51
|
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CP, Vasconcelos MH. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat 2019; 46:100645. [PMID: 31585396 DOI: 10.1016/j.drup.2019.100645] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
|
52
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
53
|
Yang M, Sun Y, Xiao C, Ji K, Zhang M, He N, Wang J, Wang Q, Sun Z, Wang Y, Du L, Liu Y, Xu C, Liu Q. Integrated Analysis of the Altered lncRNAs and mRNAs Expression in 293T Cells after Ionizing Radiation Exposure. Int J Mol Sci 2019; 20:ijms20122968. [PMID: 31216644 PMCID: PMC6627384 DOI: 10.3390/ijms20122968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue and cell damage caused by ionizing radiation is often highly genotoxic. The swift repair of DNA damage is crucial for the maintenance of genomic stability and normal cell fitness. Long noncoding RNAs (lncRNAs) have been reported to play an important role in many physiological and pathological processes in cells. However, the exact function of lncRNAs in radiation-induced DNA damage has yet to be elucidated. Therefore, this study aimed to analyze the potential role of lncRNAs in radiation-induced DNA damage. We examined the expression profiles of lncRNAs and mRNAs in 293T cells with or without 8 Gy irradiation using high-throughput RNA sequencing. We then performed comprehensive transcriptomic and bioinformatic analyses of these sequencing results. A total of 18,990 lncRNAs and 16,080 mRNAs were detected in all samples. At 24 h post irradiation, 49 lncRNAs and 323 mRNAs were differentially expressed between the irradiation group and the control group. qRT-PCR was used to verify the altered expression of six lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the predicted genes were mainly involved in the histone mRNA metabolic process and Wnt signaling pathways. This study may provide novel insights for the study of lncRNAs in radiation-induced DNA damage.
Collapse
Affiliation(s)
- Mengmeng Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yuxiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Changyan Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Manman Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Zhijuan Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
54
|
Yun EJ, Lin CJ, Dang A, Hernandez E, Guo J, Chen WM, Allison J, Kim N, Kapur P, Brugarolas J, Wu K, He D, Lai CH, Lin H, Saha D, Baek ST, Chen BPC, Hsieh JT. Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to Ionizing Radiation. Clin Cancer Res 2019; 25:4542-4551. [PMID: 31000589 DOI: 10.1158/1078-0432.ccr-18-3004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Renal cell carcinoma (RCC) is known to be highly radioresistant but the mechanisms associated with radioresistance have remained elusive. We found DOC-2/DAB2 interactive protein (DAB2IP) frequently downregulated in RCC, is associated with radioresistance. In this study, we investigated the underlying mechanism regulating radioresistance by DAB2IP and developed appropriate treatment. EXPERIMENTAL DESIGN Several RCC lines with or without DAB2IP expression were irradiated with ionizing radiation (IR) for determining their radiosensitivities based on colony formation assay. To investigate the underlying regulatory mechanism of DAB2IP, immunoprecipitation-mass spectrometry was performed to identify DAB2IP-interactive proteins. PARP-1 expression and enzymatic activity were determined using qRT-PCR, Western blot analysis, and ELISA. In vivo ubiquitination assay was used to test PARP-1 degradation. Furthermore, in vivo mice xenograft model and patient-derived xenograft (PDX) model were used to determine the effect of combination therapy to sensitizing tumors to IR. RESULTS We notice that DAB2IP-deficient RCC cells acquire IR-resistance. Mechanistically, DAB2IP can form a complex with PARP-1 and E3 ligases that is responsible for degrading PARP-1. Indeed, elevated PARP-1 levels are associated with the IR resistance in RCC cells. Furthermore, PARP-1 inhibitor can enhance the IR response of either RCC xenograft model or PDX model. CONCLUSIONS In this study, we unveil that loss of DAB2IP resulted in elevated PARP-1 protein is associated with IR-resistance in RCC. These results provide a new targeting strategy to improve the efficacy of radiotherapy of RCC.
Collapse
Affiliation(s)
- Eun-Jin Yun
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Republic of Korea
| | - Chun-Jung Lin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Andrew Dang
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jiaming Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wei-Min Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joyce Allison
- Department of Internal Medicine and Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nathan Kim
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Department of Internal Medicine and Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Seung Tae Baek
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, Republic of Korea
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas.
- Graduate Institute of Cancer Biology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
55
|
Guney Eskiler G, Cecener G, Egeli U, Tunca B. BMN 673 (talazoparib): A potent PARP inhibitor for triple negative breast cancer with different genetic profile. J Biochem Mol Toxicol 2019; 33:e22286. [PMID: 30672063 DOI: 10.1002/jbt.22286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
The objective of the present study was to elucidate the effect of BMN 673 (talozoparib) on BRCA1 mutant (HCC1937) and wild-type (MDA-MB-231) triple negative breast cancer (TNBC). The in vitro cytotoxicity results indicated that BMN 673 had considerable inhibitory effects on HCC1937 and MDA-MB-231 cell lines by inducing apoptosis, multicaspase activity, G2/M arrest, and altering the expression levels of apoptosis-related genes (P < 0.01). Additionally, BMN 673 indicated no toxicity on MCF-10A control cells until a certain concentration and incubation time. However, BMN 673, a novel and selective poly ADP ribose polymerase inhibitor, was more potent in TNBC cells bearing BRCA1 mutant than those with wild-type BRCA1. In conclusion, our study, for the first time, demonstrated a molecular mechanism of the induction of apoptosis by BMN 673 in TNBC with different genetic profile. However, further investigations regarding the exact molecular mechanisms underlying BMN 673-inducing apoptotic death and gene-cell line associations are required.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
56
|
Owonikoko TK, Dahlberg SE, Sica GL, Wagner LI, Wade JL, Srkalovic G, Lash BW, Leach JW, Leal TB, Aggarwal C, Ramalingam SS. Randomized Phase II Trial of Cisplatin and Etoposide in Combination With Veliparib or Placebo for Extensive-Stage Small-Cell Lung Cancer: ECOG-ACRIN 2511 Study. J Clin Oncol 2018; 37:222-229. [PMID: 30523756 DOI: 10.1200/jco.18.00264] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Veliparib, a poly (ADP ribose) polymerase inhibitor, potentiated standard chemotherapy against small-cell lung cancer (SCLC) in preclinical studies. We evaluated the combination of veliparib with cisplatin and etoposide (CE; CE+V) doublet in untreated, extensive-stage SCLC (ES-SCLC). MATERIALS AND METHODS Patients with ES-SCLC, stratified by sex and serum lactate dehydrogenase levels, were randomly assigned to receive four 3-week cycles of CE (75 mg/m2 intravenously on day 1 and 100 mg/m2 on days 1 through 3) along with veliparib (100 mg orally twice per day on days 1 through 7) or placebo (CE+P). The primary end point was progression-free survival (PFS). Using an overall one-sided 0.10-level log-rank test, the study had 88% power to demonstrate a 37.5% reduction in the PFS hazard rate. RESULTS A total of 128 eligible patients received treatment on protocol. The median age was 66 years, 52% of patients were men, and Eastern Cooperative Oncology Group performance status was 0 for 29% of patients and 1 for 71%. The respective median PFS for the CE+V arm versus the CE+P arm was 6.1 versus 5.5 months (unstratified hazard ratio [HR], 0.75 [one-sided P = .06]; stratified HR, 0.63 [one-sided P = .01]), favoring CE+V. The median overall survival was 10.3 versus 8.9 months (stratified HR, 0.83; 80% CI, 0.64 to 1.07; one-sided P = .17) for the CE+V and CE+P arms, respectively. The overall response rate was 71.9% versus 65.6% (two-sided P = .57) for CE+V and CE+P, respectively. There was a significant treatment-by-strata interaction in PFS: Male patients with high lactate dehydrogenase levels derived significant benefit (PFS HR, 0.34; 80% CI, 0.22 to 0.51) but there was no evidence of benefit among patients in other strata (PFS HR, 0.81; 80% CI, 0.60 to 1.09). The following grade ≥ 3 hematology toxicities were more frequent in the CE+V arm than the CE+P arm: CD4 lymphopenia (8% v 0%; P = .06) and neutropenia (49% v 32%; P = .08), but treatment delivery was comparable. CONCLUSION The addition of veliparib to frontline chemotherapy showed signal of efficacy in patients with ES-SCLC and the study met its prespecified end point.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph W Leach
- 7 Metro Minnesota National Cancer Institute Community Oncology Research Program, Minneapolis, MN
| | | | | | | |
Collapse
|
57
|
Baldwin P, Ohman AW, Tangutoori S, Dinulescu DM, Sridhar S. Intraperitoneal delivery of NanoOlaparib for disseminated late-stage cancer treatment. Int J Nanomedicine 2018; 13:8063-8074. [PMID: 30555227 PMCID: PMC6278886 DOI: 10.2147/ijn.s186881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background PARP inhibitors, such as Olaparib, have advanced the treatment of ovarian cancer by providing patients with an effective and molecularly-targeted maintenance therapy. However, all orally-administered drugs, including Olaparib, must undergo first-pass metabolism. In contrast, a nanoparticle delivery system has the advantage of administering Olaparib directly into the peritoneal cavity for local treatment. Consequently, we sought to optimize the sustained-release formulation NanoOlaparib, previously deemed effective as an intravenous solid tumor treatment, for the local treatment of disseminated disease via intraperitoneal (i.p.) therapy. Methods The tumor cell line 404, which was derived from a Brca2−/−, Tp53−/−, Pten−/− genetically engineered mouse model, exhibited high sensitivity to Olaparib in vitro. It was chosen for use in developing an i.p. spread xenograft for testing nanotherapy efficacy in vivo. NanoOlaparib as a monotherapy or in combination with cisplatin was compared to oral Olaparib alone or in combination using two different dose schedules. A pilot biodistribution study was performed to determine drug accumulation in various organs following i.p. administration. Results Daily administration of NanoOlaparib reduced tumor growth and decreased the variability of the treatment response observed with daily oral Olaparib administration. However, systemic toxicity was observed in both the NanoOlaparib and vehicle (empty nanoparticle) treated groups. Scaling back the administration to twice weekly was well tolerated up to 100 mg/kg but reduced the effect on tumor growth. Biodistribution profiles indicated that NanoOlaparib began accumulating in tissues within an hour of administration and persisted for at least 72 hours after a single dose, exiting the peritoneal cavity faster than expected. Conclusion NanoOlaparib must be modified for use against disseminated disease. Future avenues to develop NanoOlaparib as an i.p. therapy include a modified surface-coating to retain it in the peritoneal cavity and prevent entry into systemic circulation, in addition to targeting moieties for localization in tumor cells.
