51
|
Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Adv 2022; 6:1692-1707. [PMID: 34982827 PMCID: PMC8941456 DOI: 10.1182/bloodadvances.2021005609] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Iron that is stored in macrophages as ferritin can be made bioavailable by degrading ferritin in the lysosome and releasing iron back into the cytosol. Iron stored in ferritin is found as Fe3+ and must be reduced to Fe2+ before it can be exported from the lysosome. Here we report that the lysosomal reductase Cyb561a3 (LcytB) and the endosomal reductase six-transmembrane epithelial antigen of prostate 3 (Steap3) act as lysosomal ferrireductases in the mouse macrophage cell line RAW264.7 converting Fe3+ to Fe2+ for iron recycling. We determined that when lysosomes were loaded with horse cationic ferritin, reductions or loss of LcytB or Steap3 using CRISPR/Cas9-mediated knockout technology resulted in decreased lysosomal iron export. Loss of both reductases was additive in decreasing lysosomal iron export. Decreased reductase activity resulted in increased transcripts for iron acquisition proteins DMT1 and transferrin receptor 1 (Tfrc1) suggesting that cells were iron limited. We show that transcript expression of LcytB and Steap3 is decreased in macrophages exposed to Escherichia coli pathogen UTI89, which supports a role for these reductases in regulating iron availability for pathogens. We further show that loss of LcytB and Steap3 in macrophages infected with UTI89 led to increased proliferation of intracellular UTI89 suggesting that the endolysosomal system is retaining Fe3+ that can be used for proliferation of intravesicular pathogens. Together, our findings reveal an important role for both LcytB and Steap3 in macrophage iron recycling and suggest that limiting iron recycling by decreasing expression of endolysosomal reductases is an innate immune response to protect against pathogen proliferation and sepsis.
Collapse
|
52
|
Wang HT, Ju J, Wang SC, Zhang YH, Liu CY, Wang T, Yu X, Wang F, Cheng XR, Wang K, Chen ZY. Insights Into Ferroptosis, a Novel Target for the Therapy of Cancer. Front Oncol 2022; 12:812534. [PMID: 35280796 PMCID: PMC8914339 DOI: 10.3389/fonc.2022.812534] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis is a new form of programmed cell death (PCD) characterized by an excess iron accumulation and subsequent unbalanced redox states. Ferroptosis is different from the already reported PCD and has unique morphological features and biochemical processes. Ferroptosis was first elaborated by Brent R. Stockwell’s lab in 2012, in which small molecules erastin and RSL-3 induce PCD in Ras mutant cell lines. Ferroptosis involves various physiological processes and occurrence of disease and especially shows strong potential in cancer treatment. Development of small molecule compounds based on Stockwell’s research was found to kill cancer cells, and some FDA-approved drugs were discovered to result in ferroptosis of cancer cells. Radiotherapy and checkpoint therapy have been widely used as a treatment for many types of cancer. Recently, some papers have reported that chemotherapy, radiotherapy, and checkpoint therapy induce ferroptosis of cancer cells, which provides new strategies for cancer treatment. Nevertheless, the limitless proliferation of tumor cells and the lack of cell death mechanisms are important reasons for drug resistance for tumor therapy. Therefore, we reviewed the molecular mechanism of ferroptosis and sensitivity to ferroptosis of different cancer cells and tumor treatment strategy.
Collapse
Affiliation(s)
- Hong-Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Science and Technology Department, Qingdao University, Qingdao, China
| | - Jie Ju
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Shao-Cong Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yu-Hui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Cui-Yun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Tao Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue Yu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xue-Ru Cheng
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Kun Wang, ; Zhao-Yang Chen,
| | - Zhao-Yang Chen
- Cardiology Department, Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Kun Wang, ; Zhao-Yang Chen,
| |
Collapse
|
53
|
Mitre AO, Florian AI, Buruiana A, Boer A, Moldovan I, Soritau O, Florian SI, Susman S. Ferroptosis Involvement in Glioblastoma Treatment. Medicina (B Aires) 2022; 58:medicina58020319. [PMID: 35208642 PMCID: PMC8876121 DOI: 10.3390/medicina58020319] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors. Current standard therapy includes tumor resection surgery followed by radiotherapy and chemotherapy. Due to the tumors invasive nature, recurrences are almost a certainty, giving the patients after diagnosis only a 12–15 months average survival time. Therefore, there is a dire need of finding new therapies that could potentially improve patient outcomes. Ferroptosis is a newly described form of cell death with several implications in cancer, among which GBM. Agents that target different molecules involved in ferroptosis and that stimulate this process have been described as potentially adjuvant anti-cancer treatment options. In GBM, ferroptosis stimulation inhibits tumor growth, improves patient survival, and increases the efficacy of radiation and chemotherapy. This review provides an overview of the current knowledge regarding ferroptosis modulation in GBM.
Collapse
Affiliation(s)
- Andrei-Otto Mitre
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Alexandru Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Andrei Buruiana
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Armand Boer
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Ioana Moldovan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Olga Soritau
- Research Department, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Stefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
54
|
Søderstrøm S, Lie KK, Lundebye AK, Søfteland L. Beauvericin (BEA) and enniatin B (ENNB)-induced impairment of mitochondria and lysosomes - Potential sources of intracellular reactive iron triggering ferroptosis in Atlantic salmon primary hepatocytes. Food Chem Toxicol 2022; 161:112819. [PMID: 35038498 DOI: 10.1016/j.fct.2022.112819] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/13/2022]
Abstract
Beauvericin (BEA) and enniatin B (ENNB) are emerging mycotoxins frequently detected in plant-based fish feed. With ionophoric properties, they have shown cytotoxic potential in mammalian models. Sensitivity in fish is still largely unknown. Primary hepatocytes isolated from Atlantic salmon (Salmo salar) were used as a model and exposed to BEA and ENNB (0.05-10 μM) for 48 h. Microscopy, evaluation of cell viability, total ATP, total H2O2, total iron content, total Gpx enzyme activity, and RNA sequencing were used to characterize the toxicodynamics of BEA and ENNB. Both mycotoxins became cytotoxic at ≥ 5 μM, causing condensation of the hepatocytes followed by formation of blister-like protrusions on the cell's membrane. RNA sequencing analysis at sub-cytotoxic levels indicated BEA and ENNB exposed hepatocytes to experience increased energy expenditure, elevated oxidative stress, and iron homeostasis disturbances sensitizing the hepatocytes to ferroptosis. The present study provides valuable knowledge disclosing the toxic action of these mycotoxins in Atlantic salmon primary hepatocytes.
