51
|
Lau RL, Perruccio AV, Evans HMK, Mahomed SR, Mahomed NN, Gandhi R. Stem cell therapy for the treatment of early stage avascular necrosis of the femoral head: a systematic review. BMC Musculoskelet Disord 2014; 15:156. [PMID: 24886648 PMCID: PMC4038713 DOI: 10.1186/1471-2474-15-156] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/07/2014] [Indexed: 12/11/2022] Open
Abstract
Background Avascular necrosis (AVN) of the femoral head (FH) is believed to be caused by a multitude of etiologic factors and is associated with significant morbidity in younger populations. Eventually, the disease progresses and results in FH collapse. Thus, a focus on early disease management aimed at joint preservation by preventing or delaying progression is key. The use of stem cells (SC) for the treatment of AVN of the FH has been proposed. We undertook a systematic review of the medical literature examining the use of SC for the treatment of early stage (precollapse) AVN of the FH, in both pre-clinical and clinical studies. Methods Data collected included: Pre-clinical studies – model of AVN, variety and dosage of SC, histologic and imaging analyses. Clinical studies – study design, classification and etiology of AVN, SC dosage and treatment protocol, incidence of disease progression, patient reported outcomes, volume of necrotic lesion and hip survivorship. Results In pre-clinical studies, the use of SC uniformly demonstrated improvements in osteogenesis and angiogenesis, yet source of implanted SC was variable. In clinical studies, groups treated with SC showed significant improvements in patient reported outcomes; however hip survivorship was not affected. Discrepancies regarding dose of SC, AVN etiology and disease severity were present. Conclusions Routine use of this treatment method will first require further research into dose and quality optimization as well as confirmed improvements in hip survivorship.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajiv Gandhi
- Division of Orthopaedic Surgery, Toronto Western Hospital, 399 Bathurst Street EW 1-427, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
52
|
Schellenberg A, Mauen S, Koch CM, Jans R, de Waele P, Wagner W. Proof of principle: quality control of therapeutic cell preparations using senescence-associated DNA-methylation changes. BMC Res Notes 2014; 7:254. [PMID: 24755407 PMCID: PMC4005405 DOI: 10.1186/1756-0500-7-254] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background Tracking of replicative senescence is of fundamental relevance in cellular therapy. Cell preparations – such as mesenchymal stromal cells (MSCs) - undergo continuous changes during culture expansion, which is reflected by impaired proliferation and loss of differentiation potential. This process is associated with epigenetic modifications: during in vitro culture, cells acquire senescence-associated DNA methylation (SA-DNAm) changes at specific sites in the genome. We have recently described an Epigenetic-Senescence-Signature that facilitates prediction of the state of cellular aging by analysis of DNAm at six CpG sites (associated with the genes GRM7, CASR, PRAMEF2, SELP, CASP14 and KRTAP13-3), but this has not yet been proven over subsequent passages and with MSCs isolated under good manufacturing practice (GMP) conditions. Findings MSCs were isolated from human bone marrow and GMP-conform expanded for up to 11 passages. Cumulative population doublings (cPDs) and long-term growth curves were calculated based on cell numbers at each passage. Furthermore, 32 cryopreserved aliquots of these cell preparations were retrospectively analyzed using our Epigenetic-Senescence-Signature: DNAm-level was analyzed at six specific CpGs, and the results were used to estimate cPDs, time of culture expansion, and passage numbers. Overall, predicted and real parameters revealed a good correlation, particularly in cPDs. Based on predicted cPDs we could reconstruct long-term growth curves and demonstrated the continuous increase in replicative senescence on molecular level. Conclusion Epigenetic analysis of specific CpG sites in the genome can be used to estimate the state of cellular aging for quality control of therapeutic cell products.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Technology, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstrasse 20, 52074 Aachen, Germany.
| |
Collapse
|
53
|
Pavlaki K, Pontikoglou CG, Demetriadou A, Batsali AK, Damianaki A, Simantirakis E, Kontakis M, Galanopoulos A, Kotsianidis I, Kastrinaki MC, Papadaki HA. Impaired proliferative potential of bone marrow mesenchymal stromal cells in patients with myelodysplastic syndromes is associated with abnormal WNT signaling pathway. Stem Cells Dev 2014; 23:1568-81. [PMID: 24617415 DOI: 10.1089/scd.2013.0283] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It has been shown that bone marrow mesenchymal stromal cells (MSCs) from patients with myelodysplastic syndromes (MDSs) display defective proliferative potential. We have probed the impaired replicative capacity of culture-expanded MSCs in MDS patients (n=30) compared with healthy subjects (n=32) by studying senescence characteristics and gene expression associated with WNT/transforming growth factor-β1 (TGFB1) signaling pathways. We have also explored the consequences of the impaired patient MSC proliferative potential by investigating their differentiation potential and the capacity to support normal CD34(+) cell growth under coculture conditions. Patient MSCs displayed decreased gene expression of the senescence-associated cyclin-dependent kinase inhibitors CDKN1A, CDKN2A, and CDKN2B, along with PARG1, whereas the mean telomere length was upregulated in patient MSCs. MDS-derived MSCs exhibited impaired capacity to support normal CD34(+) myeloid and erythroid colony formation. No significant changes were observed between patients and controls in gene expression related to TGFB1 pathway. Patient MSCs displayed upregulated non-canonical WNT expression, combined with downregulated canonical WNT expression and upregulated canonical WNT inhibitors. MDS-derived MSCs displayed defective osteogenic and adipogenic lineage priming under non-differentiating culture conditions. Pharmacological activation of canonical WNT signaling in patient MDSs led to an increase in cell proliferation and upregulation in the expression of early osteogenesis-related genes. This study indicates abnormal WNT signaling in MSCs of MDS patients and supports the concept of a primary MSC defect that might have a contributory effect in MDS natural history.