Collapse
Affiliation(s)
- Paige Baldwin
- Department of Bioengineering, Northeastern University, Boston, MA, USA,
| | - Anders W Ohman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,
| | | | - Daniela M Dinulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,
| | - Srinivas Sridhar
- Department of Bioengineering, Northeastern University, Boston, MA, USA, .,Department of Physics, Northeastern University, Boston, MA, USA, .,Division of Radiation Oncology, Harvard Medical School, Boston, MA, USA,
| |
Collapse
|
58
|
Lamarca A, Barriuso J, McNamara MG, Valle JW. Biliary Tract Cancer: State of the Art and potential role of DNA Damage Repair. Cancer Treat Rev 2018; 70:168-177. [PMID: 30218788 DOI: 10.1016/j.ctrv.2018.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
Biliary tract cancers (BTCs), including cholangiocarcinoma, gallbladder cancer and ampullary cancers, are poor-prognosis malignancies. Most patients are diagnosed with advanced disease, when treatment is limited to palliative chemotherapy. First line chemotherapy is usually administered in the form of cisplatin and gemcitabine. Benefit from second line chemotherapy is still to be confirmed. Even though new systemic treatment targets have been recognised, especially in patients with intrahepatic cholangiocarcinoma (e.g. IDH and FGFR), there is an urgent need for novel treatment strategies. Genomic profiling of BTC is progressively becoming a reality which allows a better understanding of their biology and potential new targets. This review provides an insight into DNA Damage Repair (DDR) mechanisms, prevalence of DDR-deficient tumours in BTC, and the potential role of DDR in cancer development. Some form of DDR deficiency is expected to be present in around 25% of patients with BTC, and this knowledge could be exploited to potentially increase response to currently-available treatment strategies (chemotherapy, radiotherapy or immunotherapy). For patients with DDR-proficient tumours, drug inhibition of DDR could be instituted.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
59
|
Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer 2018; 18:696-705. [PMID: 30293088 PMCID: PMC6450507 DOI: 10.1038/s41568-018-0060-1] [Citation(s) in RCA: 978] [Impact Index Per Article: 139.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Catalogue of Somatic Mutations in Cancer (COSMIC) Cancer Gene Census (CGC) is an expert-curated description of the genes driving human cancer that is used as a standard in cancer genetics across basic research, medical reporting and pharmaceutical development. After a major expansion and complete re-evaluation, the 2018 CGC describes in detail the effect of 719 cancer-driving genes. The recent expansion includes functional and mechanistic descriptions of how each gene contributes to disease generation in terms of the key cancer hallmarks and the impact of mutations on gene and protein function. These functional characteristics depict the extraordinary complexity of cancer biology and suggest multiple cancer-related functions for many genes, which are often highly tissue-dependent or tumour stage-dependent. The 2018 CGC encompasses a second tier, describing an expanding list of genes (currently 145) from more recent cancer studies that show supportive but less detailed indications of a role in cancer.
Collapse
Affiliation(s)
- Zbyslaw Sondka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Sally Bamford
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Charlotte G Cole
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sari A Ward
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ian Dunham
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Simon A Forbes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
60
|
Minchom A, Aversa C, Lopez J. Dancing with the DNA damage response: next-generation anti-cancer therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918786658. [PMID: 30023007 PMCID: PMC6047242 DOI: 10.1177/1758835918786658] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/08/2018] [Indexed: 01/01/2023] Open
Abstract
Maintenance of genomic stability is a critical determinant of cell survival and relies on the coordinated action of the DNA damage response (DDR), which orchestrates a network of cellular processes, including DNA replication, DNA repair and cell-cycle progression. In cancer, the critical balance between the loss of genomic stability in malignant cells and the DDR provides exciting therapeutic opportunities. Drugs targeting DDR pathways taking advantage of clinical synthetic lethality have already shown therapeutic benefit - for example, the PARP inhibitor olaparib has shown benefit in BRCA-mutant ovarian and breast cancer. Olaparib has also shown benefit in metastatic prostate cancer in DDR-defective patients, expanding the potential biomarker of response beyond BRCA. Other agents and combinations aiming to block the DDR while pushing damaged DNA through the cell cycle, including PARP, ATR, ATM, CHK and DNA-PK inhibitors, are in development. Emerging work is also uncovering how the DDR interacts intimately with the host immune response, including by activating the innate immune response, further suggesting that clinical applications together with immunotherapy may be beneficial. Here, we review recent considerations related to the DDR from a clinical standpoint, providing a framework to address future directions and clinical opportunities.
Collapse
Affiliation(s)
- Anna Minchom
- Drug Development Unit at Royal Marsden Hospital/ Institute of Cancer Research, Sutton, UK
| | - Caterina Aversa
- Drug Development Unit at Royal Marsden Hospital/ Institute of Cancer Research, Sutton, UK
| | - Juanita Lopez
- Drug Development Unit at Royal Marsden Hospital/Institute of Cancer Research, Downs Rd, Sutton, SM2 5PT, UK
| |
Collapse
|
61
|
Ahn DH, Ramanathan RK, Bekaii-Saab T. Emerging Therapies and Future Directions in Targeting the Tumor Stroma and Immune System in the Treatment of Pancreatic Adenocarcinoma. Cancers (Basel) 2018; 10:E193. [PMID: 29891787 PMCID: PMC6025083 DOI: 10.3390/cancers10060193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinoma is typically refractory to conventional treatments and associated with poor prognosis. While therapeutic advances over the past several years have improved patient outcomes, the observed benefits have been modest at best, highlighting the need for continued development of alternate treatment strategies. The tumor microenvironment has been identified as being integral to oncogenesis through its direct effect on cellular pathway communication, immune inhibition, and promoting chemo-resistance. A more in depth understanding of the biology of the disease, in addition with our ability to develop more effective novel therapies have led to ongoing studies that are investigating several promising treatment options in this disease. Herein, we highlight and review the therapeutic landscape in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Daniel H Ahn
- Department of Hematology/Medical Oncology, Mayo Clinic Cancer Center, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA.
| | - Ramesh K Ramanathan
- Department of Hematology/Medical Oncology, Mayo Clinic Cancer Center, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA.
| | - Tanios Bekaii-Saab
- Department of Hematology/Medical Oncology, Mayo Clinic Cancer Center, 5777 E. Mayo Blvd, Phoenix, AZ 85054, USA.
| |
Collapse
|
62
|
Duma N, Gast KC, Choong GM, Leon-Ferre RA, O'Sullivan CC. Where Do We Stand on the Integration of PARP Inhibitors for the Treatment of Breast Cancer? Curr Oncol Rep 2018; 20:63. [PMID: 29884921 DOI: 10.1007/s11912-018-0709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of the clinical development of poly(ADP-ribose) polymerase inhibitors (PARPi) in breast cancer to date and to review existing challenges and future research directions. RECENT FINDINGS We summarize the clinical development of PARPi in breast cancer from bench to bedside, and discuss the results of recent phase 3 trials in patients with metastatic breast cancer (MBC) and germline mutations in BRCA1/2 (gBRCAm). We will also provide an update regarding mechanisms of action and resistance to PARPi, and review clinical trials of PARPi as monotherapy or in combination regimens. PARPi are a novel treatment approach in persons with gBRCA1/2m-associated MBC. Going forward, the clinical applicability of these compounds outside the gBRCAm setting will be studied in greater detail. The identification of accurate predictive biomarkers of response is a research priority.