Collapse
Affiliation(s)
| | - Kai K Lie
- Institute of Marine Research (IMR), Bergen, Norway
| | | | | |
Collapse
|
55
|
Majerníková N, den Dunnen WFA, Dolga AM. The Potential of Ferroptosis-Targeting Therapies for Alzheimer's Disease: From Mechanism to Transcriptomic Analysis. Front Aging Neurosci 2022; 13:745046. [PMID: 34987375 PMCID: PMC8721139 DOI: 10.3389/fnagi.2021.745046] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, currently affects 40–50 million people worldwide. Despite the extensive research into amyloid β (Aβ) deposition and tau protein hyperphosphorylation (p-tau), an effective treatment to stop or slow down the progression of neurodegeneration is missing. Emerging evidence suggests that ferroptosis, an iron-dependent and lipid peroxidation-driven type of programmed cell death, contributes to neurodegeneration in AD. Therefore, how to intervene against ferroptosis in the context of AD has become one of the questions addressed by studies aiming to develop novel therapeutic strategies. However, the underlying molecular mechanism of ferroptosis in AD, when ferroptosis occurs in the disease course, and which ferroptosis-related genes are differentially expressed in AD remains to be established. In this review, we summarize the current knowledge on cell mechanisms involved in ferroptosis, we discuss how these processes relate to AD, and we analyze which ferroptosis-related genes are differentially expressed in AD brain dependant on cell type, disease progression and gender. In addition, we point out the existing targets for therapeutic options to prevent ferroptosis in AD. Future studies should focus on developing new tools able to demonstrate where and when cells undergo ferroptosis in AD brain and build more translatable AD models for identifying anti-ferroptotic agents able to slow down neurodegeneration.
Collapse
Affiliation(s)
- Nad'a Majerníková
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research (MOLAR), University Medical Centre Groningen, Groningen, Netherlands
| | - Amalia M Dolga
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
56
|
Heinsberg LW, Weeks DE, Alexander SA, Minster RL, Sherwood PR, Poloyac SM, Deslouches S, Crago EA, Conley YP. Iron homeostasis pathway DNA methylation trajectories reveal a role for STEAP3 metalloreductase in patient outcomes after aneurysmal subarachnoid hemorrhage. EPIGENETICS COMMUNICATIONS 2021; 1:4. [PMID: 35083470 PMCID: PMC8788201 DOI: 10.1186/s43682-021-00003-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Following aneurysmal subarachnoid hemorrhage (aSAH), the brain is susceptible to ferroptosis, a type of iron-dependent cell death. Therapeutic intervention targeting the iron homeostasis pathway shows promise for mitigating ferroptosis and improving recovery in animal models, but little work has been conducted in humans. DNA methylation (DNAm) plays a key role in gene expression and brain function, plasticity, and injury recovery, making it a potentially useful biomarker of outcomes or therapeutic target for intervention. Therefore, in this longitudinal, observational study, we examined the relationships between trajectories of DNAm in candidate genes related to iron homeostasis and acute (cerebral vasospasm and delayed cerebral ischemia) and long-term (Glasgow Outcome Scale [GOS, unfavorable = 1-3] and death) patient outcomes after aSAH. RESULTS Longitudinal, genome-wide DNAm data were generated from DNA extracted from post-aSAH cerebrospinal fluid (n = 260 participants). DNAm trajectories of 637 CpG sites in 36 candidate genes related to iron homeostasis were characterized over 13 days post-aSAH using group-based trajectory analysis, an unsupervised clustering method. Significant associations were identified between inferred DNAm trajectory groups at several CpG sites and acute and long-term outcomes. Among our results, cg25713625 in the STEAP3 metalloreductase gene (STEAP3) stood out. Specifically, in comparing the highest cg25713625 DNAm trajectory group with the lowest, we observed significant associations (i.e., based on p-values less than an empirical significance threshold) with unfavorable GOS at 3 and 12 months (OR = 11.7, p = 0.0006 and OR = 15.6, p = 0.0018, respectively) and death at 3 and 12 months (OR = 19.1, p = 0.0093 and OR = 12.8, p = 0.0041, respectively). These results were replicated in an independent sample (n = 100 participants) observing significant associations with GOS at 3 and 12 months (OR = 8.2, p = 0.001 and OR = 6.3, p = 0.0.0047, respectively) and death at 3 months (OR = 2.3, p = 0.008) and a suggestive association (i.e., p-value < 0.05 not meeting an empirical significance threshold) with death at 12 months (OR = 2.0, p = 0.0272). In both samples, an additive effect of the DNAm trajectory group was observed as the percentage of participants with unfavorable long-term outcomes increased substantially with higher DNAm trajectory groups. CONCLUSION Our results support a role for DNAm of cg25713625/STEAP3 in recovery following aSAH. Additional research is needed to further explore the role of DNAm of cg25713625/STEAP3 as a biomarker of unfavorable outcomes, or therapeutic target to improve outcomes, to translate these findings clinically.
Collapse
Affiliation(s)
- Lacey W. Heinsberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sheila A. Alexander
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Paula R. Sherwood
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sandra Deslouches
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth A. Crago
- Department of Acute and Tertiary Care, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvette P. Conley
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
57
|
Zhang X, Li LX, Ding H, Torres VE, Yu C, Li X. Ferroptosis Promotes Cyst Growth in Autosomal Dominant Polycystic Kidney Disease Mouse Models. J Am Soc Nephrol 2021; 32:2759-2776. [PMID: 34716241 PMCID: PMC8806097 DOI: 10.1681/asn.2021040460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disease, is regulated by different forms of cell death, including apoptosis and autophagy. However, the role in ADPKD of ferroptosis, a recently discovered form of cell death mediated by iron and lipid metabolism, remains elusive. METHODS To determine a pathophysiologic role of ferroptosis in ADPKD, we investigated whether the absence of Pkd1 (encoding polycystin-1) affected the expression of key factors involved in the process of ferroptosis, using Western blot and qRT-PCR analysis in Pkd1 mutant renal cells and tissues. We also examined whether treatment with erastin, a ferroptosis inducer, and ferrostain-1, a ferroptosis inhibitor, affected cyst growth in Pkd1 mutant mouse models. RESULTS We found that kidney cells and tissues lacking Pkd1 exhibit extensive metabolic abnormalities, including reduced expression of the system Xc- amino acid antiporter (critical for import of cystine), of iron exporter (ferroportin), and of GPX4 (a key and negative regulator of ferroptosis). The abnormalities also include increased expression of iron importers (TfR1, DMT1) and HO-1, which in turn result in high iron levels, low GSH and GPX4 activity, increased lipid peroxidation, and propensity to ferroptosis. We further found that erastin increased, and ferrostatin-1 inhibited ferroptotic cell death and proliferation of Pkd1-deficient cells in kidneys from Pkd1 mutant mice. A lipid peroxidation product increased in Pkd1-deficient cells, 4HNE, promoted the proliferation of survived Pkd1 mutant cells via activation of Akt, S6, Stat3, and Rb during the ferroptotic process, contributing to cyst growth. CONCLUSION These findings indicate that ferroptosis contributes to ADPKD progression and management of ferroptosis may be a novel strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Hao Ding
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
58
|
Wincup C, Sawford N, Rahman A. Pathological mechanisms of abnormal iron metabolism and mitochondrial dysfunction in systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:957-967. [PMID: 34263712 PMCID: PMC8452144 DOI: 10.1080/1744666x.2021.1953981] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Introduction: Systemic lupus erythematosus [SLE] is a chronic, autoimmune condition characterized by the formation of autoantibodies directed against nuclear components and by oxidative stress. Recently, a number of studies have demonstrated the essential role of iron in the immune response and there is growing evidence that abnormal iron homeostasis can occur in the chronic inflammatory state seen in SLE. Not only is iron vital for hematopoiesis, it is also important for a number of other key physiological processes, in particular in maintaining healthy mitochondrial function.Areas covered: In this review, we highlight the latest understanding with regards to how patients with SLE may be at risk of cellular iron depletion as a result of both absolute and functional iron deficiency. Furthermore, we aim to explain the latest evidence of mitochondrial dysfunction in the pathogenesis of the disease.Expert opinion: Growing evidence suggests that both abnormal iron homeostasis and subsequent mitochondrial dysfunction can impair effector immune cell function. Through a greater understanding of these abnormalities, therapeutic options that directly target iron and mitochondria may ultimately represent novel treatment targets that may translate into clinical care of patients with SLE in the near future.