Collapse
Affiliation(s)
- Konstantia Pavlaki
- 1 Department of Haematology, University of Crete School of Medicine , Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Ngo MA, Müller A, Li Y, Neumann S, Tian G, Dixon IMC, Arora RC, Freed DH. Human mesenchymal stem cells express a myofibroblastic phenotype in vitro: comparison to human cardiac myofibroblasts. Mol Cell Biochem 2014; 392:187-204. [PMID: 24691634 DOI: 10.1007/s11010-014-2030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/14/2014] [Indexed: 01/12/2023]
Abstract
Cardiac fibrosis accompanies a variety of myocardial disorders, and is induced by myofibroblasts. These cells may be composed of a heterogeneous population of parent cells, including interstitial fibroblasts and circulating progenitor cells. Direct comparison of human bone marrow-derived mesenchymal stem cells (BM-MSCs) and cardiac myofibroblasts (CMyfbs) has not been previously reported. We hypothesized that BM-MSCs readily adopt a myofibroblastic phenotype in culture. Human primary BM-MSCs and human CMyfbs were isolated from patients undergoing open heart surgery and expanded under standard culture conditions. We assessed and compared their phenotypic and functional characteristics by examining their gene expression profile, their ability to contract collagen gels and synthesize collagen type I. In addition, we examined the role of non-muscle myosin II (NMMII) in modulating MSC myogenic function using NMMII siRNA knockdown and blebbistatin, a specific small molecule inhibitor of NMMII. We report that, while human BM-MSCs retain pluripotency, they adopt a myofibroblastic phenotype in culture and stain positive for the myofibroblast markers α-SMA, vimentin, NMMIIB, ED-A fibronectin, and collagen type 1 at each passage. In addition, they contract collagen gels in response to TGF-β1 and synthesize collagen similar to human CMyfbs. Moreover, inhibition of NMMII activity with blebbistatin completely attenuates gel contractility without affecting cell viability. Thus, human BM-MSCs share and exhibit similar physiological and functional characteristics as human CMyfbs in vitro, and their propensity to adopt a myofibroblast phenotype in culture may contribute to cardiac fibrosis.
Collapse
Affiliation(s)
- Melanie A Ngo
- Department of Physiology, Faculty of Medicine, Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Rubio-Azpeitia E, Andia I. Partnership between platelet-rich plasma and mesenchymal stem cells: in vitro experience. Muscles Ligaments Tendons J 2014; 4:52-62. [PMID: 24932448 PMCID: PMC4049651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We aim to identify current in vitro research exploring platelet-rich plasma (PRP) effects in human Mesenchymal Stem Cells (MSCs) that may encourage or limit the clinical application of MSCs along with PRP. After a systematic search, we identified 57 in vitro studies, focused on optimization of MSC manufacturing, and expanding knowledge about how PRP modifies MSCs behavior for translational purposes. Influences of PRP on proliferation, migration, stemness, preservation of MSC immune-modulatory properties and appearance of senescence phenotype have been explored. Overall PRP stimulates MSC proliferation, preserves MSCs multipotency and does not interfere with any lineage differentiation. PRP (as platelet lysate or releasate) preserves the immune-privileged potential of MSCs and may delay the appearance of the senescent phenotype. Currently there are few data linking precise molecules and biological mechanisms. Various gaps of knowledge need to be addressed in order to obtain enough useful information for translational purposes.
Collapse
Affiliation(s)
| | - Isabel Andia
- Corresponding author: Isabel Andia, Regenerative Medicine Laboratory, BioCruces Health Research Institute/Cruces University Hospital, Pza Cruces s/n, 48903 Barakaldo, Spain, E-mail:
| |
Collapse
|
56
|
Ren J, Stroncek DF, Zhao Y, Jin P, Castiello L, Civini S, Wang H, Feng J, Tran K, Kuznetsov SA, Robey PG, Sabatino M. Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: molecular changes associated with BMSC senescence. Stem Cell Res 2013; 11:1060-73. [PMID: 23959330 PMCID: PMC3818332 DOI: 10.1016/j.scr.2013.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/11/2013] [Accepted: 07/21/2013] [Indexed: 12/13/2022] Open
Abstract
The outcomes of clinical trials using bone marrow stromal cell (BMSC) are variable; the degree of the expansion of BMSCs during clinical manufacturing may contribute to this variability since cell expansion is limited by senescence. Human BMSCs from aspirates of healthy subjects were subcultured serially until cell growth stopped. Phenotype and functional measurements of BMSCs from two subjects including senescence-associated beta-galactosidase staining and colony formation efficiency changed from an early to a senescence pattern at passage 6 or 7. Transcriptome analysis of 10 early and 15 late passage BMSC samples from 5 subjects revealed 2122 differentially expressed genes, which were associated with immune response, development, and cell proliferation pathways. Analysis of 57 serial BMSC samples from 7 donors revealed that the change from an early to senescent profile was variable among subjects and occurred prior to changes in phenotypes. BMSC age expressed as a percentage of maximum population doublings (PDs) was a good indicator for an early or senescence transcription signature but this measure of BMSC life span can only be calculated after expanding BMSCs to senescence. In order to find a more useful surrogate measure of BMSC age, we used a computational biology approach to identify a set of genes whose expression at each passage would predict elapsed age of BMSCs. A total of 155 genes were highly correlated with BMSC age. A least angle regression algorithm identified a set of 24 BMSC age-predictive genes. In conclusion, the onset of senescence-associated molecular changes was variable and preceded changes in other indicators of BMSC quality and senescence. The 24 BMSC age predictive genes will be useful in assessing the quality of clinical BMSC products.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - David F. Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Yingdong Zhao
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 6130 Executive Blvd, Rockville, MD 20852, USA
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Luciano Castiello
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Sara Civini
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Huan Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Ji Feng
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Katherine Tran
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| | - Sergei A. Kuznetsov
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Pamela G. Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Marianna Sabatino
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, 10 Center, Dr, Bethesda, MD 20892, USA
| |
Collapse
|
57
|
Walenda G, Abnaof K, Joussen S, Meurer S, Smeets H, Rath B, Hoffmann K, Fröhlich H, Zenke M, Weiskirchen R, Wagner W. TGF-beta1 does not induce senescence of multipotent mesenchymal stromal cells and has similar effects in early and late passages. PLoS One 2013; 8:e77656. [PMID: 24147049 PMCID: PMC3798389 DOI: 10.1371/journal.pone.0077656] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023] Open
Abstract
Transforming growth factor-beta 1 (TGF-β1) stimulates a broad range of effects which are cell type dependent, and it has been suggested to induce cellular senescence. On the other hand, long-term culture of multipotent mesenchymal stromal cells (MSCs) has a major impact on their cellular physiology and therefore it is well conceivable that the molecular events triggered by TGF-β1 differ considerably in cells of early and late passages. In this study, we analyzed the effect of TGF-β1 on and during replicative senescence of MSCs. Stimulation with TGF-β1 enhanced proliferation, induced a network like growth pattern and impaired adipogenic and osteogenic differentiation. TGF-β1 did not induce premature senescence. However, due to increased proliferation rates the cells reached replicative senescence earlier than untreated controls. This was also evident, when we analyzed senescence-associated DNA-methylation changes. Gene expression profiles of MSCs differed considerably at relatively early (P 3-5) and later passages (P 10). Nonetheless, relative gene expression differences provoked by TGF-β1 at individual time points or in a time course dependent manner (stimulation for 0, 1, 4 and 12 h) were very similar in MSCs of early and late passage. These results support the notion that TGF-β1 has major impact on MSC function, but it does not induce senescence and has similar molecular effects during culture expansion.