Collapse
Affiliation(s)
- Narjust Duma
- Division of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kelly C Gast
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Grace M Choong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | |
Collapse
|
63
|
Wang X, Shi Y, Huang D, Guan X. Emerging therapeutic modalities of PARP inhibitors in breast cancer. Cancer Treat Rev 2018; 68:62-68. [PMID: 29870916 DOI: 10.1016/j.ctrv.2018.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Inhibition of Poly (ADP-ribose) polymerase (PARP) has shown marked benefit for breast cancer with homologous recombination deficiency, whether driven by defects in BRCA1, BRCA2, or other pathway components. Since the initial approval of olaparib, a mostly investigated PARP inhibitor (PARPi), the clinical development of PARPi in breast cancer treatment has been a major emphasis. Researches in investigating platinum-PARPi combination use compared with platinum monotherapy demonstrated promising benefit in metastatic BRCA mutated breast cancer or TNBC, while no such superiority was observed in the neoadjuvant setting of TNBC. Moreover, the utility of PARP inhibition in BRCA1/2 mutated breast cancer with different platinum-free interval was investigated. There was a clear association between clinical benefit with PARPi and platinum sensitivity, whereas partial efficacy of PARPi still occurs in platinum-resistant patients. In addition, proof-of-principle studies of immunotherapy combined with PARPi in breast cancer have obtained promising results, indicating the potential benefit of the combination therapy in patients with breast cancer. These efforts, contributing to maximize the utility of PARPi, may drive a new era of this agent after its first routine use. In this review, we summarized the utility of combining platinum-PARPi in BRCA mutated breast cancer or TNBC compared with platinum monotherapy and provided promising prospects of PARPi as maintenance therapy in breast cancer, as well as providing a strong rationale for testing immunotherapy combined with PARPi in breast cancer to expand the clinical utility of PARPi.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Doudou Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Medical Oncology, Jinling Clinical College, Nanjing Medical University, Nanjing 210002, China.
| |
Collapse
|
64
|
Su M, Wang H, Wang W, Wang Y, Ouyang L, Pan C, Xia L, Cao D, Liao Q. LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:433-439. [PMID: 29554194 DOI: 10.1093/abbs/gmy022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
In order to maintain integrity of the genome, eukaryotic cells develop a complex DNA damage/repair response network, which can induce cell cycle arrest, apoptosis, or DNA repair. Chemo- and radiation therapies, which act primarily through the induction of DNA damage, are the most commonly used therapies for cancer. Impairment in the DNA damage response and repair system that protect cells from persistent DNA damage can affect the therapeutic efficacy of cancer. To date, accumulating evidence has suggested that long non-coding RNAs (lncRNAs) are involved in the regulation of the DNA damage/repair network. LncRNAs have been demonstrated to be master regulators of the genome at the transcriptional and post-transcriptional levels and play a key role in many physiological and pathological processes of cells. In this review, we will discuss the function of lncRNAs in regulating the cellular response to DNA damage.
Collapse
Affiliation(s)
- Min Su
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Heran Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Wenxiang Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Ying Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Linda Ouyang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Chen Pan
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Longzheng Xia
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| | - Deliang Cao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
- Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913N. Rutledge Street, Springfield, IL 62794, USA
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha 410013, China
| |
Collapse
|
65
|
Beyond Brooding on Oncometabolic Havoc in IDH-Mutant Gliomas and AML: Current and Future Therapeutic Strategies. Cancers (Basel) 2018; 10:cancers10020049. [PMID: 29439493 PMCID: PMC5836081 DOI: 10.3390/cancers10020049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Isocitrate dehydrogenases 1 and 2 (IDH1,2), the key Krebs cycle enzymes that generate NADPH reducing equivalents, undergo heterozygous mutations in >70% of low- to mid-grade gliomas and ~20% of acute myeloid leukemias (AMLs) and gain an unusual new activity of reducing the α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2HG) in a NADPH-consuming reaction. The oncometabolite D-2HG, which accumulates >35 mM, is widely accepted to drive a progressive oncogenesis besides exacerbating the already increased oxidative stress in these cancers. More importantly, D-2HG competes with α-KG and inhibits a large number of α-KG-dependent dioxygenases such as TET (Ten-eleven translocation), JmjC domain-containing KDMs (histone lysine demethylases), and the ALKBH DNA repair proteins that ultimately lead to hypermethylation of the CpG islands in the genome. The resulting CpG Island Methylator Phenotype (CIMP) accounts for major gene expression changes including the silencing of the MGMT (O6-methylguanine DNA methyltransferase) repair protein in gliomas. Glioma patients with IDH1 mutations also show better therapeutic responses and longer survival, the reasons for which are yet unclear. There has been a great surge in drug discovery for curtailing the mutant IDH activities, and arresting tumor proliferation; however, given the unique and chronic metabolic effects of D-2HG, the promise of these compounds for glioma treatment is uncertain. This comprehensive review discusses the biology, current drug design and opportunities for improved therapies through exploitable synthetic lethality pathways, and an intriguing oncometabolite-inspired strategy for primary glioblastoma.
Collapse
|
66
|
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 2018; 81:17-38. [PMID: 29249039 PMCID: PMC5754410 DOI: 10.1007/s00280-017-3501-8] [Citation(s) in RCA: 398] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer is typically diagnosed at an advanced stage. Current state-of-the-art surgery and chemotherapy result in the high incidence of complete remissions; however, the recurrence rate is also high. For most patients, the disease eventually becomes a continuum of symptom-free periods and recurrence episodes. Different targeted treatment approaches and biological drugs, currently under development, bring the promise of turning ovarian cancer into a manageable chronic disease. In this review, we discuss the current standard in the therapy for ovarian cancer, major recent studies on the new variants of conventional therapies, and new therapeutic approaches, recently approved and/or in clinical trials. The latter include anti-angiogenic therapies, polyADP-ribose polymerase (PARP) inhibitors, inhibitors of growth factor signaling, or folate receptor inhibitors, as well as several immunotherapeutic approaches. We also discuss cost-effectiveness of some novel therapies and the issue of better selection of patients for personalized treatment.
Collapse
Affiliation(s)
- Alexander J Cortez
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Patrycja Tudrej
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Katarzyna A Kujawa
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Katarzyna M Lisowska
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland.
| |
Collapse
|
67
|
Li J, Yang Q, Zhang Y, Huang K, Sun R, Zhao Q. Compound F779-0434 causes synthetic lethality in BRCA2-deficient cancer cells by disrupting RAD52–ssDNA association. RSC Adv 2018; 8:18859-18869. [PMID: 35539677 PMCID: PMC9080615 DOI: 10.1039/c8ra01919c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
A novel compound named F779-0434 caused synthetic lethality in BRCA2-deficient cancer cells by disrupting RAD52–ssDNA associations.
Collapse
Affiliation(s)
- Jian Li
- School of Medicine
- Chengdu University
- Chengdu 610106
- China
- Sichuan Industrial Institute of Antibiotics
| | - Qianye Yang
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Yang Zhang
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Kejia Huang
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
| | - Rong Sun
- College of Life Sciences and Key Laboratory for Bio-Resources of Ministry of Education
- Sichuan University
- Chengdu 610064
- China
| | - Qi Zhao
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- China
- College of Pharmacy and Biological Engineering
| |
Collapse
|
68
|
Abstract
Maintaining the genetic integrity is a key process in cell viability and is enabled by a wide network of repair pathways. When this system is defective, it generates genomic instability and results in an accumulation of chromosomal aberrations and mutations that may be responsible for various clinical phenotypes, including susceptibility to develop cancer. Indeed, these defects can promote not only the initiation of cancer, but also allow the tumor cells to rapidly acquire mutations during their evolution. Several genes are involved in these damage repair systems and particular polymorphisms are predictive of the onset of cancer, the best described of them being BRCA. In addition to its impact on carcinogenesis, the DNA damage repair system is now considered as a therapeutic target of choice for cancer treatment, as monotherapy or in combination with other cytotoxic therapies, such as chemotherapies or radiotherapy. PARP inhibitors are nowadays the best known, but other agents are emerging in the field of clinical research. The enthusiasm in this area is coupled with promising results and a successful collaboration between clinicians and biologists would allow to optimize treatment plans in order to take full advantage of the DNA repair system modulation.
Collapse
|
69
|
Hengel SR, Spies MA, Spies M. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy. Cell Chem Biol 2017; 24:1101-1119. [PMID: 28938088 PMCID: PMC5679738 DOI: 10.1016/j.chembiol.2017.08.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/13/2023]
Abstract
To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase.
Collapse
Affiliation(s)
- Sarah R Hengel
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmaceutical Sciences and Experimental Therapeutics, Division of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
70
|
Senhaji Mouhri Z, Goodfellow E, Jean-Claude B. A type I combi-targeting approach for the design of molecules with enhanced potency against BRCA1/2 mutant- and O6-methylguanine-DNA methyltransferase (mgmt)- expressing tumour cells. BMC Cancer 2017; 17:540. [PMID: 28800752 PMCID: PMC5553999 DOI: 10.1186/s12885-017-3504-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/24/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mutations of the DNA repair proteins BRCA1/2 are synthetically lethal with the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), which when inhibited, leads to cell death due to the absence of compensatory DNA repair mechanism. The potency of PARP inhibitors has now been clinically proven. However, disappointingly, acquired resistance mediated by the reactivation of wild type BRCA1/2 has been reported. In order to improve their efficacy, trials are ongoing to explore their combinations with temozolomide (TMZ). Here, in order to enhance potency in BRCA1/2-mutant cells, we report on the design of single molecules termed "combi-molecules" capable of not only inhibiting PARP but also damaging DNA like TMZ, which is known to induce a large number of DNA adducts. The majority of these lesions are processed through PARP-dependent base-excision repair machinery. Paradoxically, the least abundant lesion, the O6-methylguanine adduct is the most cytotoxic. Its repair by the O6-methylguanine DNA methyl transferase (MGMT) confers robust resistance to TMZ. Thus, we surmise that a combi-molecule designed to generate the same DNA adducts as TMZ, with an additional ability to block PARP, could induce BRCA1/2 mutant selective potency and a growth inhibitory profile independent of MGMT status. METHODS The hydrolysis of EG22 and its stabilized form ZSM02 was analyzed by HPLC and fluorescence spectroscopy. Growth inhibitory potency was determined by SRB assay. PARP inhibition was determined by an enzyme assay and DNA damage by the comet assay. Subcellular distribution was visualized by confocal microscopy. RESULTS Studies on EG22 showed that: (a) it inflicted anomalously higher levels of DNA damage than TMZ (b) it induced PARP inhibitory potency in the same range as ANI, a known PARP inhibitor (IC50 = 0.10 μM) (c) it showed strong potency in both BRCA1/2 wild type and mutated cells with 6-fold selectivity for the mutants and it was 65-303-fold more potent than TMZ and 4-63-fold than ANI alone and 3-47-fold than their corresponding equimolar combinations and (d) its potency was independent of MGMT expression. CONCLUSION The results in toto suggest that a combi-molecular approach directed at blocking PARP and damaging DNA can lead to single molecules with selective and enhanced potency against BRCA1/2 mutant and with activity independent of MGMT, the major predictive biomarker for resistance to TMZ.