Collapse
Affiliation(s)
- Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Natalie Sawford
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Anisur Rahman
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
59
|
Cell Ferroptosis: New Mechanism and New Hope for Retinitis Pigmentosa. Cells 2021; 10:cells10082153. [PMID: 34440922 PMCID: PMC8393369 DOI: 10.3390/cells10082153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of inherited retinal degeneration, with more than 60 gene mutations. Despite the genetic heterogenicity, photoreceptor cell damage remains the hallmark of RP pathology. As a result, RP patients usually suffer from reduced night vision, loss of peripheral vision, decreased visual acuity, and impaired color perception. Although photoreceptor cell death is the primary outcome of RP, the underlying mechanisms are not completely elucidated. Ferroptosis is a novel programmed cell death, with characteristic iron overload and lipid peroxidation. Recent studies, using in vitro and in vivo RP models, discovered the involvement of ferroptosis-associated cell death, suggesting a possible new mechanism for RP pathogenesis. In this review, we discuss the association between ferroptosis and photoreceptor cell damage, and its implication in the pathogenesis of RP. We propose that ferroptotic cell death not only opens up a new research area in RP, but may also serve as a novel therapeutic target for RP.
Collapse
|
60
|
Kosman DJ. A holistic view of mammalian (vertebrate) cellular iron uptake. Metallomics 2021; 12:1323-1334. [PMID: 32766655 DOI: 10.1039/d0mt00065e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell iron uptake in mammals is commonly distinguished by whether the iron is presented to the cell as transferrin-bound or not: TBI or NTBI. This generic perspective conflates TBI with canonical transferrin receptor, endosomal iron uptake, and NTBI with uptake supported by a plasma membrane-localized divalent metal ion transporter, most often identified as DMT1. In fact, iron uptake by mammalian cells is far more nuanced than this somewhat proscribed view suggests. This view fails to accommodate the substantial role that ZIP8 and ZIP14 play in iron uptake, while adhering to the traditional premise that a relatively high endosomal [H+] is thermodynamically required for release of iron from holo-Tf. The canonical view of iron uptake also does not encompass the fact that plasma membrane electron transport - PMET - has long been linked to cell iron uptake. In fact, the known mammalian metallo-reductases - Dcytb and the STEAP proteins - are members of this cohort of cytochrome-dependent oxido-reductases that shuttle reducing equivalents across the plasma membrane. A not commonly appreciated fact is the reduction potential of ferric iron in holo-Tf is accessible to cytoplasmic reducing equivalents - reduced pyridine and flavin mono- and di-nucleotides and dihydroascorbic acid. This allows for the reductive release of Fe2+ at the extracellular surface of the PM and subsequent transport into the cytoplasm by a neutral pH transporter - a ZIP protein. What this perspective emphasizes is that there are two TfR-dependent uptake pathways, one which does and one which does not involve clathrin-dependent, endolysosomal trafficking. This raises the question as to the selective advantage of having two Tf, TfR-dependent routes of iron accumulation. This review of canonical and non-canonical iron uptake uses cerebral iron trafficking as a point of discussion, a focus that encourages inclusion also of the importance of ferritin as a circulating 'chaperone' of ferric iron.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University of Buffalo, Suite 4102, 995 Main St., Buffalo, NY 14203, USA.
| |
Collapse
|
61
|
Zhang H, Wang Z, Liu Z, Du K, Lu X. Protective Effects of Dexazoxane on Rat Ferroptosis in Doxorubicin-Induced Cardiomyopathy Through Regulating HMGB1. Front Cardiovasc Med 2021; 8:685434. [PMID: 34336950 PMCID: PMC8318065 DOI: 10.3389/fcvm.2021.685434] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Dexrazoxane (DXZ) reduces cytotoxicity caused by Doxorubicin (DOX). However, the mechanism of DXZ in ferroptosis and cardiomyopathy remains unclear. This research, therefore, explores the role and mechanism of DXZ in DOX-induced ferroptosis and cardiomyopathy in rats. Kaplan–Meier survival analysis was performed in rats treated by DOX in combination with ferroptosis inhibitor (FER-1) or other cell death–associated inhibitors. The ferroptosis, cardiotoxicity, and expression of high mobility group box 1 (HMGB1) in rats treated by DOX in combination with FER-1 or with DXZ were determined by hematoxylin and eosin staining, echocardiographic analysis, and quantitative real-time PCR. The ferroptosis in DOX-treated rats that received HMGB1 knockdown or overexpression was further detected using molecular experiments. Finally, the viability, level of malondialdehyde (MDA), and expressions of ferroptosis-related markers (PTGS2, GPX4, and FTH1) of rat cardiomyocyte H9c2 exposed to DOX combined with FER-1, zVAD (an apoptosis inhibitor), DXZ, or not were detected by performing molecular experiments. FER-1 increased the survival of the rats induced by DOX. The DOX-induced ferroptosis and cardiotoxicity could be reversed by FER-1 or DXZ. HMGB1 was induced by DOX but was inhibited by DXZ or FER-1. Overexpression of HMGB1 promoted the ferroptosis and cardiotoxicity induced by DOX in the rats although silencing of HMGB1 showed opposite effects. The data indicate that DOX suppressed the viability and increased the MDA level in H9c2 cells in a dose-dependent manner. Moreover, DOX-induced increase of PTGS2 and decrease of GPX4 and FTH1 in H9c2 cells was reversed by DXZ or FER-1. Therefore, DXZ has protective effects on ferroptosis and cardiomyopathy in rats through regulating HMGB1.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Wang
- Department of Blood Transfusion, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Kang Du
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
62
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
63
|
The Usefulness of STEAP Proteins in Prostate Cancer Clinical Practice. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.steap.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
64
|
Ju J, Song YN, Wang K. Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. Aging Dis 2021; 12:261-276. [PMID: 33532140 PMCID: PMC7801281 DOI: 10.14336/ad.2020.0323] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a form of programmed cell death caused by production of reactive oxygen species and disequilibrium of iron homeostasis. Many chemical compounds and clinical drugs induce ferroptosis in normal and cancer cells, while peroxidation inhibitors, iron chelators, and antioxidants can block ferroptosis. Glutathione peroxidase 4, ferroptosis suppressor protein 1, nuclear factor erythroid 2-related factor 2, and system Xc- are the negative regulators of ferroptosis, whereas nicotinamide adenine dinucleotide phosphate oxidase, p53, mitochondria voltage-dependent anion channel, and cysteinyl-tRNA synthetase function as positive regulators. Ferroptosis plays important roles in pathogen infection and tumor immunology. Recent studies suggest that ferroptosis plays a vital role in the pathogenesis of cardiovascular diseases (CVDs), which seriously threaten human health. Potential therapies designed around ferroptosis may alter the pathological progression of CVDs. Therefore, we redacted an overview of the discovery of ferroptosis, its regulatory mechanisms, and its potential impact on CVDs treatment.