Collapse
Affiliation(s)
- Gudrun Walenda
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Khalid Abnaof
- Algorithmic Bioinformatics, Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
- Bioanalytical Resource Centre Aachen, Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Steffen Meurer
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Medical School, Aachen, Germany
| | - Hubert Smeets
- Genetics and Molecular Cell Biology, CARIM School for Cardiovascular Diseases, University of Maastricht, Maastricht, Netherlands
| | - Björn Rath
- Department for Orthopedics, RWTH Aachen University Medical School, Aachen, Germany
| | - Kurt Hoffmann
- Bioanalytical Resource Centre Aachen, Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Holger Fröhlich
- Algorithmic Bioinformatics, Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
| | - Martin Zenke
- Institute for Biomedical Technology, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- * E-mail:
| |
Collapse
|
58
|
Opiela J, Samiec M, Bochenek M, Lipiński D, Romanek J, Wilczek P. DNA Aneuploidy in Porcine Bone Marrow–Derived Mesenchymal Stem Cells Undergoing Osteogenic and AdipogenicIn VitroDifferentiation. Cell Reprogram 2013; 15:425-34. [DOI: 10.1089/cell.2012.0099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Jolanta Opiela
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Michał Bochenek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Daniel Lipiński
- Poznań University of Life Sciences, Department of Biochemistry and Biotechnology, 60-632 Poznan, Poland
| | - Joanna Romanek
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland
| | - Piotr Wilczek
- Foundation of Cardiac Surgery Development, 41-800 Zabrze, Poland
| |
Collapse
|
59
|
de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D'Amico G, Fagioli F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 2013; 19:2459-73. [PMID: 23278600 PMCID: PMC3788322 DOI: 10.2174/1381612811319130015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) were first isolated more than 50 years ago from the bone marrow. Currently MSCs may also be isolated from several alternative sources and they have been used in more than a hundred clinical trials worldwide to treat a wide variety of diseases. The MSCs mechanism of action is undefined and currently under investigation. For in vivo purposes MSCs must be produced in compliance with good manufacturing practices and this has stimulated research on MSCs characterization and safety. The objective of this review is to describe recent developments regarding MSCs properties, physiological effects, delivery, clinical applications and possible side effects.
Collapse
Affiliation(s)
- Laura de Girolamo
- Laboratorio di Biotecnologie applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Han J, Mistriotis P, Lei P, Wang D, Liu S, Andreadis ST. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential. Stem Cells 2013; 30:2746-59. [PMID: 22949105 DOI: 10.1002/stem.1223] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/05/2012] [Indexed: 12/15/2022]
Abstract
Although the therapeutic potential of mesenchymal stem cells (MSCs) is widely accepted, loss of cell function due to donor aging or culture senescence are major limiting factors hampering their clinical application. Our laboratory recently showed that MSCs originating from older donors suffer from limited proliferative capacity and significantly reduced myogenic differentiation potential. This is a major concern, as the patients most likely to suffer from cardiovascular disease are elderly. Here we tested the hypothesis that a single pluripotency-associated transcription factor, namely Nanog, may reverse the proliferation and differentiation potential of bone marrow-derived MSC (BM-MSC) from adult donors. Microarray analysis showed that adult (a)BM-MSC expressing Nanog clustered close to Nanog-expressing neonatal cells. Nanog markedly upregulated genes involved in cell cycle, DNA replication, and DNA damage repair and enhanced the proliferation rate and clonogenic capacity of aBM-MSC. Notably, Nanog reversed the myogenic differentiation potential and restored the contractile function of aBM-MSC to a similar level as that of neonatal (n)BM-MSC. The effect of Nanog on contractility was mediated--at least in part--through activation of the TGF-β pathway by diffusible factors secreted in the conditioned medium of Nanog-expressing BM-MSC. Overall, our results suggest that Nanog may be used to overcome the effects of organismal aging on aBM-MSC, thereby increasing the potential of MSC from aged donors for cellular therapy and tissue regeneration.
Collapse
Affiliation(s)
- Juhee Han
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York 14260-4200, USA
| | | | | | | | | | | |
Collapse
|
61
|
Mindaye ST, Ra M, Lo Surdo JL, Bauer SR, Alterman MA. Global proteomic signature of undifferentiated human bone marrow stromal cells: evidence for donor-to-donor proteome heterogeneity. Stem Cell Res 2013; 11:793-805. [PMID: 23792435 DOI: 10.1016/j.scr.2013.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/23/2013] [Accepted: 05/15/2013] [Indexed: 12/12/2022] Open
Abstract
The clinical application of human bone marrow stromal cells (hBMSCs) largely depends on their capacity to expand in vitro. We have conducted a comprehensive comparative proteomic analysis of culture-expanded hBMSCs obtained from different human donors. The data reveal extensive donor-to-donor proteomic heterogeneity. Processing and database-searching of the tandem MS data resulted in a most comprehensive to date proteomic dataset for hBMSC. A total of 7753 proteins including 712 transcription and translation regulators, 384 kinases, 248 receptor proteins, and 29 cytokines were confidently identified. The proteins identified are mainly nuclear (43.2%) and the share of proteins assigned to more than one subcellular location constitutes 10% of the identified proteome. Bioinformatics tools (IPA, DAVID, and PANTHER) were used to annotate proteins with respect to cellular locations, functions, and other physicochemical characteristics. We also compared the proteomic profile of hBMSCs to recently compiled datasets for human and mouse pluripotent stem cells. The result shows the extent of similarity between the three cell populations and also identified 253 proteins expressed uniformly by all lines of hBMSCs but not reported in the proteomic datasets of the two pluripotent stem cells. Overall, the proteomic database reported in this paper can serve as a reference map for extensive evaluation of hBMSC to explain their biology as well as identify possible marker candidates for further evaluation.