Collapse
Affiliation(s)
- Zhor Senhaji Mouhri
- Cancer Drug Research Laboratory, Department of Medicine, Division of Medical Oncology, McGill University Health Center/Royal Victoria Hospital, 1001 Decarie boul, Montreal, QC, H4A 3J1, Canada
| | - Elliot Goodfellow
- Cancer Drug Research Laboratory, Department of Medicine, Division of Medical Oncology, McGill University Health Center/Royal Victoria Hospital, 1001 Decarie boul, Montreal, QC, H4A 3J1, Canada
| | - Bertrand Jean-Claude
- Cancer Drug Research Laboratory, Department of Medicine, Division of Medical Oncology, McGill University Health Center/Royal Victoria Hospital, 1001 Decarie boul, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
71
|
FDA Approval of PARP Inhibitors and the Impact on Genetic Counseling and Genetic Testing Practices. J Genet Couns 2017; 27:131-139. [PMID: 28780754 DOI: 10.1007/s10897-017-0130-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
In December 2014, the FDA approved olaparib, a poly(ADP-ribose) polymerase inhibitor (PARPi) for ovarian cancer patients who have failed three or more lines of chemotherapy and have a germline BRCA1/2 mutation identified through a companion diagnostic test (BRACAnalysis CDx™ (CDx™)) offered exclusively by Myriad Genetic Laboratories. This study explored the impact of PARPi/CDx™ on genetic counselors' (GCs) counseling and testing practices. One hundred twenty three GCs responded to an online survey regarding pre- and post-FDA approval referral patterns, testing strategies/influences, and anecdotal experiences with insurance coverage of PARPi for BRCA1/2 positive patients through a non-CDx™ platform. Following PARPi approval, 40% of respondents reported an increase in overall referrals of ovarian cancer patients and 20% had an increase in post-test counseling only referrals. The majority (61.9%) of respondents reported no change in genetic testing strategy, and there was no change in factors influencing choice of testing laboratory. Nearly all (98.1%) respondents who had experience with insurance covering PARPi indicated approval with mutations identified via non-CDx™ testing. Respondents indicated an increase in referral volume following FDA approval of PARPi/CDx™, but did not report changes in testing practices. Respondents were not aware of PARPi insurance coverage denial in the absence of CDx™.
Collapse
|
72
|
|
73
|
Sundar R, Brown J, Ingles Russo A, Yap TA. Targeting ATR in cancer medicine. Curr Probl Cancer 2017; 41:302-315. [PMID: 28662958 DOI: 10.1016/j.currproblcancer.2017.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
DNA damage occurs continually through various intrinsic and extrinsic mechanisms such as ultraviolet radiation, smoking, reactive oxygen species, and errors during replication. The cellular DNA damage response (DDR) comprises signaling networks that regulate a spectrum of processes, including cell cycle progression, which enable DNA repair to occur. Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and rad3-related (ATR) kinase are 2 key regulators of the DDR cell cycle checkpoints. ATR plays an essential role in the repair of replication-associated DNA damage, while ATM is activated by DNA double-strand breaks. The investigation of cell cycle checkpoint signaling through ATR and ATM, as well as the relevant pathways involved in oncogenesis and cancer progression, has led to the discovery and development of potent and selective ATR inhibitors (ATRi). Preclinical data have demonstrated that ATR inhibition leads to tumor synthetic lethality in specific molecular contexts, and it exhibits synergy in combination with different antitumor therapies, including chemotherapy, radiotherapy, and poly(ADP-ribose) polymerase inhibitors. ATRi are now being assessed in early-phase clinical trials as single agents and in combinatorial regimens, including platinum and other chemotherapies, radiotherapy, poly(ADP-ribose) polymerase inhibitors, and immune checkpoint inhibitors. This article details the preclinical biology leading to the discovery and development of novel ATRi and discusses the rationale for monotherapy and combination antitumor strategies. We focus on the clinical development of ATRi and discuss the progress made in identifying putative predictive biomarkers of response for patient selection, such as p53, ATM, ARID1A, and other DDR aberrations.
Collapse
Affiliation(s)
- Raghav Sundar
- Drug Development Unit, Royal Marsden Hospital, London, UK; Department of Haematology-Oncology, National University Health System, Singapore
| | - Jessica Brown
- Drug Development Unit, Royal Marsden Hospital, London, UK
| | - Alvaro Ingles Russo
- Drug Development Unit, Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | - Timothy A Yap
- Drug Development Unit, Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK.
| |
Collapse
|
74
|
Oda K, Tanikawa M, Sone K, Mori-Uchino M, Osuga Y, Fujii T. Recent advances in targeting DNA repair pathways for the treatment of ovarian cancer and their clinical relevance. Int J Clin Oncol 2017; 22:611-618. [DOI: 10.1007/s10147-017-1137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 11/24/2022]
|
75
|
Incorvaia L, Passiglia F, Rizzo S, Galvano A, Listȶ A, Barraco N, Maragliano R, Calò V, Natoli C, Ciaccio M, Bazan V, Russo A. "Back to a false normality": new intriguing mechanisms of resistance to PARP inhibitors. Oncotarget 2017; 8:23891-23904. [PMID: 28055979 PMCID: PMC5410353 DOI: 10.18632/oncotarget.14409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 01/07/2023] Open
Abstract
Several evidences have shown that BRCA mutations increased tumor-cells sensitivity to PARP inhibitors by synthetic lethality leading to an accelerated development of several compounds targeting the PARP enzymes system as anticancer agents for clinical setting. Most of such compounds have been investigated in ovarian and breast cancer, showing promising efficacy in BRCA-mutated patients. Recently clinical studies of PARP-inhibitors have been extended across different tumor types harboring BRCA-mutations, including also "BRCA-like" sporadic tumors with homologous recombination deficiency (HRD). This review summarizes the biological background underlying PARP-inhibition, reporting the results of the most relevant clinical trials carried out in patients treated with PARP inhibitors alone or in combination with chemotherapy. Molecular mechanisms responsible for the occurrence of both primary and acquired resistance have been elucidated, in order to support the development of new treatment strategies.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesc Passiglia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Angela Listȶ
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Rossella Maragliano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences, Centre of Ageing Sciences and Translational Medicine - CESI-MeT University “G. D'Annunzio”, Chieti, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biopathology and Medical Biotechnology, University of Palermo - U.O.C. Laboratory Medicine - CoreLab, Policlinico University Hospital, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
76
|
Drané P, Brault ME, Cui G, Meghani K, Chaubey S, Detappe A, Parnandi N, He Y, Zheng XF, Botuyan MV, Kalousi A, Yewdell WT, Münch C, Harper JW, Chaudhuri J, Soutoglou E, Mer G, Chowdhury D. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature 2017; 543:211-216. [PMID: 28241136 PMCID: PMC5441565 DOI: 10.1038/nature21358] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023]
Abstract
P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.
Collapse
Affiliation(s)
- Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Marie-Eve Brault
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Khyati Meghani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Shweta Chaubey
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Alexandre Detappe
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Nishita Parnandi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Yizhou He
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Xiao-Feng Zheng
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | | | - Alkmini Kalousi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - William T Yewdell
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; and Immunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; and Immunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
77
|
Kim Y, Kim A, Sharip A, Sharip A, Jiang J, Yang Q, Xie Y. Reverse the Resistance to PARP Inhibitors. Int J Biol Sci 2017; 13:198-208. [PMID: 28255272 PMCID: PMC5332874 DOI: 10.7150/ijbs.17240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
One of the DNA repair machineries is activated by Poly (ADP-ribose) Polymerase (PARP) enzyme. Particularly, this enzyme is involved in repair of damages to single-strand DNA, thus decreasing the chances of generating double-strand breaks in the genome. Therefore, the concept to block PARP enzymes by PARP inhibitor (PARPi) was appreciated in cancer treatment. PARPi has been designed and tested for many years and became a potential supplement for the conventional chemotherapy. However, increasing evidence indicates the appearance of the resistance to this treatment. Specifically, cancer cells may acquire new mutations or events that overcome the positive effect of these drugs. This paper describes several molecular mechanisms of PARPi resistance which were reported most recently, and summarizes some strategies to reverse this type of drug resistance.