Collapse
Affiliation(s)
- Jie Ju
- 1Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, China
| | - Ya-Nan Song
- 2Medical College of Qingdao University, Qingdao, China
| | - Kun Wang
- 1Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, China
| |
Collapse
|
65
|
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D, Tang Q. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med 2020; 160:303-318. [PMID: 32846217 DOI: 10.1016/j.freeradbiomed.2020.08.009] [Citation(s) in RCA: 407] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a reactive oxygen species (ROS)- and iron-dependent form of regulated cell death (RCD), playing critical roles in organ injury and targeting therapy of cancers. Previous studies have demonstrated that ferroptosis participates in the development of cardiomyopathy including cardiac hypertrophy, diabetic cardiomyopathy and doxorubicin-induced cardiotoxicity. However, the role of ferroptosis in sepsis-induced cardiac injury remains unclear. This study aimed to explore the role and underlying mechanism of ferroptosis on lipopolysaccharide (LPS)-induced cardiac injury. Mice were injected with LPS (10 mg/kg) for 12 h to generate experimental sepsis. Ferrostatin-1 (Fer-1) and Dexrazoxane (DXZ) were used to suppress ferroptosis of mice with sepsis-induced cardiac injury. LPS increased the levels of ferroptotic markers involving prostaglandin endoperoxide synthase 2 (PTGS2), malonaldehyde (MDA) and lipid ROS, apart from resulting in obvious mitochondria damage, which were alleviated by Fer-1 and DXZ. In vitro experiments showed that Fer-1 inhibited LPS-induced lipid peroxidation and injury of H9c2 myofibroblasts while erastin and sorafenib aggravated LPS-induced ferroptosis. Additionally, Fer-1 and DXZ improved survival rate and cardiac function of mice with sepsis. Mechanistically, LPS increased the expression of nuclear receptor coactivator 4 (NCOA4) and the level of intracellular Fe2+ but decreased the level of ferritin. NCOA4 could directly interact with ferritin and degrade it in a ferritinophagy-dependent manner, which subsequently released a great amount of iron. Cytoplasmic Fe2+ further activated the expression of siderofexin (SFXN1) on mitochondrial membrane, which in turn transported cytoplasmic Fe2+ into mitochondria, giving rise to the production of mitochondrial ROS and ferroptosis. Based on these findings, we concluded that ferritinophagy-mediated ferroptosis is one of the critical mechanisms contributing to sepsis-induced cardiac injury. Targeting ferroptosis in cardiomyocytes may be a therapeutic strategy for preventing sepsis in the future.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China; Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Mingxia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
66
|
Bae DH, Gholam Azad M, Kalinowski DS, Lane DJR, Jansson PJ, Richardson DR. Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxid Redox Signal 2020; 33:816-838. [PMID: 31672021 DOI: 10.1089/ars.2019.7903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Vitamin C or ascorbate (Asc) is a water-soluble vitamin and an antioxidant that is involved in many crucial biological functions. Asc's ability to reduce metals makes it an essential enzyme cofactor. Recent Advances: The ability of Asc to act as a reductant also plays an important part in its overall role in iron metabolism, where Asc induces both nontransferrin-bound iron and transferrin-bound iron uptake at physiological concentrations (∼50 μM). Moreover, Asc has emerged to play an important role in multiple diseases and its effects at pharmacological doses could be important for their treatment. Critical Issues: Asc's role as a regulator of cellular iron metabolism, along with its cytotoxic effects and different roles at pharmacological concentrations, makes it a candidate as an anticancer agent. Ever since the controversy regarding the studies from the Mayo Clinic was finally explained, there has been a renewed interest in using Asc as a therapeutic approach toward cancer due to its minimal side effects. Numerous studies have been able to demonstrate the anticancer activity of Asc through selective oxidative stress toward cancer cells via H2O2 generation at pharmacological concentrations. Studies have demonstrated that Asc's cytotoxic mechanism at concentrations (>1 mM) has been associated with decreased cellular iron uptake. Future Directions: Recent studies have also suggested other mechanisms, such as Asc's effects on autophagy, polyamine metabolism, and the cell cycle. Clearly, more has yet to be discovered about Asc's mechanism of action to facilitate safe and effective treatment options for cancer and other diseases.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Mahan Gholam Azad
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Darius J R Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Parkville, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, Australia.,Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Japan
| |
Collapse
|
67
|
Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie HY, Liu Z, Hu YF, Yang J, Zhang P, Zhang XJ, She ZG, Li H, Huang Z, Zhu L. STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy. Hypertension 2020; 76:1219-1230. [PMID: 32862709 DOI: 10.1161/hypertensionaha.120.14752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Pathological cardiac hypertrophy is one of the major predictors and inducers of heart failure, the end stage of various cardiovascular diseases. However, the molecular mechanisms underlying pathogenesis of pathological cardiac hypertrophy remain largely unknown. Here, we provided the first evidence that STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) is a key negative regulator of this disease. We found that the expression of STEAP3 was reduced in pressure overload-induced hypertrophic hearts and phenylephrine-induced hypertrophic cardiomyocytes. In a transverse aortic constriction-triggered mouse cardiac hypertrophy model, STEAP3 deficiency remarkably deteriorated cardiac hypertrophy and fibrosis, whereas the opposite phenotype was observed in the cardiomyocyte-specific STEAP3 overexpressing mice. Accordingly, STEAP3 significantly mitigated phenylephrine-induced cell enlargement in primary neonatal rat cardiomyocytes. Mechanistically, via RNA-seq and immunoprecipitation-mass screening, we demonstrated that STEAP3 directly bond to Rho family small GTPase 1 and suppressed the activation of downstream mitogen-activated protein kinase-extracellular signal-regulated kinase signaling cascade. Remarkably, the antihypertrophic effect of STEAP3 was largely blocked by overexpression of constitutively active mutant Rac1 (G12V). Our study indicates that STEAP3 serves as a novel negative regulator of pathological cardiac hypertrophy by blocking the activation of the Rac1-dependent signaling cascade and may contribute to exploring effective therapeutic strategies of pathological cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Peng-Long Li
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hui Liu
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Guo-Peng Chen
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Ling Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hong-Jie Shi