Collapse
Affiliation(s)
- Samuel T Mindaye
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
62
|
Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol 2013; 31:364-74. [DOI: 10.1016/j.tibtech.2013.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/20/2022]
|
63
|
Schellenberg A, Hemeda H, Wagner W. Tracking of replicative senescence in mesenchymal stem cells by colony-forming unit frequency. Methods Mol Biol 2013; 976:143-154. [PMID: 23400440 DOI: 10.1007/978-1-62703-317-6_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Long-term culture of mesenchymal stem cells (MSC) has major impact on cellular characteristics and differentiation potential. Numerous clinical trials raise high hopes in regenerative medicine and this necessitates reliable quality control of the cellular products-also with regard to replicative senescence. The maximum number of population doublings before entering the senescent state depends on the cell type, tissue of origin, culture medium as well as cell culture methods. Therefore, it would be valuable to predict the remaining proliferative potential in the course of culture expansion. Here, we describe a refined fibroblastic colony forming unit (CFU-f) assay which can be performed at any passage during culture expansion with simple cell culture techniques. This method is based on limiting dilutions in the 96-well format to determine the proportion of highly proliferative and clonogenic cells. The number of CFU-f declines rapidly during culture expansion. Especially at higher passages the CFU-f frequency correlates very well with the remaining cumulative population doublings. This approach can be used as quality measure to estimate the remaining proliferative potential of MSC in culture.
Collapse
Affiliation(s)
- Anne Schellenberg
- Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | | |
Collapse
|
64
|
Koch CM, Wagner W. Epigenetic biomarker to determine replicative senescence of cultured cells. Methods Mol Biol 2013; 1048:309-21. [PMID: 23929112 DOI: 10.1007/978-1-62703-556-9_20] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Somatic cells change continuously during culture expansion-long-term culture evokes increasing cell size, declining differentiation potential, and ultimate cell cycle arrest upon senescence. These changes are of particular relevance for cellular therapy which necessitates standardized products and reliable quality control. Recently, replicative senescence has been shown to be associated with highly reproducible epigenetic modifications. Here, we describe a simple method to track the state of senescence in mesenchymal stromal cells (MSCs) or fibroblasts by monitoring continuous DNA methylation (DNAm) changes at specific sites in the genome. Six CpG sites have been identified which reveal either linear hypermethylation or hypomethylation with respect to the number of cumulative population doublings (cPDs). Conversely, the DNAm level at these CpG sites can be analyzed-for example, by pyrosequencing of bisulfite-converted DNA-and then used for linear regression models to predict cPDs. Our method provides an epigenetic biomarker to determine the state of senescence in cell preparations.
Collapse
Affiliation(s)
- Carmen M Koch
- Stem Cell Biology and Cellular Engineering, Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University Medical School, Aachen, Germany
| | | |
Collapse
|
65
|
Wuchter P, Wagner W, Ho AD. Mesenchymal Stem Cells – An Oversimplified Nomenclature for Extremely Heterogeneous Progenitors. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
66
|
Zheng Y, He L, Wan Y, Song J. H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: an epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev 2012; 22:256-67. [PMID: 22873822 DOI: 10.1089/scd.2012.0172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To explore the mechanisms underlying spontaneous transformation of mesenchymal stem cells (MSCs), changes in senescence-associated molecules, particularly the epigenetic modification of the p16(INK4a) gene, including histone H3 lysine 27/9 methylation (H3K27/9me) and DNA methylation, were investigated in cultured adult rat bone marrow MSCs at different stages during the transformation process. It was shown that the MSCs underwent replicative senescence after 24 to 25 population doublings, characterized by positive staining for senescence-associated β-galactosidase, increased expression of p16(INK4a) and p21, and downregulated phosphorylation of Rb. The upregulation of p16(INK4a) was associated with decreased expression of enhancer of the zeste homolog 2 (Ezh2), and reduced levels of H3K27me and DNA methylation in the p16(INK4a) gene. At week 4 of senescence, reproliferating cells emerged among the senescent MSCs. These senescence-escaped MSCs lost their senescence-related markers (including p16(INK4a)) and became highly proliferative. In addition to H3K27me, another H3 modification pattern, H3K9me, appeared in the p16(INK4a) gene, accompanied by an enhanced DNA methylation. With continued culture, the senescence-escaped MSCs did not show any sign of growth arrest and gained the capacity for anchorage-independent growth. These immortalized (transformed) MSCs showed further enhanced DNA methylation of the p16(INK4a) gene by increased H3K9me. Ezh2 knockdown with shRNA eliminated H3K27me-mediated DNA methylation of the p16(INK4a) gene in presenescent MSCs, but had no effect on H3K9me-enhanced DNA hypermethylation in the cells after senescence escape. These findings identify an Ezh2- and H3K27me-independent, but H3K9me-enhanced, DNA hypermethylation of the p16(INK4a) gene, which might be an epigenetic signature for MSC spontaneous transformation.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Anatomy and Embryology, Center for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China
| | | | | | | |
Collapse
|
67
|
Oxygen sensing mesenchymal progenitors promote neo-vasculogenesis in a humanized mouse model in vivo. PLoS One 2012; 7:e44468. [PMID: 22970226 PMCID: PMC3436890 DOI: 10.1371/journal.pone.0044468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/03/2012] [Indexed: 12/30/2022] Open
Abstract
Despite insights into the molecular pathways regulating hypoxia-induced gene expression, it is not known which cell types accomplish oxygen sensing during neo-vasculogenesis. We have developed a humanized mouse model of endothelial and mesenchymal progenitor co-transplantation to delineate the cellular compartments responsible for hypoxia response during vasculogenesis. Mesenchymal stem/progenitor cells (MSPCs) accumulated nuclear hypoxia-inducible transcription factor (HIF)-1α earlier and more sensitively than endothelial colony forming progenitor cells (ECFCs) in vitro and in vivo. Hypoxic ECFCs showed reduced function in vitro and underwent apoptosis within 24h in vivo when used without MSPCs. Surprisingly, only in MSPCs did pharmacologic or genetic inhibition of HIF-1α abrogate neo-vasculogenesis. HIF deletion in ECFCs caused no effect. ECFCs could be rescued from hypoxia-induced apoptosis by HIF-competent MSPCs resulting in the formation of patent perfused human vessels. Several angiogenic factors need to act in concert to partially substitute mesenchymal HIF-deficiency. Results demonstrate that ECFCs require HIF-competent vessel wall progenitors to initiate vasculogenesis in vivo and to bypass hypoxia-induced apoptosis. We describe a novel mechanistic role of MSPCs as oxygen sensors promoting vasculogenesis thus underscoring their importance for the development of advanced cellular therapies.