Collapse
Affiliation(s)
- Yevgeniy Kim
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Aleksei Kim
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Ainur Sharip
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Aigul Sharip
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Juhong Jiang
- Department of Pathology, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qing Yang
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Yingqiu Xie
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
78
|
Dulaney C, Marcrom S, Stanley J, Yang ES. Poly(ADP-ribose) polymerase activity and inhibition in cancer. Semin Cell Dev Biol 2017; 63:144-153. [PMID: 28087320 DOI: 10.1016/j.semcdb.2017.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Genomic instability resultant from defective DNA repair mechanisms is a fundamental hallmark of cancer. The poly(ADP-ribose) polymerase (PARP) proteins 1, 2 and 3 catalyze the polymerization of poly(ADP-ribose) and covalent attachment to proteins in a phylogenetically ancient form of protein modification. PARPs play a role in base excision repair, homologous recombination, and non-homologous end joining. The discovery that loss of PARP activity had cytotoxic effects in cells deficient in homologous recombination has sparked a decade of translational research efforts that culminated in the FDA approval of an oral PARP inhibitor for clinical use in patients with ovarian cancer and defective homologous recombination. Five PARP inhibitors are now in late-stage development in clinical trials that are seeking to expand the understanding of targeted therapies and DNA repair defects in human cancer. This review examines the cell biology of PARP, the discovery of synthetic lethality with HR deficiency, the clinical development of PARP inhibitors, and the role of PARP inhibitors in ongoing clinical trials and clinical practice.
Collapse
Affiliation(s)
- Caleb Dulaney
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Samuel Marcrom
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Jennifer Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, 176F Hazelrig-Salter Radiation Oncology Center, Room 2232-N, Birmingham, AL 35249-6832, United States.
| |
Collapse
|
79
|
Brown JS, O'Carrigan B, Jackson SP, Yap TA. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 2017; 7:20-37. [PMID: 28003236 PMCID: PMC5300099 DOI: 10.1158/2159-8290.cd-16-0860] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023]
Abstract
Germline aberrations in critical DNA-repair and DNA damage-response (DDR) genes cause cancer predisposition, whereas various tumors harbor somatic mutations causing defective DDR/DNA repair. The concept of synthetic lethality can be exploited in such malignancies, as exemplified by approval of poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2-mutated ovarian cancers. Herein, we detail how cellular DDR processes engage various proteins that sense DNA damage, initiate signaling pathways to promote cell-cycle checkpoint activation, trigger apoptosis, and coordinate DNA repair. We focus on novel therapeutic strategies targeting promising DDR targets and discuss challenges of patient selection and the development of rational drug combinations. SIGNIFICANCE Various inhibitors of DDR components are in preclinical and clinical development. A thorough understanding of DDR pathway complexities must now be combined with strategies and lessons learned from the successful registration of PARP inhibitors in order to fully exploit the potential of DDR inhibitors and to ensure their long-term clinical success. Cancer Discov; 7(1); 20-37. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Timothy A Yap
- Royal Marsden NHS Foundation Trust, London, United Kingdom.
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
80
|
Konecny GE, Kristeleit RS. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer 2016; 115:1157-1173. [PMID: 27736844 PMCID: PMC5104889 DOI: 10.1038/bjc.2016.311] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors cause targeted tumour cell death in homologous recombination (HR)-deficient cancers, including BRCA-mutated tumours, by exploiting synthetic lethality. PARP inhibitors are being evaluated in late-stage clinical trials of ovarian cancer (OC). Recently, olaparib was the first PARP inhibitor approved in the European Union and United States for the treatment of advanced BRCA-mutated OC. This paper reviews the role of BRCA mutations for tumorigenesis and PARP inhibitor sensitivity, and summarises the clinical development of PARP inhibitors for the treatment of patients diagnosed with OC. Among the five key PARP inhibitors currently in clinical development, olaparib has undergone the most extensive clinical investigation. PARP inhibitors have demonstrated durable antitumour activity in BRCA-mutated advanced OC as a single agent in the treatment and maintenance setting, particularly in platinum-sensitive disease. PARP inhibitors are well tolerated; however, further careful assessment of moderate and late-onset toxicity is mandatory in the maintenance and adjuvant setting, respectively. PARP inhibitors are also being evaluated in combination with chemotherapeutic and novel targeted agents to potentiate antitumour activities. Current research is extending the use of PARP inhibitors beyond BRCA mutations to other sensitising molecular defects that result in HR-deficient cancer, and is defining an HR-deficiency signature. Trials are underway to determine whether such a signature will predict sensitivity to PARP inhibitors in women with sporadic OC.
Collapse
Affiliation(s)
- G E Konecny
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 2825 Santa Monica Blvd., Suite 200, Santa Monica, CA 90404–2429, USA
| | - R S Kristeleit
- Department of Oncology, University College London Cancer Institute, University College London, Paul Gorman Building, Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
81
|
de Mestier L, Danset JB, Neuzillet C, Rebours V, Cros J, Soufir N, Hammel P. Pancreatic ductal adenocarcinoma in BRCA2 mutation carriers. Endocr Relat Cancer 2016; 23:T57-67. [PMID: 27511924 DOI: 10.1530/erc-16-0269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
Germline BRCA2 mutations are the first known cause of inherited (familial) pancreatic ductal adenocarcinoma (PDAC). This tumor is the third most frequent cancer in carriers of germline BRCA2 mutations, as it occurs in around 10% of BRCA2 families. PDAC is known as one of the most highly lethal cancers, mainly because of its chemoresistance and frequently late diagnosis. Based on recent developments in molecular biology, a subgroup of BRCA2-associated PDAC has been created, allowing screening, early surgical treatment and personalized systemic treatment. BRCA2 germline mutation carriers who have ≥1 first-degree relative, or ≥2 blood relatives with PDAC, should undergo screening and regular follow-up based on magnetic resonance imaging and endoscopic ultrasound. The goal of screening is to detect early invasive PDAC and advanced precancerous lesions suitable for a stepwise surgical complete (R0) resection. Increasing evidence on the molecular role of the BRCA2 protein in the homologous recombination of DNA damages suggest that BRCA2-related PDAC are sensitive to agents causing DNA cross-linking damage, such as platinum salts, and treatments targeting rescue DNA repair pathways, such as poly(ADP-ribose) polymerase inhibitors that are currently under investigation.
Collapse
Affiliation(s)
- Louis de Mestier
- Department of Gastroenterology and PancreatologyBeaujon Hospital, Paris 7 University, APHP, Clichy, France
| | - Jean-Baptiste Danset
- Department of Hepato-GastroenterologyEuropean Georges-Pompidou Hospital, APHP, Paris, France
| | - Cindy Neuzillet
- Department of Digestive OncologyBeaujon Hospital, Paris 7 University, APHP, Clichy, France
| | - Vinciane Rebours
- Department of Gastroenterology and PancreatologyBeaujon Hospital, Paris 7 University, APHP, Clichy, France
| | - Jérôme Cros
- Department of PathologyBeaujon Hospital, Paris 7 University, APHP, Clichy, France
| | - Nadem Soufir
- Department of GeneticsBichat Hospital, Paris 7 University, APHP, Clichy, France
| | - Pascal Hammel
- Department of Digestive OncologyBeaujon Hospital, Paris 7 University, APHP, Clichy, France
| |
Collapse
|
82
|
Kim EH, Jang H, Roh JL. A Novel Polyphenol Conjugate Sensitizes Cisplatin-Resistant Head and Neck Cancer Cells to Cisplatin via Nrf2 Inhibition. Mol Cancer Ther 2016; 15:2620-2629. [PMID: 27550943 DOI: 10.1158/1535-7163.mct-16-0332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 11/16/2022]
Abstract
Many cancer cells show acquired resistance to chemotherapeutic agents, such as cisplatin. This is a major cause of cancer treatment failure, and novel agents to overcome resistance are thus urgently required. A novel synthetic polyphenol conjugate, (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (DPP-23), selectively kills tumor cells via the reactive oxygen species (ROS)-mediated unfolded protein response. We investigated the ability of DPP-23 to overcome cisplatin resistance in head and neck cancer (HNC) cells and further clarified its molecular mechanisms of action. Cisplatin-resistant HNC cell lines and their parental and other HNC cell lines were used. The effects of cisplatin and DPP-23 were assessed alone and in combination in HNC and normal cells using cell viability, cell cycle, and cell death assays, by measuring glutathione (GSH), ROS, and protein levels, and via preclinical mouse studies. DPP-23 induced selective cell death in HNC cells, including cisplatin-resistant HNC cells, but spared normal cells, via cellular GSH depletion and ROS accumulation. The effect was blocked by the antioxidant N-acetyl-L-cysteine. DPP-23 activated p53 and its related cell death pathways via a robust accumulation of cellular ROS that involved inhibition of nuclear factor erythroid 2-related factor 2 antioxidant defense mechanisms. Thus, DPP-23 significantly overcame cisplatin resistance in HNC cells in vitro and in vivo As a promising anticancer strategy, ROS generation and subsequent selective cancer cell killing by DPP-23 might help to overcome cisplatin resistance in HNC. Mol Cancer Ther; 15(11); 2620-9. ©2016 AACR.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyejin Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
83
|
Anderson RC, Makvandi M, Xu K, Lieberman BP, Zeng C, Pryma DA, Mach RH. Iodinated benzimidazole PARP radiotracer for evaluating PARP1/2 expression in vitro and in vivo. Nucl Med Biol 2016; 43:752-758. [PMID: 27689533 DOI: 10.1016/j.nucmedbio.2016.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND PARP inhibitors (PARPi) have the potential to impact cancer therapy in a selective patient population; however, despite current patient selection methods clinical trials have shown mixed response rates. It is therefore clinically useful to determine which patients will respond prior to receiving PARPi therapy. One essential biomarker is to measure the level of PARP enzyme expression in tumors. Small molecule radiotracers have been developed to accurately quantify PARP-1 expression in vitro and in vivo. [125I]KX-02-019 is the first report of a radioiodinated analogue of the benzimidazole class of PARPi. Herein, we studied the pharmacological properties of [125I]KX-02-019 as well as the in vivo biodistribution. METHODS [125I]KX-02-019 was evaluated in both cancer and non-cancer cell lines. We evaluated the pharmacologic properties of [125I]KX-02-019 in live cells by measuring enzyme association and dissociation kinetics, saturation, and specificity. In addition, competitive inhibition experiments were carried out with commercially available PARPi. Protein expression was analyzed by Western blot to compare PARP-1 and PARP-2 expression across cell lines studied. The biodistribution was studied in a mouse EMT6 tumor model at time points of 0.5, 1, 2, 4 and 6h. RESULTS [125I]KX-02-019 showed subtle differences in pharmacological properties in the absence of PARP-2. In addition, [125I]KX-02-019 was competitively displaced by clinical PARPi. In vivo biodistribution studies showed an increasing tumor to muscle ratio over 6h as well as fast clearance from healthy tissues. CONCLUSION [125I]KX-02-019 has binding sites in both PARP1 KO cells as well as PARP2 KO cells showing higher affinity for PARP-2. This observation is supported by a decrease in binding affinity in PARP2 KO cells compared to PARP1 KO cells. The pharmacologic and biological properties of [125I]KX-02-019 studied in vitro and in vivo showed that this analogue may be useful in determining pharmacokinetic and pharmacodynamic properties of clinical PARPi.