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hong-Yu Nie
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Zhen Liu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Yu-Feng Hu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Juan Yang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Peng Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Xiao-Jing Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zhi-Gang She
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hongliang Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
- Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zan Huang
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China
| | - Lihua Zhu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
- School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| |
Collapse
|
68
|
Zhang Y, Yu M, Dong J, Wu Y, Tian W. Identification of Novel Adipokines through Proteomic Profiling of Small Extracellular Vesicles Derived from Adipose Tissue. J Proteome Res 2020; 19:3130-3142. [PMID: 32597661 DOI: 10.1021/acs.jproteome.0c00131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue is regarded as a true endocrine organ that releases adipokines to regulate distant targets. Besides the well-studied secretory adipokines, the adipokines carried by small extracellular vesicles derived from adipose tissue (sEV-AT) have not been completely characterized yet. In this study, we conducted a complementary protein profiling on sEV-AT with label-free quantitative proteomic analysis (project accession: PXD013270). A total of 2607 sEV-AT proteins were identified, among which 328 proteins had been annotated as adipokines. Three undefined adipokine candidates (NPM3, STEAP3, and DAD1) were selected for further validation. These three proteins were expressed in both white and brown adipose tissues and upregulated during adipogenic differentiation in both 3T3-L1 cells and adipose-derived stromal/stem cells (ASCs). Expressions of NPM3 and DAD1 in sEV-AT were significantly decreased in obese subjects compared with lean controls, while obesity could not alter the expression of STEAP3. Our profiling study of the sEV-AT proteins expanded the list of adipokines and highlighted the pivotal role of adipokines specifically carried by sEVs in the regulation of multiple biological processes within adipose tissue.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Dong
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wu
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, Xiangya School of Stomatology, Central South University, Changsha 410083, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
69
|
Na H, Li X, Zhang X, Xu Y, Sun Y, Cui J, Chen Z, Shi X, Ren S, Zuo Y. lncRNA STEAP3-AS1 Modulates Cell Cycle Progression via Affecting CDKN1C Expression through STEAP3 in Colon Cancer. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:480-491. [PMID: 32679543 PMCID: PMC7360886 DOI: 10.1016/j.omtn.2020.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
Previous studies have reported that long noncoding RNAs (lncRNAs) have acted as new players during tumorigenesis. Metallothionein also plays an important role in tumor progression. It is mainly considered to be involved in the process of cell proliferation, oxidative stress, and multidrug resistance. However, the potential involvement of metallothionein-related lncRNAs in colon cancer remains poorly understood. In our study, we found that MT1M affected the expression of lncRNA STEAP3-AS1. STEAP3-AS1 is located in physical contiguity with STEAP3 and notably increased in colon cancer tissues and cell lines. STEAP3-AS1 expression was negatively associated with the expression of STEAP3. High levels of STEPA3-AS1 were associated with poor overall survival in colon cancer patients. In in vitro assays, STEAP3-AS1 knockdown could inhibit colon cancer cell proliferation and migration and arrest colon cancer cells at the G0-G1 phase. In tumorigenicity assays, STEAP3-AS1 knockdown could strongly inhibit tumor growth. Mechanistic investigations demonstrated that STEAP3-AS1 downregulation could increase the expression of cyclin-dependent kinase inhibitor 1C (CDKN1C) by STEAP3 upregulation. Overall, we identify the underlying role of MT1M-related lncRNA STEAP3-AS1 in colon cancer progression, which provides a novel strategy for colon cancer therapy.
Collapse
Affiliation(s)
- Heya Na
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China; Department of Laboratory Medicine, The People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Xiaomeng Li
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Xinsheng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yue Xu
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Yuzhu Sun
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Jingyi Cui
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Zihao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaomeng Shi
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Shuangyi Ren
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Yunfei Zuo
- Department of Clinical Biochemistry, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
70
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
71
|
Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, An P, Huang S, Pan J, Chen HZ, Chen J, Linkermann A, Min J, Wang F. Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circ Res 2020; 127:486-501. [PMID: 32349646 DOI: 10.1161/circresaha.120.316509] [Citation(s) in RCA: 502] [Impact Index Per Article: 100.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE Maintaining iron homeostasis is essential for proper cardiac function. Both iron deficiency and iron overload are associated with cardiomyopathy and heart failure via complex mechanisms. Although ferritin plays a central role in iron metabolism by storing excess cellular iron, the molecular function of ferritin in cardiomyocytes remains unknown. OBJECTIVE To characterize the functional role of Fth (ferritin H) in mediating cardiac iron homeostasis and heart disease. METHODS AND RESULTS Mice expressing a conditional Fth knockout allele were crossed with 2 distinct Cre recombinase-expressing mouse lines, resulting in offspring that lack Fth expression specifically in myocytes (MCK-Cre) or cardiomyocytes (Myh6-Cre). Mice lacking Fth in cardiomyocytes had decreased cardiac iron levels and increased oxidative stress, resulting in mild cardiac injury upon aging. However, feeding these mice a high-iron diet caused severe cardiac injury and hypertrophic cardiomyopathy, with molecular features typical of ferroptosis, including reduced glutathione (GSH) levels and increased lipid peroxidation. Ferrostatin-1, a specific inhibitor of ferroptosis, rescued this phenotype, supporting the notion that ferroptosis plays a pathophysiological role in the heart. Finally, we found that Fth-deficient cardiomyocytes have reduced expression of the ferroptosis regulator Slc7a11, and overexpressing Slc7a11 selectively in cardiomyocytes increased GSH levels and prevented cardiac ferroptosis. CONCLUSIONS Our findings provide compelling evidence that ferritin plays a major role in protecting against cardiac ferroptosis and subsequent heart failure, thereby providing a possible new therapeutic target for patients at risk of developing cardiomyopathy.