Collapse
|
68
|
Warnke PH, Humpe A, Strunk D, Stephens S, Warnke F, Wiltfang J, Schallmoser K, Alamein M, Bourke R, Heiner P, Liu Q. A clinically-feasible protocol for using human platelet lysate and mesenchymal stem cells in regenerative therapies. J Craniomaxillofac Surg 2012; 41:153-61. [PMID: 22878221 DOI: 10.1016/j.jcms.2012.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
The transplantation of human stem cells seeded on biomaterials holds promise for many clinical applications in cranio-maxillo-facial tissue engineering and regenerative medicine. However, stem cell propagation necessary to produce sufficient cell numbers currently utilizes fetal calf serum (FCS) as a growth supplement which may subsequently transmit animal pathogens. Human platelet lysate (HPL) could potentially be utilized to produce clinical-grade stem cell-loaded biomaterials as an appropriate FCS substitute that is in line with clinically-applicable practice. The goal of this study was to investigate whether HPL can be successfully used to propagate human mesenchymal stem cells (HMSCs) seeded on clinically-approved collagen materials under clinically-applicable conditions using FCS as a control. HMSCs were isolated from bone marrow and cultured in the presence of 10% FCS or 10% HPL. Characterization of HMSCs was performed by flow cytometry and through osteogenic and adipogenic differentiation assays. Proliferative capacity of HMSCs on both matrices was investigated by mitochondrial dehydrogenase assays (WST) and tissue coverage scanning electron microscopy (SEM). The isolated HMSC differentiated into osteogenic and adipogenic cells authenticating the multipotentiality of the HMSCs. WST tests and the SEM images demonstrated that HPL was generally superior to FCS in promoting growth of seeded HMSCs. For all other tests HPL supported HMSCs at least equal to FCS. In conclusion, HPL is an effective growth factor to allow expansion of clinical-grade HMSCs on clinically-approved biomaterials for maxillofacial and oral implantology applications.
Collapse
Affiliation(s)
- Patrick H Warnke
- Clem Jones Research Centre For Stem Cells & Tissue Regenerative Therapies, Bond University, Gold Coast, QLD, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS). Int J Mol Sci 2012; 13:9298-9331. [PMID: 22942767 PMCID: PMC3430298 DOI: 10.3390/ijms13079298] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness in modulating the pathogenic process in EAE to develop effective therapies for MS. The data in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue neural cells via a mechanism that is mediated by soluble factors, which provide a suitable environment for neuron regeneration, remyelination and cerebral blood flow improvement. In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic process and in providing neuroprotection in EAE.
Collapse
|
70
|
Abstract
MSCs (mesenchymal stem cells) are planned foruse in regenerative medicine to offset age-dependent alterations. However, MSCs are affected by replicative senescence associated with decreasing proliferation potential, telomere shortening and DNA damage during in vitro propagation. To monitor in vitro senescence, we have assessed the integrity of DNA by the alkaline comet assay. For optimization of the comet assay we have enhanced the stability of comet slides in liquid and minimized the background noise of the method by improving adhesion of agarose gels on the comet slides and concentrating cells on a defined small area on the slides. The modifications of the slide preparation increase the overall efficiency and reproducibility of the comet assay and minimize the image capture and storage. DNA damage of human MSCs during in vitro cultivation increased with time, as assessed by the comet assay, which therefore offers a fast and easy screening tool in future efforts to minimize replicative senescence of MSCs in vitro.
Collapse
|
71
|
Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W. Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell 2012; 11:366-9. [PMID: 22221451 DOI: 10.1111/j.1474-9726.2011.00784.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Replicative senescence has fundamental implications on cell morphology, proliferation, and differentiation potential. Here, we describe a simple method to track long-term culture based on continuous DNA-methylation changes at six specific CpG sites. This epigenetic senescence signature can be used as biomarker for various cell types to predict the state of cellular senescence with regard to the number of passages, population doublings, or days of in vitro culture.
Collapse
Affiliation(s)
- Carmen M Koch
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
72
|
Jadasz JJ, Aigner L, Rivera FJ, Küry P. The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis. Cell Tissue Res 2012; 349:331-47. [PMID: 22322424 DOI: 10.1007/s00441-012-1331-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/16/2012] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease that leads to oligodendrocyte loss and subsequent demyelination of the adult central nervous system (CNS). The pathology is characterized by transient phases of recovery during which remyelination can occur as a result of resident oligodendroglial precursor and stem/progenitor cell activation. However, myelin repair efficiency remains low urging the development of new therapeutical approaches that promote remyelination activities. Current MS treatments target primarily the immune system in order to reduce the relapse rate and the formation of inflammatory lesions, whereas no therapies exist in order to regenerate damaged myelin sheaths. During the last few years, several transplantation studies have been conducted with adult neural stem/progenitor cells and glial precursor cells to evaluate their potential to generate mature oligodendrocytes that can remyelinate axons. In parallel, modulation of the endogenous progenitor niche by neural and mesenchymal stem cell transplantation with the aim of promoting CNS progenitor differentiation and myelination has been studied. Here, we summarize these findings and discuss the properties and consequences of the various molecular and cell-mediated remyelination approaches. Moreover, we address age-associated intrinsic cellular changes that might influence the regenerative outcome. We also evaluate the extent to which these experimental treatments might increase the regeneration capacity of the demyelinated human CNS and hence be turned into future therapies.