Collapse
Affiliation(s)
- Redmond-Craig Anderson
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA
| | - Mehran Makvandi
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA
| | - Kuiying Xu
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA
| | - Brian P Lieberman
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA
| | - Chenbo Zeng
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA
| | - Daniel A Pryma
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA
| | - Robert H Mach
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology and Division of Nuclear Medicine and Clinical Molecular Imaging, Philadelphia, PA, 19104, USA.
| |
Collapse
|
84
|
Liu X, Jiang Y, Nowak B, Hargis S, Plunkett W. Mechanism-Based Drug Combinations with the DNA Strand-Breaking Nucleoside Analog CNDAC. Mol Cancer Ther 2016; 15:2302-2313. [PMID: 27474148 DOI: 10.1158/1535-7163.mct-15-0801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 07/08/2016] [Indexed: 11/16/2022]
Abstract
CNDAC (2'-C-cyano-2'-deoxy-1-β-d-arabino-pentofuranosyl-cytosine, DFP10917) and its orally bioavailable prodrug, sapacitabine, are undergoing clinical trials for hematologic malignancies and solid tumors. The unique action mechanism of inducing DNA strand breaks distinguishes CNDAC from other deoxycytidine analogs. To optimize the clinical potentials of CNDAC, we explored multiple strategies combining CNDAC with chemotherapeutic agents targeting distinct DNA damage repair pathways that are currently in clinical use. The ability of each agent to decrease proliferative potential, determined by clonogenic assays, was determined in paired cell lines proficient and deficient in certain DNA repair proteins. Subsequently, each agent was used in combination with CNDAC at fixed concentration ratios. The clonogenicity was quantitated by median effect analysis, and a combination index was calculated. The c-Abl kinase inhibitor imatinib had synergy with CNDAC in HCT116 cells, regardless of p53 status. Inhibitors of PARP1 that interfere with homologous recombination (HR) repair or base excision repair (BER) and agents such as temozolomide that cause DNA damage repaired by the BER pathway were also synergistic with CNDAC. The toxicity of the nitrogen mustards bendamustine and cytoxan, or of platinum compounds, which generate DNA adducts repaired by nucleotide excision repair and HR, was additive with CNDAC. An additive cell killing was also achieved by the combination of CNDAC with taxane mitotic inhibitors (paclitaxel and docetaxel). At concentrations that allow survival of the majority of wild-type cells, the synergistic or additive combination effects were selective in HR-deficient cells. This study provides mechanistic rationales for combining CNDAC with other active drugs. Mol Cancer Ther; 15(10); 2302-13. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaojun Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yingjun Jiang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billie Nowak
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Hargis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
85
|
Abstract
In spite of the development of new treatments for late stage prostate cancer, significant challenges persist to match individuals with effective targeted therapies. Genomic classification using high-throughput sequencing technologies has the potential to achieve this goal and make precision medicine a reality in the management of men with castrate-resistant prostate cancer. This chapter reviews some of the most recent studies that have resulted in significant progress in determining the landscape of somatic genomic alterations in this cohort and, more importantly, have provided clinically actionable information that could guide treatment decisions. This chapter reviews the current understanding of common alterations such as alterations of the androgen receptor and PTEN pathway, as well as ETS gene fusions and the growing importance of PARP inhibition. It also reviews recent studies that characterize the evolution to neuroendocrine tumors, which is becoming an increasingly important clinical problem. Finally, this chapter reviews recent innovative studies that characterize the compelling evolutionary history of lethal prostate cancer evidenced by polyclonal seeding and interclonal cooperation between metastasis and the importance of tumor clone dynamics measured serially in response to treatment. The genomic landscape of late stage prostate cancer is becoming better defined, and the prospect for assigning clinically actionable data to inform rationale treatment for individuals with this disease is becoming a reality.
Collapse
Affiliation(s)
- Daniel H Shevrin
- Department of Medicine, Division of Hematology/Oncology, NorthShore University HealthSystem, 2650 Ridge Avenue, Evanston, Illinois 60201, USA
| |
Collapse
|
86
|
Lim D, Ngeow J. Evaluation of the methods to identify patients who may benefit from PARP inhibitor use. Endocr Relat Cancer 2016; 23:R267-85. [PMID: 27226207 DOI: 10.1530/erc-16-0116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
The effectiveness of poly (ADP-ribose) polymerase inhibitors (PARPi) in treating cancers associated with BRCA1/2 mutations hinges upon the concept of synthetic lethality and exemplifies the principles of precision medicine. Currently, most clinical trials are recruiting patients based on pathological subtypes or have included BRCA mutation analysis (germ line and/or somatic) as part of the selection criteria. Mounting evidence, however, suggests that these drugs may also be efficacious in tumors with defects in other genes involved in the homologous recombination repair pathway. Advances in molecular profiling techniques together with increased research efforts have led to a better understanding of the molecular aberrations underlying this BRCA-like phenotype and helped broaden the concept of BRCAness. Hence, it is likely that the list of predictive biomarkers for PARPi therapy will increase in future. There is currently no gold standard method of testing for PARPi response and no universal guidelines are in place on how to incorporate biomarker testing into routine clinical diagnostics. In this review, we explore the concept of BRCAness and highlight the different methods that have been used to identify patients who may benefit from the use of these anticancer agents. The identification of predictive biomarkers is crucial in improving patient selection and expanding the clinical applications of PARPi therapy.
Collapse
Affiliation(s)
- Diana Lim
- Department of PathologyNational University Health System, Singapore, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of MedicineNanyang Technological University, Singapore, Singapore Cancer Genetics ServiceDivision of Medical Oncology, National Cancer Centre, Singapore, Singapore
| |
Collapse
|
87
|
Wolff NC, Pavía-Jiménez A, Tcheuyap VT, Alexander S, Vishwanath M, Christie A, Xie XJ, Williams NS, Kapur P, Posner B, McKay RM, Brugarolas J. High-throughput simultaneous screen and counterscreen identifies homoharringtonine as synthetic lethal with von Hippel-Lindau loss in renal cell carcinoma. Oncotarget 2016. [PMID: 26219258 PMCID: PMC4627284 DOI: 10.18632/oncotarget.4773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Renal cell carcinoma (RCC) accounts for 85% of primary renal neoplasms, and is rarely curable when metastatic. Approximately 70% of RCCs are clear-cell type (ccRCC), and in >80% the von Hippel-Lindau (VHL) gene is mutated or silenced. We developed a novel, high-content, screening strategy for the identification of small molecules that are synthetic lethal with genes mutated in cancer. In this strategy, the screen and counterscreen are conducted simultaneously by differentially labeling mutant and reconstituted isogenic tumor cell line pairs with different fluorochromes and using a highly sensitive high-throughput imaging-based platform. This approach minimizes confounding factors from sequential screening, and more accurately replicates the in vivo cancer setting where cancer cells are adjacent to normal cells. A screen of ~12,800 small molecules identified homoharringtonine (HHT), an FDA-approved drug for treating chronic myeloid leukemia, as a VHL-synthetic lethal agent in ccRCC. HHT induced apoptosis in VHL-mutant, but not VHL-reconstituted, ccRCC cells, and inhibited tumor growth in 30% of VHL-mutant patient-derived ccRCC tumorgraft lines tested. Building on a novel screening strategy and utilizing a validated RCC tumorgraft model recapitulating the genetics and drug responsiveness of human RCC, these studies identify HHT as a potential therapeutic agent for a subset of VHL-deficient ccRCCs.
Collapse
Affiliation(s)
- Nicholas C Wolff
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea Pavía-Jiménez
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shane Alexander
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mridula Vishwanath
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,BioTek Instruments, Winooski, VT, USA
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xian-Jin Xie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Noelle S Williams
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Renée M McKay
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine - Hematology-Oncology Division, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
88
|
PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget 2016; 6:15008-21. [PMID: 25938539 PMCID: PMC4558132 DOI: 10.18632/oncotarget.3634] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/23/2015] [Indexed: 12/16/2022] Open
Abstract
To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosis.