Collapse
Affiliation(s)
- Xuexian Fang
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University (X.F., P.A., F.W.).,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, China (X.F., H.W., F.W.)
| | - Zhaoxian Cai
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, China (X.F., H.W., F.W.)
| | - Dan Han
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Zhang
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Gao
- The Second Affiliated Hospital (F.G., J.C.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Yu
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijun Song
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wu
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University (X.F., P.A., F.W.)
| | - Sicong Huang
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Pan
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hou-Zao Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (H.-Z.C.)
| | - Jinghai Chen
- The Second Affiliated Hospital (F.G., J.C.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany (A.L.)
| | - Junxia Min
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- From the First Affiliated Hospital, School of Public Health (X.F., Z.C., D.H., Q.C., P.Z., Y.Y., Z.S., Q.W., S.H., J.P., J.M., F.W.), Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University (X.F., P.A., F.W.).,Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, China (X.F., H.W., F.W.)
| |
Collapse
|
72
|
Guo W, Fang H, Cao S, Chen S, Li J, Shi J, Tang H, Zhang Y, Wen P, Zhang J, Wang Z, Shi X, Pang C, Yang H, Hu B, Zhang S. Six-Transmembrane Epithelial Antigen of the Prostate 3 Deficiency in Hepatocytes Protects the Liver Against Ischemia-Reperfusion Injury by Suppressing Transforming Growth Factor-β-Activated Kinase 1. Hepatology 2020; 71:1037-1054. [PMID: 31393024 PMCID: PMC7155030 DOI: 10.1002/hep.30882] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (I/R) injury remains a major challenge affecting the morbidity and mortality of liver transplantation. Effective strategies to improve liver function after hepatic I/R injury are limited. Six-transmembrane epithelial antigen of the prostate 3 (Steap3), a key regulator of iron uptake, was reported to be involved in immunity and apoptotic processes in various cell types. However, the role of Steap3 in hepatic I/R-induced liver damage remains largely unclear. APPROACH AND RESULTS In the present study, we found that Steap3 expression was significantly up-regulated in liver tissue from mice subjected to hepatic I/R surgery and primary hepatocytes challenged with hypoxia/reoxygenation insult. Subsequently, global Steap3 knockout (Steap3-KO) mice, hepatocyte-specific Steap3 transgenic (Steap3-HTG) mice, and their corresponding controls were subjected to partial hepatic warm I/R injury. Hepatic histology, the inflammatory response, and apoptosis were monitored to assess liver damage. The molecular mechanisms of Steap3 function were explored in vivo and in vitro. The results demonstrated that, compared with control mice, Steap3-KO mice exhibited alleviated liver damage after hepatic I/R injury, as shown by smaller necrotic areas, lower serum transaminase levels, decreased apoptosis rates, and reduced inflammatory cell infiltration, whereas Steap3-HTG mice had the opposite phenotype. Further molecular experiments showed that Steap3 deficiency could inhibit transforming growth factor-β-activated kinase 1 (TAK1) activation and downstream c-Jun N-terminal kinase (JNK) and p38 signaling during hepatic I/R injury. CONCLUSIONS Steap3 is a mediator of hepatic I/R injury that functions by regulating inflammatory responses as well as apoptosis through TAK1-dependent activation of the JNK/p38 pathways. Targeting hepatocytes, Steap3 may be a promising approach to protect the liver against I/R injury.
Collapse
Affiliation(s)
- Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Bo Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - San‐Yang Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jie Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Wei Tang
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Chun Pang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Han Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Bo‐Wen Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| |
Collapse
|
73
|
An P, Wang J, Wang H, Jiang L, Wang J, Min J, Wang F. Gnpat does not play an essential role in systemic iron homeostasis in murine model. J Cell Mol Med 2020; 24:4118-4126. [PMID: 32108988 PMCID: PMC7171407 DOI: 10.1111/jcmm.15068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
The GNPAT variant rs11558492 (p.D519G) was identified as a novel genetic factor that modifies the iron‐overload phenotype in homozygous carriers of the HFE p.C282Y variant. However, the reported effects of the GNPAT p.D519G variant vary among study populations. Here, we investigated the role of GNPAT in iron metabolism using Gnpat‐knockout (Gnpat−/−), Gnpat/Hfe double‐knockout (Gnpat−/−Hfe−/− or DKO) mice and hepatocyte‐specific Gnpat‐knockout mice (Gnpatfl/fl;Alb‐Cre). Our analysis revealed no significant difference between wild‐type (Gnpat+/+) and Gnpat−/− mice, between Hfe−/− and DKO mice, or between Gnpatfl/fl and Gnpatfl/fl;Alb‐Cre with respect to serum iron and tissue iron. In addition, the expression of hepcidin was not affected by deleting Gnpat expression in the presence or absence of Hfe. Feeding Gnpat−/− and DKO mice a high‐iron diet had no effect on tissue iron levels compared with wild‐type and Hfe−/− mice, respectively. Gnpat knockdown in primary hepatocytes from wild‐type or Hfe−/− mice did not alter hepcidin expression, but it repressed BMP6‐induced hepcidin expression. Taken together, these results support the hypothesis that deleting Gnpat expression has no effect on either systemic iron metabolism or the iron‐overload phenotype that develops in Hfe−/− mice, suggesting that GNPAT does not directly mediate iron homeostasis under normal or high‐iron dietary conditions.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Jiaming Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Jiang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
74
|
A comprehensive mechanistic review insight into the effects of micronutrients on toll-like receptors functions. Pharmacol Res 2019; 152:104619. [PMID: 31887355 DOI: 10.1016/j.phrs.2019.104619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
Toll-like receptors (TLRs) are the special proteins receptors for recognition of molecules related to the pathogens. In this way, TLRs and secreted cytokines as a result of TLRs activation are involved in the inflammation pathways. So far, in vivo and in vitro studies have demonstrated that micronutrients (vitamins & minerals) with a broad range of effects on body health, can regulate TLRs signaling pathways. Current review aimed at determining the possible mechanisms of micronutrient effects on TLRs functions. In the aspect of gene expression, micronutrients have inconsistent effects on mRNA level of TLRs which are dependent on time, dose and type of studied TLR. Also, some micronutrients affect gene expression of TLRs signaling mediators namely TLRs adaptors like Myeloid differentiation primary response 88 (MyD88). In the aspect of TLRs signaling pathways, nuclear factor-κB (NF-κB) is an important mediator which is regulated by micronutrients. Also, the regulatory effects of micronutrients on phosphorylation reactions may be effective in the activation/inactivation of TLRs signaling mediators. In addition, zinc can regulate TLRs signaling indirectly via the zinc finger proteins which have contradictory effects on TLRs cascade. In conclusion, the relationship between micronutrients and TLRs signaling is complicated and depends on some known internal, external and genetic factors like form of studied micronutrient, cell type, TLR agonist, dose and time of exposure, inflammation, apoptosis, cell cycle, and environmental factors. Some unknown factors may be effective in TLRs response and as a result additional mechanistic studies are needed to elucidate exact effect of micronutrients on TLRs signaling.
Collapse
|
75
|
Levraud JP, Jouneau L, Briolat V, Laghi V, Boudinot P. IFN-Stimulated Genes in Zebrafish and Humans Define an Ancient Arsenal of Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:3361-3373. [DOI: 10.4049/jimmunol.1900804] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
|
76
|
Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer. PLoS One 2019; 14:e0220456. [PMID: 31393902 PMCID: PMC6687176 DOI: 10.1371/journal.pone.0220456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer is the second most common cancer diagnosed in men worldwide; however, few patients are affected by clinically significant disease within their lifetime. Unfortunately, the means to discriminate between patients with indolent disease and those who progress to aggressive prostate cancer is currently unavailable, resulting in over-treatment of patients. We therefore aimed to determine biomarkers of prostate cancer that can be used in the clinic to aid the diagnosis and prognosis. Immunohistochemistry analysis was carried out on prostate cancer specimens with a range of Gleason scores. Samples were stained and analysed for intensity of the Seven Transmembrane Epithelial Antigen of the Prostate (STEAP)-1, -2, -3, -4 and the Divalent Metal Transporter 1 (DMT1) proteins to determine suitable biomarkers for classification of patients likely to develop aggressive prostate cancer. Additionally, these proteins were also analysed to determine whether any would be able to predict future relapse using Kaplan Meier analysis. Data generated demonstrated that the protein expression levels of STEAP2 correlated significantly with Gleason score; furthermore, STEAP4 was a significant predictor of relapse. This data indicates that STEAP2 could be potential prognostic candidate for use in combination with the current prostate cancer detection methods and the presence of STEAP4 could be an indicator of possible relapse.