Collapse
Affiliation(s)
- Janusz J Jadasz
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
73
|
Schellenberg A, Lin Q, Schüler H, Koch CM, Joussen S, Denecke B, Walenda G, Pallua N, Suschek CV, Zenke M, Wagner W. Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany NY) 2012; 3:873-88. [PMID: 22025769 PMCID: PMC3227452 DOI: 10.18632/aging.100391] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cells in culture undergo replicative senescence. In this study, we analyzed functional, genetic and epigenetic sequels of long-term culture in human mesenchymal stem cells (MSC). Already within early passages the fibroblastoid colonyforming unit (CFU-f) frequency and the differentiation potential of MSC declined significantly. Relevant chromosomal aberrations were not detected by karyotyping and SNP-microarrays. Subsequently, we have compared DNA-methylation profiles with the Infinium HumanMethylation27 Bead Array and the profiles differed markedly in MSC derived from adipose tissue and bone marrow. Notably, all MSC revealed highly consistent senescence-associated modifications at specific CpG sites. These DNA-methylation changes correlated with histone marks of previously published data sets, such as trimethylation of H3K9, H3K27 and EZH2 targets. Taken together, culture expansion of MSC has profound functional implications - these are hardly reflected by genomic instability but they are associated with highly reproducible DNA-methylation changes which correlate with repressive histone marks. Therefore replicative senescence seems to be epigenetically controlled.
Collapse
Affiliation(s)
- Anne Schellenberg
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Gruber HE, Somayaji S, Riley F, Hoelscher GL, Norton HJ, Ingram J, Hanley EN. Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech Histochem 2012; 87:303-11. [DOI: 10.3109/10520295.2011.649785] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
75
|
Abstract
Hematopoiesis is regulated by microRNAs (miRNAs). These small regulatory RNAs are master regulators of developmental processes that modulate expression of several target genes post-transcriptionally. Various miRNAs are up-regulated at specific stages during hematopoietic development and the functional relevance of miRNAs has been proven at many different stages of lineage specification. Knockout of specific miRNAs can produce dramatic phenotypes leading to severe hematopoietic defects. Furthermore, several studies demonstrated that specific miRNAs are differentially expressed in hematopoietic stem cells. However, the emerging picture is extremely complex due to differences between species, cell type dependent variation in miRNA expression and differential expression of diverse target genes that are involved in various regulatory networks. There is also evidence that miRNAs play a role in cellular aging or in the inter-cellular crosstalk between hematopoietic cells and their microenvironment. The field is rapidly evolving due to new profiling tools and deep sequencing technology. The expression profiles of miRNAs are of diagnostic relevance for classification of different diseases. Recent reports on the generation of induced pluripotent stem cells with miRNAs have fuelled the hope that specific miRNAs and culture conditions facilitate directed differentiation or culture expansion of the hematopoietic stem cell pool. This review summarizes our current knowledge about miRNA expression in hematopoietic stem and progenitor cells, and their role in the hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| | | | | |
Collapse
|
76
|
Podpečan V, Lavrač N, Mozetič I, Novak PK, Trajkovski I, Langohr L, Kulovesi K, Toivonen H, Petek M, Motaln H, Gruden K. SegMine workflows for semantic microarray data analysis in Orange4WS. BMC Bioinformatics 2011; 12:416. [PMID: 22029475 PMCID: PMC3216973 DOI: 10.1186/1471-2105-12-416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/26/2011] [Indexed: 12/03/2022] Open
Abstract
Background In experimental data analysis, bioinformatics researchers increasingly rely on tools that enable the composition and reuse of scientific workflows. The utility of current bioinformatics workflow environments can be significantly increased by offering advanced data mining services as workflow components. Such services can support, for instance, knowledge discovery from diverse distributed data and knowledge sources (such as GO, KEGG, PubMed, and experimental databases). Specifically, cutting-edge data analysis approaches, such as semantic data mining, link discovery, and visualization, have not yet been made available to researchers investigating complex biological datasets. Results We present a new methodology, SegMine, for semantic analysis of microarray data by exploiting general biological knowledge, and a new workflow environment, Orange4WS, with integrated support for web services in which the SegMine methodology is implemented. The SegMine methodology consists of two main steps. First, the semantic subgroup discovery algorithm is used to construct elaborate rules that identify enriched gene sets. Then, a link discovery service is used for the creation and visualization of new biological hypotheses. The utility of SegMine, implemented as a set of workflows in Orange4WS, is demonstrated in two microarray data analysis applications. In the analysis of senescence in human stem cells, the use of SegMine resulted in three novel research hypotheses that could improve understanding of the underlying mechanisms of senescence and identification of candidate marker genes. Conclusions Compared to the available data analysis systems, SegMine offers improved hypothesis generation and data interpretation for bioinformatics in an easy-to-use integrated workflow environment.