Collapse
|
89
|
Paluch-Shimon S, Pagani O, Partridge AH, Bar-Meir E, Fallowfield L, Fenlon D, Friedman E, Gelmon K, Gentilini O, Geraghty J, Harbeck N, Higgins S, Loibl S, Moser E, Peccatori F, Raanani H, Kaufman B, Cardoso F. Second international consensus guidelines for breast cancer in young women (BCY2). Breast 2016; 26:87-99. [DOI: 10.1016/j.breast.2015.12.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 11/12/2022] Open
|
90
|
Affiliation(s)
- Jessica S Brown
- Drug Development Unit, Royal Marsden Hospital, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Stan B Kaye
- Drug Development Unit, Royal Marsden Hospital, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Timothy A Yap
- Drug Development Unit, Royal Marsden Hospital, London, UK
- Division of Clinical Studies, The Institute of Cancer Research, London, UK
| |
Collapse
|
91
|
Pratz KW, Koh BD, Patel AG, Flatten KS, Poh W, Herman JG, Dilley R, Harrell MI, Smith BD, Karp JE, Swisher EM, McDevitt MA, Kaufmann SH. Poly (ADP-Ribose) Polymerase Inhibitor Hypersensitivity in Aggressive Myeloproliferative Neoplasms. Clin Cancer Res 2016; 22:3894-902. [PMID: 26979391 DOI: 10.1158/1078-0432.ccr-15-2351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 01/31/2023]
Abstract
PURPOSE DNA repair defects have been previously reported in myeloproliferative neoplasms (MPN). Inhibitors of PARP have shown activity in solid tumors with defects in homologous recombination (HR). This study was performed to assess MPN sensitivity to PARP inhibitors ex vivo EXPERIMENTAL DESIGN HR pathway integrity in circulating myeloid cells was evaluated by assessing the formation of RAD51 foci after treatment with ionizing radiation or PARP inhibitors. Sensitivity of MPN erythroid and myeloid progenitors to PARP inhibitors was evaluated using colony formation assays. RESULTS Six of 14 MPN primary samples had reduced formation of RAD51 foci after exposure to ionizing radiation, suggesting impaired HR. This phenotype was not associated with a specific MPN subtype, JAK2 mutation status, or karyotype. MPN samples showed increased sensitivity to the PARP inhibitors veliparib and olaparib compared with normal myeloid progenitors. This hypersensitivity, which was most pronounced in samples deficient in DNA damage-induced RAD51 foci, was observed predominantly in samples from patients with diagnoses of chronic myelogenous leukemia, chronic myelomonocytic leukemia, or unspecified myelodysplastic/MPN overlap syndromes. CONCLUSIONS Like other neoplasms with HR defects, MPNs exhibit PARP inhibitor hypersensitivity compared with normal marrow. These results suggest that further preclinical and possibly clinical study of PARP inhibitors in MPNs is warranted. Clin Cancer Res; 22(15); 3894-902. ©2016 AACR.
Collapse
Affiliation(s)
- Keith W Pratz
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland.
| | - Brian D Koh
- Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Anand G Patel
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | | | - Weijie Poh
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - James G Herman
- Division of Hematology/Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Robert Dilley
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Maria I Harrell
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, Washington
| | - B Douglas Smith
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Judith E Karp
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Swisher
- Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, Washington
| | - Michael A McDevitt
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Scott H Kaufmann
- Department of Oncology, Mayo Clinic, Rochester, Minnesota. Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
92
|
Karginova O, Siegel MB, Van Swearingen AED, Deal AM, Adamo B, Sambade MJ, Bazyar S, Nikolaishvili-Feinberg N, Bash R, O'Neal S, Sandison K, Parker JS, Santos C, Darr D, Zamboni W, Lee YZ, Miller CR, Anders CK. Efficacy of Carboplatin Alone and in Combination with ABT888 in Intracranial Murine Models of BRCA-Mutated and BRCA-Wild-Type Triple-Negative Breast Cancer. Mol Cancer Ther 2016; 14:920-30. [PMID: 25824335 DOI: 10.1158/1535-7163.mct-14-0474] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patients with breast cancer brain metastases have extremely limited survival and no approved systemic therapeutics. Triple-negative breast cancer (TNBC) commonly metastasizes to the brain and predicts poor prognosis. TNBC frequently harbors BRCA mutations translating to platinum sensitivity potentially augmented by additional suppression of DNA repair mechanisms through PARP inhibition. We evaluated brain penetrance and efficacy of carboplatin ± the PARP inhibitor ABT888, and investigated gene-expression changes in murine intracranial TNBC models stratified by BRCA and molecular subtype status. Athymic mice were inoculated intracerebrally with BRCA-mutant: SUM149 (basal), MDA-MB-436 (claudin-low); or BRCA-wild-type (wt): MDA-MB-468 (basal), MDA-MB-231BR (claudin-low). TNBC cells were treated with PBS control [intraperitoneal (IP), weekly], carboplatin (50 mg/kg/wk, IP), ABT888 (25 mg/kg/d, oral gavage), or their combination. DNA damage (γ-H2AX), apoptosis (cleaved caspase-3, cC3), and gene expression were measured in intracranial tumors. Carboplatin ± ABT888 significantly improved survival in BRCA-mutant intracranial models compared with control, but did not improve survival in BRCA-wt intracranial models. Carboplatin + ABT888 revealed a modest survival advantage versus carboplatin in BRCA-mutant models. ABT888 yielded a marginal survival benefit in the MDA-MB-436, but not in the SUM149 model. BRCA-mutant SUM149 expression of γ-H2AX and cC3 proteins was elevated in all treatment groups compared with control, whereas BRCA-wt MDA-MB-468 cC3 expression did not increase with treatment. Carboplatin treatment induced common gene-expression changes in BRCA-mutant models. Carboplatin ± ABT888 penetrates the brain and improves survival in BRCA-mutant intracranial TNBC models with corresponding DNA damage and gene-expression changes. Combination therapy represents a potential promising treatment strategy for patients with TNBC brain metastases warranting further clinical investigation.
Collapse
Affiliation(s)
- Olga Karginova
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Marni B Siegel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Amanda E D Van Swearingen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Biostatistics Core Facility, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - Barbara Adamo
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Maria J Sambade
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Soha Bazyar
- Department of Radiology, University of North Carolina, Chapel Hill, North Carolina. Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ryan Bash
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Sara O'Neal
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Katie Sandison
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Charlene Santos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David Darr
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William Zamboni
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina. Translational Oncology and Nanoparticle Drug Development Initiative (TOND2I) Laboratory, University of North Carolina, Chapel Hill, North Carolina. Carolina Center of Cancer Nanotechnology Excellence, Chapel Hill, North Carolina. UNC Institute of Pharmacogenomics and Individualized Therapy, Chapel Hill, North Carolina
| | - Yueh Z Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Radiology, University of North Carolina, Chapel Hill, North Carolina. Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| | - C Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina. Neurology and Neurosciences Center, University of North Carolina, Chapel Hill, North Carolina
| | - Carey K Anders
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
93
|
Sullivan K, Cramer-Morales K, McElroy DL, Ostrov DA, Haas K, Childers W, Hromas R, Skorski T. Identification of a Small Molecule Inhibitor of RAD52 by Structure-Based Selection. PLoS One 2016; 11:e0147230. [PMID: 26784987 PMCID: PMC4718542 DOI: 10.1371/journal.pone.0147230] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/30/2015] [Indexed: 11/18/2022] Open
Abstract
It has been reported that inhibition of RAD52 either by specific shRNA or a small peptide aptamer induced synthetic lethality in tumor cell lines carrying BRCA1 and BRCA2 inactivating mutations. Molecular docking was used to screen two chemical libraries: 1) 1,217 FDA approved drugs, and 2) 139,735 drug-like compounds to identify candidates for interacting with DNA binding domain of human RAD52. Thirty six lead candidate compounds were identified that were predicted to interfere with RAD52 –DNA binding. Further biological testing confirmed that 9 of 36 candidate compounds were able to inhibit the binding of RAD52 to single-stranded DNA in vitro. Based on molecular binding combined with functional assays, we propose a model in which the active compounds bind to a critical “hotspot” in RAD52 DNA binding domain 1. In addition, one of the 9 active compounds, adenosine 5’-monophosphate (A5MP), and also its mimic 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) 5’ phosphate (ZMP) inhibited RAD52 activity in vivo and exerted synthetic lethality against BRCA1 and BRCA2–mutated carcinomas. These data suggest that active, inhibitory RAD52 binding compounds could be further refined for efficacy and safety to develop drugs inducing synthetic lethality in tumors displaying deficiencies in BRCA1/2-mediated homologous recombination.
Collapse
Affiliation(s)
- Katherine Sullivan
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Kimberly Cramer-Morales
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
| | - Daniel L. McElroy
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida & Shands, Gainesville, Florida 32610, United States of America
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida & Shands, Gainesville, Florida 32610, United States of America
| | - Kimberly Haas
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States of America
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140, United States of America
| | - Robert Hromas
- Department of Medicine, College of Medicine, University of Florida & Shands, Gainesville, Florida 32610, United States of America
| | - Tomasz Skorski
- Department of Microbiology and Immunology and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, United States of America
- * E-mail:
| |
Collapse
|
94
|
NF-κB signaling mediates acquired resistance after PARP inhibition. Oncotarget 2016; 6:3825-39. [PMID: 25686825 PMCID: PMC4414156 DOI: 10.18632/oncotarget.2868] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/07/2014] [Indexed: 12/31/2022] Open
Abstract
PARP inhibitors are a class of promising anti-cancer drugs, with proven activity in BRCA mutant cancers. However, as with other targeted agents, treatment with PARP inhibitors generates acquired resistance within these tumors. The mechanism of this acquired resistance is poorly understood. We established cell lines that are resistant to PARP inhibitor by continuous treatment with the drug, and then used RNA sequencing to compare gene expression. Pathway analysis on the RNA sequencing data indicates that NF-κB signaling is preferentially up-regulated in PARP inhibitor-resistant cells, and that knockdown of core components in NF-κB signaling reverses the sensitivity to PARP inhibitor in resistant cells. Of therapeutic relevance, we show that PARP inhibitor-resistant cells are sensitive to an NF-κB inhibitor in comparison to their parental controls. Malignancies with up-regulation of NF-κB are sensitive to bortezomib, a proteasome inhibitor that is currently used in the clinic. We also show that treatment with bortezomib results in cell death in the PARP inhibitor-resistant cells, but not in parental cells. Therefore we propose that up-regulation of NF-κB signaling is a key mechanism underlying acquired resistance to PARP inhibition, and that NF-κB inhibition, or bortezomib are potentially effective anti-cancer agents after the acquisition of resistance to PARP inhibitors.