Collapse
|
77
|
Hansen M, Peltier J, Killy B, Amin B, Bodendorfer B, Härtlova A, Uebel S, Bosmann M, Hofmann J, Büttner C, Ekici AB, Kuttke M, Franzyk H, Foged C, Beer-Hammer S, Schabbauer G, Trost M, Lang R. Macrophage Phosphoproteome Analysis Reveals MINCLE-dependent and -independent Mycobacterial Cord Factor Signaling. Mol Cell Proteomics 2019; 18:669-685. [PMID: 30635358 PMCID: PMC6442366 DOI: 10.1074/mcp.ra118.000929] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/09/2018] [Indexed: 01/12/2023] Open
Abstract
Immune sensing of Mycobacterium tuberculosis relies on recognition by macrophages. Mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM), is the most abundant cell wall glycolipid and binds to the C-type lectin receptor (CLR) MINCLE. To explore the kinase signaling linking the TDM-MINCLE interaction to gene expression, we employed quantitative phosphoproteome analysis. TDM caused upregulation of 6.7% and suppressed 3.8% of the 14,000 phospho-sites identified on 3727 proteins. MINCLE-dependent phosphorylation was observed for canonical players of CLR signaling (e.g. PLCγ, PKCδ), and was enriched for PKCδ and GSK3 kinase motifs. MINCLE-dependent activation of the PI3K-AKT-GSK3 pathway contributed to inflammatory gene expression and required the PI3K regulatory subunit p85α. Unexpectedly, a substantial fraction of TDM-induced phosphorylation was MINCLE-independent, a finding paralleled by transcriptome data. Bioinformatics analysis of both data sets concurred in the requirement for MINCLE for innate immune response pathways and processes. In contrast, MINCLE-independent phosphorylation and transcriptome responses were linked to cell cycle regulation. Collectively, our global analyses show substantial reprogramming of macrophages by TDM and reveal a dichotomy of MINCLE-dependent and -independent signaling linked to distinct biological responses.
Collapse
Affiliation(s)
- Madlen Hansen
- From the ‡Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julian Peltier
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle, UK
| | - Barbara Killy
- From the ‡Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bushra Amin
- Chair of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Bodendorfer
- From the ‡Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anetta Härtlova
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle, UK
| | - Sebastian Uebel
- From the ‡Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, Universitätsmedizin Mainz, Germany
| | - Jörg Hofmann
- Chair of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Mario Kuttke
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Unversity of Copenhagen, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, Unversity of Copenhagen, Denmark
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen
| | - Gernot Schabbauer
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Trost
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle, UK
| | - Roland Lang
- From the ‡Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany;.
| |
Collapse
|
78
|
Watson-Wright C, Queiroz P, Rodrigues S, Donaghey TC, Brain JD, Molina RM. Repeated pulmonary exposures to zinc ions enhance inflammatory responses to subsequent metal exposures. Exp Lung Res 2018; 44:252-261. [PMID: 30295553 DOI: 10.1080/01902148.2018.1517837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM OF STUDY Metal contaminants contribute to adverse human health effects via acute and chronic exposures. Acute metal exposures followed by prolonged secondary metal exposures may elicit exaggerated inflammatory responses in certain individuals. The aim of this study is to determine whether repeated pulmonary exposures to zinc chloride (ZnCl2) alter subsequent responses to zinc or cerium exposures. MATERIALS AND METHODS Rats were intratracheally (IT) instilled with physiologic saline (n = 24) or 0.05 mg/kg ZnCl2 (n = 16) twice weekly for 4 weeks. Four days after last dosing, the saline group was divided into three subgroups, each IT-instilled with either saline, ZnCl2 or CeCl3 (both at 0.1 mg/kg). The ZnCl2 pre-instilled rats were divided into two subgroups, each instilled with 0.1 mg/kg ZnCl2 or CeCl3. Biomarkers of lung injury/inflammation were assessed in bronchoalveolar lavage (BAL) fluid collected 24 hours later. Oxidative stress was evaluated as total and reduced glutathione in BAL. RESULTS Increases in inflammatory cells, LDH, albumin, leptin, MCP-1, IP-10, fractalkine, TNFα and RANTES were observed in rats instilled with multiple PBS and then with 0.1 mg/kg ZnCl2 and CeCl3. However, rats pre-exposed repeatedly to 0.05 mg/kg ZnCl2 and then challenged with 0.1 mg/kg ZnCl2 or CeCl3 showed even more eosinophils, lymphocytes, and increased concentrations of hemoglobin and MIP-1α. Significant reduction in GSH/GSSG ratios in BAL in response to all ZnCl2 or CeCl3 exposures indicated oxidative stress. CONCLUSION Previous exposure to zinc ions increases responsiveness to subsequent exposures to zinc and cerium ions. These findings suggest enhanced sensitization possibly due to a reduction in antioxidant defenses.
Collapse
Affiliation(s)
- Christa Watson-Wright
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , USA
| | - Priscila Queiroz
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , USA
| | - Sylvia Rodrigues
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , USA
| | - Thomas C Donaghey
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , USA
| | - Joseph D Brain
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , USA
| | - Ramon M Molina
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , Massachusetts , USA
| |
Collapse
|
79
|
Cesselli D, Parisse P, Aleksova A, Veneziano C, Cervellin C, Zanello A, Beltrami AP. Extracellular Vesicles: How Drug and Pathology Interfere With Their Biogenesis and Function. Front Physiol 2018; 9:1394. [PMID: 30327618 PMCID: PMC6174233 DOI: 10.3389/fphys.2018.01394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EV) are at the center of an intense activity of investigation, both for their possible employment as biomarkers of ongoing pathologic processes and for their broad range of biological activities. EV can promote tissue repair in very different pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact mode of action of EV is still partly understood, since they may act by modulating growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs to target cells. However, the term EV identifies cell derived, enveloped particles very heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies on the biological effects exerted by EV is a consequence of differences in methods of separation that result in the enrichment of different entities. Since technical challenges still hamper the highly specific sorting of different EV subpopulations, up to now only few investigators have tried to verify differences in the biological effects of specific EV subtypes. This review summarizes the current state of the art on the comprehension of mechanisms involved in EV biogenesis and release, which is a prerequisite for understanding and investigating the impact that pathology and drug therapy may exert on the secretion and composition of EV. Finally, we described both the mechanism involved in the modulation of EV secretion by drugs commonly used in patients affected by heart failure, and how pathophysiological mechanisms involved in heart disease modify EV secretion.
