0.003). Normobaric hyperoxia also proved to be beneficial although in a lesser extent. This study demonstrates that the vacuum model of brain injury is a reproducible model of cerebral contusion. The current findings also suggest that HBOT may limit the growth of cerebral contusions and justify further experimental studies.
Collapse
Affiliation(s)
- Eilam Palzur
- Division of Neurosurgery and Acute Brain Research Laboratory, Rambam Medical Center, Faculty of Medicine, The Technion, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Currently, no neuroprotective therapies have been shown to reduce the secondary neuronal damage occurring after traumatic brain injury. Recent studies have addressed the potentiality of hyperoxia to ameliorate brain metabolism after traumatic brain injury. In this article, we present the principles of oxygen transport to the brain, the effects of hyperoxia on cerebral metabolism, and the role of lactate in brain metabolism after traumatic brain injury. RECENT FINDINGS It has been shown that hyperoxia obtained by increasing the inspired fraction of oxygen results in a decreased cerebral lactate concentration measured in the extracellular space using the microdialysis. However, the brain oxygen delivery is not substantially improved by eubaric hyperoxia and the ratio between lactate and pyruvate (a better indicator of the cellular redox state than lactate alone) is not changed by hyperoxia. In addition, it has been shown the lactate might be an alternative fuel for neurons during the acute postinjury phase. SUMMARY At present, there is no evidence supporting any clinical benefit of hyperoxia in brain-injured patients, and the meaning of posttraumatic brain extracellular lactate accumulation should be further investigated.
Collapse
Affiliation(s)
- Luca Longhi
- University of Milano, Department of Anesthesia and Critical Care Medicine, Ospedale Maggiore Policlinico IRCCS, Milano, Italy
| | | |
Collapse
|
97
|
Niklas A, Brock D, Schober R, Schulz A, Schneider D. Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation—HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J Neurol Sci 2004; 219:77-82. [PMID: 15050441 DOI: 10.1016/j.jns.2003.12.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 08/22/2003] [Accepted: 12/18/2003] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Severe brain injury is one of the most frequent causes of severe disability in the young. In acute management of brain trauma, new approaches based on experimental animal investigations should be sought. METHODS Twenty male, juvenile Chinchilla-Bastard rabbits received standardized cold-injury-induced-brain-trauma (CIBT). A metal probe (temperature -196 degrees C) was applied epidurally over 10 s. The hyperbaric oxygenation (HBO) group (n=10) underwent 90-min HBO sessions with 100% oxygen at 2.5 atmospheres absolute (1 h, 24+/-2 h, 48+/-2 h after CIBT). Cerebral tissue pO2-measurements were performed 60 min after CIBT, during the three HBO sessions and on day 4. The control group (n=10) underwent no treatment. Animals were sacrificed on day 4, and brains were analyzed histologically. RESULTS In the HBO group, pO2 measurements showed a significant increase in pO2 between day 1 and day 4, whereas no significant changes were observed in the control group. During the first HBO session, mean pO2 was 169 mm Hg, during the second 305 mm Hg and during the third 420 mm Hg. The mean area of necrosis was 16.2 mm2 in the HBO group, in the control group 19.9 mm2. The areas of brain edema were significantly smaller in the HBO group. Mortality in the HBO group was 0%, in the control group 20%. CONCLUSION HBO appears to be beneficial as an adjunct treatment of severe head trauma. To find optimal treatment protocols, further clinical studies must be developed.
Collapse
Affiliation(s)
- A Niklas
- Department of Neurology, University of Leipzig, Liebigstr. 22a, Leipzig, 04103 Germany.
| | | | | | | | | |
Collapse
|
98
|
Henze D, Bomplitz M, Radke J, Clausen T. Reliability of the NeuroTrend sensor system under hyperbaric conditions. J Neurosci Methods 2004; 132:45-56. [PMID: 14687674 DOI: 10.1016/j.jneumeth.2003.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The goal of this study was to investigate the reliability of the multi-parameter sensor NeuroTrend in a hyperbaric environment for up to 3bar absolute pressure. Measurement of brain tissue oxygenation (ptiO2) under hyperbaric conditions is supposed to elucidate whether hyperbaric oxygenation therapy has the potential to improve ptiO2 to a clinically significant degree in pathological altered brain tissue after traumatic brain injury. METHODS The NeuroTrend sensor hose, filled with equilibrated plasma samples, was stored in a decompression chamber. The plasma samples were equilibrated with three different gas mixtures. After determination of the initial values for temperature, oxygen partial pressure (pO2), carbon dioxide partial pressure (pCO2) and hydrogen ion concentration (pH) in the plasma, the ambient pressure was stepwise increased from 0.1 to 3 bar. The same set-up was performed without increasing the ambient pressure. RESULTS No significant difference in the mean values for all 23 measurement points and for all parameters (pO2, pCO2, pH) of all 10 NeuroTrend sensors was found, under both normobaric and hyperbaric conditions. CONCLUSION The study demonstrated that an absolute ambient pressure up to 3 bar did not influence the measuring properties and the reliability of the NeuroTrend sensor.
Collapse
Affiliation(s)
- Dirk Henze
- Department of Anesthesiology and Intensive Care Medicine, Martin-Luther-University Halle, Wittenberg, Dryander Street 4-7, Halle (Saale) 06097, Germany.
| | | | | | | |
Collapse
|
99
|
Nakatsuka K, Saito K, Kohshi K, Konda I, Tanaka Y. Severe skin ulceration associated with Wegener's granulomatosis: successful treatment with hyperbaric oxygen and prostaglandin E1. Mod Rheumatol 2003; 13:346-9. [PMID: 24387257 DOI: 10.3109/s10165-003-0246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract A 36-year-old woman patient with intractable skin ulcers associated with Wegener's granulomatosis was successfully cured by combination therapy with hyperbaric oxygenation therapy (HBO) and intravenous prostaglandin E1 (PGE1). Treatment for 4 months with prednisolone, intravenous PGE1, and cyclophosphamide did not result in healing of the multiple skin lesions on her legs. Repeated HBO with intravenous PGE1 therapy over 6 months resulted in a complete healing of the skin ulcers. We recommend the use of HBO combined with PGE1 for severe cutaneous lesions associated with generalized vasculitis.
Collapse
Affiliation(s)
- Keisuke Nakatsuka
- First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine , 1-1 Iseigaoka, Yahatanishi-ku, Kita-kyushu 807-8555 , Japan
| | | | | | | | | |
Collapse
|
100
|
Hyperoxia. J Neurosurg 2003. [DOI: 10.3171/jns.2003.99.6.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|