Collapse
|
77
|
Abdelrazik H, Spaggiari GM, Chiossone L, Moretta L. Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function. Eur J Immunol 2011; 41:3281-90. [DOI: 10.1002/eji.201141542] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/04/2011] [Accepted: 08/11/2011] [Indexed: 01/29/2023]
|
78
|
Bork S, Horn P, Castoldi M, Hellwig I, Ho AD, Wagner W. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol 2011; 226:2226-34. [PMID: 21660946 DOI: 10.1002/jcp.22557] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Long-term culture of human mesenchymal stromal cells (MSC) has implications on their proliferation and differentiation potential and we have demonstrated that this is associated with up-regulation of the five microRNAs miR-29c, miR-369-5p, miR-371, miR-499, and let-7f. In this study, we examined the role of these senescence-associated microRNAs for cellular aging and differentiation of MSC. Proliferation was reduced upon transfection with miR-369-5p, miR-371, and miR-499. Adipogenic differentiation was impaired by miR-369-5p whereas it was highly increased by miR-371. This was accompanied by respective gene expression changes of some adipogenic key molecules (adiponectin and fatty acid-binding protein 4 [FABP4]). Furthermore luciferase reporter assay indicated that FABP4 is a direct target of miR-369-5p. Microarray analysis upon adipogenic or osteogenic differentiation revealed down-regulation of several microRNAs albeit miR-369-5p and miR-371 were not affected. Expression of the de novo DNA methyltransferases DNMT3A and DNMT3B was up-regulated by transfection of miR-371 whereas expression of DNMT3A was down-regulated by miR-369-5p. In summary, we identified miR-369-5p and miR-371 as antagonistic up-stream regulators of adipogenic differentiation and this might be indirectly mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Simone Bork
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
79
|
Griffiths SL, Griffiths D, Forsyth NR. Mesenchymal stem-cell-based therapy for the older patient. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/ahe.11.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone-marrow aspirate-derived mesenchymal stem cells (MSCs) form a core element of the vast majority of adherent, autologous stem-cell-based therapeutic clinical trials. This article explores the existing literature to determine if proposed MSC-based autologous cell therapy is suitable for use in an elderly patient population. Within the review a number of questions are asked: does the bone-marrow aspirate mononuclear cell (MNC) number, the frequency of MSC colony forming units or their proliferative potential correlate with age? Does disease state have an additional impact? Are immunophenotypes, molecular profiles or differentiation capacity linked to donor age? The answers to the above questions are essential for determining the appropriateness of elderly patients as donors and recipients for autologous MSC-based trials. Taken together, MSC yield, MNC number and proliferative potential all decrease with age while differentiation potential appears unchanged. The retention of differentiation capacity suggests that the elderly patient may be suitable for MSC-based therapy; however, only when isolation protocols are tailored in an individual-specific manner to correct for decreases in MNC number and MSC yield.
Collapse
Affiliation(s)
- Sarah L Griffiths
- The Guy Hilton Research Laboratories, Institute of Science & Technology in Medicine, Keele University Medical School, Stoke-on-Trent, ST4 7QB, UK
| | - David Griffiths
- Department of Orthopaedics, City General Hospital, Stoke-on-Trent, ST4 6QG, UK
| | | |
Collapse
|
80
|
Sugiyama T, Kuroda S, Takeda Y, Nishio M, Ito M, Shichinohe H, Koike T. Therapeutic Impact of Human Bone Marrow Stromal Cells Expanded by Animal Serum–Free Medium for Cerebral Infarct in Rats. Neurosurgery 2011; 68:1733-42; discussion 1742. [DOI: 10.1227/neu.0b013e31820edd63] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Taku Sugiyama
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yukari Takeda
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsufumi Nishio
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaki Ito
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takao Koike
- Department of Internal Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
81
|
Wang J, Liao L, Tan J. Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opin Biol Ther 2011; 11:893-909. [PMID: 21449634 DOI: 10.1517/14712598.2011.574119] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) possess remarkable self-renewal ability and are able to differentiate into various cell lineages. MSCs can also enhance tissue repair and angiogenesis through a paracrine mechanism. It has been recognized that these cells hold great promise for tissue regeneration and treatment of immune-related diseases. AREAS COVERED This review aims at discussing the mechanisms of MSC-mediated immunomodulation and tissue repair and the related clinical trials, with special emphasis on factors that influence the efficiency of MSC-based therapy, including the source of MSCs, cell passage, cell dose, timing and route of administration. EXPERT OPINION MSCs may facilitate tissue repair through cell replacement and/or improving the microenvironment by releasing growth factors. Some of these factors also mediate the immunomodulatory effects of MSCs. It is important to establish global guidelines, protocols and standards for production and clinical trials of MSCs, so that MSCs can become a therapeutic agent with a reliable efficacy and good safety.
Collapse
Affiliation(s)
- Jin Wang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China.
| | | | | |
Collapse
|
82
|
Gaebel R, Furlani D, Sorg H, Polchow B, Frank J, Bieback K, Wang W, Klopsch C, Ong LL, Li W, Ma N, Steinhoff G. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One 2011; 6:e15652. [PMID: 21347366 PMCID: PMC3037376 DOI: 10.1371/journal.pone.0015652] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 11/20/2010] [Indexed: 12/12/2022] Open
Abstract
The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC) derived from umbilical cord blood (CB), adipose tissue (AT) or bone marrow (BM) for the treatment of myocardial infarction (MI) remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal) intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105(+)-CB treated groups compared to CB and nontreated MI group (MI-C). Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105(+) hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function.
Collapse
Affiliation(s)
- Ralf Gaebel
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Dario Furlani
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Heiko Sorg
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Bianca Polchow
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Johannes Frank
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany
| | - Weiwei Wang
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Christian Klopsch
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Lee-Lee Ong
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| | - Wenzhong Li
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
- * E-mail: (WL); (NM)
| | - Nan Ma
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
- * E-mail: (WL); (NM)
| | - Gustav Steinhoff
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Department of Cardiac Surgery, University of Rostock, Rostock, Germany
| |
Collapse
|
83
|
Koch CM, Suschek CV, Lin Q, Bork S, Goergens M, Joussen S, Pallua N, Ho AD, Zenke M, Wagner W. Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS One 2011; 6:e16679. [PMID: 21347436 PMCID: PMC3035656 DOI: 10.1371/journal.pone.0016679] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/23/2010] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.