Collapse
|
95
|
DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer. Biomolecules 2015; 5:3204-59. [PMID: 26610585 PMCID: PMC4693276 DOI: 10.3390/biom5043204] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
For decades, radiotherapy and chemotherapy were the two only approaches exploiting DNA repair processes to fight against cancer. Nowadays, cancer therapeutics can be a major challenge when it comes to seeking personalized targeted medicine that is both effective and selective to the malignancy. Over the last decade, the discovery of new targeted therapies against DNA damage signalling and repair has offered the possibility of therapeutic improvements in oncology. In this review, we summarize the current knowledge of DNA damage signalling and repair inhibitors, their molecular and cellular effects, and future therapeutic use.
Collapse
|
96
|
Mo W, Liu Q, Lin CCJ, Dai H, Peng Y, Liang Y, Peng G, Meric-Bernstam F, Mills GB, Li K, Lin SY. mTOR Inhibitors Suppress Homologous Recombination Repair and Synergize with PARP Inhibitors via Regulating SUV39H1 in BRCA-Proficient Triple-Negative Breast Cancer. Clin Cancer Res 2015; 22:1699-712. [PMID: 26546619 DOI: 10.1158/1078-0432.ccr-15-1772] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/26/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a highly heterogeneous disease and has the worst outcome among all subtypes of breast cancers. Although PARP inhibitors represent a promising treatment in TNBC with BRCA1/BRCA2 mutations, there is great interest in identifying drug combinations that can extend the use of PARP inhibitors to a majority of TNBC patients with wild-type BRCA1/BRCA2 Here we explored whether mTOR inhibitors, through modulating homologous recombination (HR) repair, would provide therapeutic benefit in combination with PARP inhibitors in preclinical models of BRCA-proficient TNBC. EXPERIMENTAL DESIGN We have studied the effects of mTOR inhibitors on HR repair following DNA double-strand breaks (DSB). We further demonstrated the in vitro and in vivo activities of combined treatment of mTOR inhibitors with PARP inhibitors in BRCA-proficient TNBC. Moreover, microarray analysis and rescue experiments were used to investigate the molecular mechanisms of action. RESULTS We found that mTOR inhibitors significantly suppressed HR repair in two BRCA-proficient TNBC cell lines. mTOR inhibitors and PARP inhibitors in combination exhibited strong synergism against these TNBC cell lines. In TNBC xenografts, we observed enhanced efficacy of everolimus in combination with talazoparib (BMN673) compared with either drug alone. We further identified through microarray analysis and by rescue assays that mTOR inhibitors suppressed HR repair and synergized with PARP inhibitors through regulating the expression of SUV39H1 in BRCA-proficient TNBCs. CONCLUSIONS Collectively, these findings strongly suggest that combining mTOR inhibitors and PARP inhibitors would be an effective therapeutic approach to treat BRCA-proficient TNBC patients.
Collapse
Affiliation(s)
- Wei Mo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qingxin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis Chun-Jen Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yulong Liang
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kaiyi Li
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
97
|
Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov 2015. [PMID: 26463832 DOI: 10.1158/2159-8290.cd-15-0714] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Approximately 50% of epithelial ovarian cancers (EOC) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of PARP inhibitors, which exhibit synthetic lethality when applied to HR-deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR-deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches, focusing on development and overcoming resistance. SIGNIFICANCE Defective DNA repair via HR is a pivotal vulnerability of EOC, particularly of the high-grade serous histologic subtype. Targeting defective HR offers the unique opportunity of exploiting molecular differences between tumor and normal cells, thereby inducing cancer-specific synthetic lethality; the promise and challenges of these approaches in ovarian cancer are discussed in this review.
Collapse
Affiliation(s)
- Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Raphael Ceccaldi
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Early Drug Development Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
98
|
Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous Recombination Deficiency: Exploiting the Fundamental Vulnerability of Ovarian Cancer. Cancer Discov 2015; 5:1137-54. [PMID: 26463832 DOI: 10.1158/2159-8290.cd-15-0714] [Citation(s) in RCA: 662] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Approximately 50% of epithelial ovarian cancers (EOC) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of PARP inhibitors, which exhibit synthetic lethality when applied to HR-deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR-deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches, focusing on development and overcoming resistance. SIGNIFICANCE Defective DNA repair via HR is a pivotal vulnerability of EOC, particularly of the high-grade serous histologic subtype. Targeting defective HR offers the unique opportunity of exploiting molecular differences between tumor and normal cells, thereby inducing cancer-specific synthetic lethality; the promise and challenges of these approaches in ovarian cancer are discussed in this review.
Collapse
Affiliation(s)
- Panagiotis A Konstantinopoulos
- Department of Medical Oncology, Medical Gynecologic Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Raphael Ceccaldi
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Early Drug Development Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D D'Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
99
|
Abstract
Massively parallel DNA and RNA sequencing approaches have generated data on thousands of breast cancer genomes. In this review, we consider progress largely from the perspective of new concepts and hypotheses raised so far. These include challenges to the multistep model of breast carcinogenesis and the discovery of new defects in DNA repair through sequence analysis. Issues for functional genomics include the development of strategies to differentiate between mutations that are likely to drive carcinogenesis and bystander background mutations, as well as the importance of mechanistic studies that examine the role of mutations in genes with roles in splicing, histone methylation, and long non-coding RNA function. The application of genome-annotated patient-derived breast cancer xenografts as a potentially more reliable preclinical model is also discussed. Finally, we address the challenge of extracting medical value from genomic data. A weakness of many datasets is inadequate clinical annotation, which hampers the establishment of links between the mutation spectra and the efficacy of drugs or disease phenotypes. Tools such as dGene and the DGIdb are being developed to identify possible druggable mutations, but these programs are a work in progress since extensive molecular pharmacology is required to develop successful ‘genome-forward’ clinical trials. Examples are emerging, however, including targeting HER2 in HER2 mutant breast cancer and mutant ESR1 in ESR1 endocrine refractory luminal-type breast cancer. Finally, the integration of DNA- and RNA-based sequencing studies with mass spectrometry-based peptide sequencing and an unbiased determination of post-translational modifications promises a more complete view of the biochemistry of breast cancer cells and points toward a new discovery horizon in our understanding of the pathophysiology of this complex disease.
Collapse
Affiliation(s)
- Rodrigo Goncalves
- Breast Cancer Program, Department of Medical Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis 63110, MO, USA; Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave, St Louis 63110, MO, USA; Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, 320A Cullen MS600, Houston 77030, TX, USA
| | | | | | | |
Collapse
|
100
|
van der Noll R, Marchetti S, Steeghs N, Beijnen JH, Mergui-Roelvink MWJ, Harms E, Rehorst H, Sonke GS, Schellens JHM. Long-term safety and anti-tumour activity of olaparib monotherapy after combination with carboplatin and paclitaxel in patients with advanced breast, ovarian or fallopian tube cancer. Br J Cancer 2015; 113:396-402. [PMID: 26180927 PMCID: PMC4522644 DOI: 10.1038/bjc.2015.256] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/26/2015] [Accepted: 06/14/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Olaparib (AZD2281), a PARP-1/2 inhibitor, has been extensively investigated in clinical trials. However, limited clinical data are available about its long-term safety and anti-tumour activity. METHODS Patients had first participated in a phase I study of olaparib combined with carboplatin and/or paclitaxel. They continued with olaparib monotherapy in their best interest if they failed to tolerate the combination due to the treatment-related adverse events (TRAEs). Safety data were collected by physical examination and regular laboratory evaluations. Disease evaluations were performed by CT scan. RESULTS At data cutoff, 21 patients were included; 10 with breast, 9 with ovarian and 2 with fallopian tube cancer of whom 16 patients had a BRCA mutation (13 BRCA1; 3 BRCA2). TRAEs were mostly haematological and most prominent shortly after switching from combination to monotherapy, probably due to carry-over effects of chemotherapy. Over time, both severity and frequency of TRAEs decreased. Responses to olaparib were durable with a median treatment duration of 52 (range 7-183) weeks. In total, nine (43%) patients were still on study at data cutoff. CONCLUSION Continued long-term daily olaparib was found to be safe and tolerable. Encouragingly, patients who showed a favourable response on earlier combination therapy maintained this response on olaparib monotherapy.
Collapse
Affiliation(s)
- Ruud van der Noll
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Serena Marchetti
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jos H Beijnen
- 1] Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands [2] Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Marja W J Mergui-Roelvink
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Emmy Harms
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Harriet Rehorst
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Jan H M Schellens
- 1] Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands [2] Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| |
Collapse
|