Collapse
Affiliation(s)
- Carmen M. Koch
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Christoph V. Suschek
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen University Medical School, Aachen, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Simone Bork
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
- Heidelberg Academy of Sciences and Humanities, Heidelberg, Germany
| | - Maria Goergens
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen University Medical School, Aachen, Germany
| | - Sylvia Joussen
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen University Medical School, Aachen, Germany
| | - Anthony D. Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
84
|
Pevsner-Fischer M, Levin S, Zipori D. The Origins of Mesenchymal Stromal Cell Heterogeneity. Stem Cell Rev Rep 2011; 7:560-8. [DOI: 10.1007/s12015-011-9229-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
85
|
Wuchter P, Wagner W, Ho AD. Mesenchymal Stem Cells: An Oversimplified Nomenclature for Extremely Heterogeneous Progenitors. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
86
|
Pradier A, Passweg J, Villard J, Kindler V. Human bone marrow stromal cells and skin fibroblasts inhibit natural killer cell proliferation and cytotoxic activity. Cell Transplant 2010; 20:681-91. [PMID: 21054933 DOI: 10.3727/096368910x536545] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are potent immunomodulators that have successfully been used to circumvent various types of inflammations, including steroid-resistant graft-versus-host disease. Although initially believed to be restricted to multipotent MSCs, this immunoregulatory function is shared with differentiated cells from the mesenchymal lineage such as skin fibroblasts (SFs). Mesenchymal cell-induced immunoregulation is so potent that it may allow the reactivation of dormant malignancies, a fact that would preclude using such cells as therapeutic agents. Because NK cells are pivotal effectors controlling tumor cell containment we investigated the effect of allogenic MSCs and SFs on NK cell function in vitro. When NK cells were incubated with IL-15 and MSCs or SFs for 6 days, their proliferation and cytotoxic activity were significantly decreased compared to NK cells cultured with IL-15 alone or with human venous endothelial cells. Cytotoxic activity inhibition reached 86% when assayed on MHC-I(+) allogenic primary hematopoietic blasts, and was associated with a significant decrease in cytolytic granule exocytosis and in perforin release. Stromal cell-mediated inhibition was effective only if cell-cell proximity was long lasting: when NK cells were activated with IL-15 in the absence of MSCs and assayed for cytotoxicity in their presence no inhibition occurred. MSC inhibition was ultimately mediated by a soluble factor generated upon incubation with NK cells activated by IL-15 or IL-2. The indoleamine 2,3 dioxygenase was activated in MSCs and SFs because L-kynurenine was detected in inhibitory supernatants, but its blockade did not restore NK cell functions. The profound inhibition of cytotoxic activity directed against allogenic hematopoietic blasts exerted by MSCs and SFs on NK cells may be a concern. Should this occur in vivo it may induce the inability of NK cells to control residual or dormant malignant diseases after infusion of therapeutic MSCs.
Collapse
|
87
|
Horn P, Bokermann G, Cholewa D, Bork S, Walenda T, Koch C, Drescher W, Hutschenreuther G, Zenke M, Ho AD, Wagner W. Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells. Cytotherapy 2010; 12:888-98. [DOI: 10.3109/14653249.2010.501788] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
88
|
Wagner W, Bork S, Lepperdinger G, Joussen S, Ma N, Strunk D, Koch C. How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY) 2010; 2:224-30. [PMID: 20453259 PMCID: PMC2881510 DOI: 10.18632/aging.100136] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mesenchymal stromal cells (MSC) are currently tested in a large number of
clinical trials and raise high hope in regenerative medicine. These cells
have to be expanded in vitro before transplantation and several studies
demonstrated that long-term culture evokes continuous changes in MSC:
proliferation rate decays, the cell size increases, differentiation
potential is affected, chromosomal instabilities may arise and molecular
changes are acquired. Long-term culture of cell preparations might also
have therapeutic consequences, although this has hardly been addressed in
ongoing trials so far. Reliable therapeutic regimens necessitate quality
control of cellular products. This research perspective summarizes
available methods to track cellular aging of MSC. We have demonstrated that
gene expression changes and epigenetic modifications are
continuously acquired during replicative senescence. Molecular analysis of
a suitable panel of genes might provide a robust tool to assess efficiency
and safety of long-term expansion.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
89
|
Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 2010; 9:54-63. [PMID: 19895632 PMCID: PMC2814091 DOI: 10.1111/j.1474-9726.2009.00535.x] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Within 2–3 months of in vitro culture-expansion, mesenchymal stromal cells (MSC) undergo replicative senescence characterized by cell enlargement, loss of differentiation potential and ultimate growth arrest. In this study, we have analyzed DNA methylation changes upon long-term culture of MSC by using the HumanMethylation27 BeadChip microarray assessing 27 578 unique CpG sites. Furthermore, we have compared MSC from young and elderly donors. Overall, methylation patterns were maintained throughout both long-term culture and aging but highly significant differences were observed at specific CpG sites. Many of these differences were observed in homeobox genes and genes involved in cell differentiation. Methylation changes were verified by pyrosequencing after bisulfite conversion and compared to gene expression data. Notably, methylation changes in MSC were overlapping in long-term culture and aging in vivo. This supports the notion that replicative senescence and aging represent developmental processes that are regulated by specific epigenetic modifications.
Collapse
Affiliation(s)
- Simone Bork
- Department of Medicine V, University of Heidelberg69120 Heidelberg, Germany
- Heidelberg Academy of Sciences and Humanities69117 Heidelberg, Germany
| | - Stefan Pfister
- Heidelberg Academy of Sciences and Humanities69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg69120 Heidelberg, Germany
- Molecular Genetics of Pediatric Brain Tumors, German Cancer Research Center (DKFZ)69120 Heidelberg, Germany
| | - Hendrik Witt
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg69120 Heidelberg, Germany
- Molecular Genetics of Pediatric Brain Tumors, German Cancer Research Center (DKFZ)69120 Heidelberg, Germany
| | - Patrick Horn
- Department of Medicine V, University of Heidelberg69120 Heidelberg, Germany
| | - Bernhard Korn
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ)69120 Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg69120 Heidelberg, Germany
- Heidelberg Academy of Sciences and Humanities69117 Heidelberg, Germany
| | - Wolfgang Wagner
- Department of Medicine V, University of Heidelberg69120 Heidelberg, Germany
- Heidelberg Academy of Sciences and Humanities69117 Heidelberg, Germany
- Helmholtz-Institute for Biomedical Engineering, Aachen University Medical School52074 Aachen, Germany
| |
Collapse
|