Collapse
Affiliation(s)
| | | | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste – University of Trieste, Trieste, Italy
| | | | | | - Andrea Zanello
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
80
|
Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF, Fernandez-Real JM. An Epigenetic Signature in Adipose Tissue Is Linked to Nicotinamide N-Methyltransferase Gene Expression. Mol Nutr Food Res 2018; 62:e1700933. [PMID: 29688621 DOI: 10.1002/mnfr.201700933] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The enzyme nicotinamide N-methyltransferase (NNMT) is a major methyltransferase in adipose tissue. We hypothesized an epigenetic signature in association with NNMT gene expression in adipose tissue. METHODS AND RESULTS The global human methylome was analyzed in visceral adipose tissue (VAT) from morbidly obese patients using the Infinium Human Methylation 450 BeadChip array (discovery cohort: n = 11). The findings were confirmed in two additional independent cohorts (cohort 1: n = 60; BMI 20-60 kg m-2 and cohort 2: n = 40; BMI > 40 kg m-2 ) and validated after weight loss (using microarray data). Among the genes associated with the largest methylation fold change were genes related to metabolic processes, proliferation, inflammation, and extracellular matrix remodeling, such as COL23A1, PLEC1, FBXO21, STEAP3, RGS12, IGDCC3, FOXK2, and ORAI2. In fact, the results showed 577 differentially methylated CpG sites (DMCpGs) associated with the NNMT expression levels, with low methylation levels paralleling high NNMT expression. The expression of FBXO21 and FOXK2 was specifically modified after weight loss concomitantly with a decrease in NNMT expression and inflammation-related genes. Interestingly, the adipose tissue NNMT gene expression correlated with markers of adipose tissue inflammation. CONCLUSIONS The expression of NNMT in VAT is associated with a specific methylome signature involving genes linked to adipose tissue metabolic pathophysiology.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Jose M Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and CIBERonc, Santiago de Compostela, 15706, Spain
| | - Juan Sandoval
- Laboratory of Personalized Medicine, Epigenomics Unit, Medical Research Institute La Fe, Valencia, 46026, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia, 08908, Spain
| | - Wilfredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Catalonia 08908, Spain, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - Felipe F Casanueva
- Laboratory of Molecular and Cellular Endocrinology, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela 15706, Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| | - Jose M Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona, Girona, 77190 Spain, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, 28029, Spain
| |
Collapse
|
81
|
An P, Wang H, Wu Q, Wang J, Xia Z, He X, Wang X, Chen Y, Min J, Wang F. Smad7 deficiency decreases iron and haemoglobin through hepcidin up-regulation by multilayer compensatory mechanisms. J Cell Mol Med 2018; 22:3035-3044. [PMID: 29575577 PMCID: PMC5980186 DOI: 10.1111/jcmm.13546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023] Open
Abstract
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP-Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte-specific Smad7 knockout mice (Smad7Alb/Alb ), which showed decreased serum iron, tissue iron, haemoglobin concentration, up-regulated hepcidin and increased phosphor-Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor-Smad1/5/8 levels between iron-challenged Smad7Alb/Alb and Smad7flox/flox , suggesting other factors assume the role of iron-induced hepcidin regulation in Smad7 deletion. We performed RNA-seq to identify differentially expressed genes in the liver. Significantly up-regulated genes were then mapped to pathways, revealing TGF-β signalling as one of the most relevant pathways, including the up-regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi-but not Follistatin-are controlled by the iron-BMP-Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non-redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qian Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhidan Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
82
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
83
|
Rockfield S, Raffel J, Mehta R, Rehman N, Nanjundan M. Iron overload and altered iron metabolism in ovarian cancer. Biol Chem 2017; 398:995-1007. [PMID: 28095368 DOI: 10.1515/hsz-2016-0336] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/28/2022]
Abstract
Iron is an essential element required for many processes within the cell. Dysregulation in iron homeostasis due to iron overload is detrimental. This nutrient is postulated to contribute to the initiation of cancer; however, the mechanisms by which this occurs remain unclear. Defining how iron promotes the development of ovarian cancers from precursor lesions is essential for developing novel therapeutic strategies. In this review, we discuss (1) how iron overload conditions may initiate ovarian cancer development, (2) dysregulated iron metabolism in cancers, (3) the interplay between bacteria, iron, and cancer, and (4) chemotherapeutic strategies targeting iron metabolism in cancer patients.
Collapse
|
84
|
Developmental Control of NRAMP1 (SLC11A1) Expression in Professional Phagocytes. BIOLOGY 2017; 6:biology6020028. [PMID: 28467369 PMCID: PMC5485475 DOI: 10.3390/biology6020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022]
Abstract
NRAMP1 (SLC11A1) is a professional phagocyte membrane importer of divalent metals that contributes to iron recycling at homeostasis and to nutritional immunity against infection. Analyses of data generated by several consortia and additional studies were integrated to hypothesize mechanisms restricting NRAMP1 expression to mature phagocytes. Results from various epigenetic and transcriptomic approaches were collected for mesodermal and hematopoietic cell types and compiled for combined analysis with results of genetic studies associating single nucleotide polymorphisms (SNPs) with variations in NRAMP1 expression (eQTLs). Analyses establish that NRAMP1 is part of an autonomous topologically associated domain delimited by ubiquitous CCCTC-binding factor (CTCF) sites. NRAMP1 locus contains five regulatory regions: a predicted super-enhancer (S-E) key to phagocyte-specific expression; the proximal promoter; two intronic areas, including 3' inhibitory elements that restrict expression during development; and a block of upstream sites possibly extending the S-E domain. Also the downstream region adjacent to the 3' CTCF locus boundary may regulate expression during hematopoiesis. Mobilization of the locus 14 predicted transcriptional regulatory elements occurs in three steps, beginning with hematopoiesis; at the onset of myelopoiesis and through myelo-monocytic differentiation. Basal expression level in mature phagocytes is further influenced by genetic variation, tissue environment, and in response to infections that induce various epigenetic memories depending on microorganism nature. Constitutively associated transcription factors (TFs) include CCAAT enhancer binding protein beta (C/EBPb), purine rich DNA binding protein (PU.1), early growth response 2 (EGR2) and signal transducer and activator of transcription 1 (STAT1) while hypoxia-inducible factors (HIFs) and interferon regulatory factor 1 (IRF1) may stimulate iron acquisition in pro-inflammatory conditions. Mouse orthologous locus is generally conserved; chromatin patterns typify a de novo myelo-monocytic gene whose expression is tightly controlled by TFs Pu.1, C/ebps and Irf8; Irf3 and nuclear factor NF-kappa-B p 65 subunit (RelA) regulate expression in inflammatory conditions. Functional differences in the determinants identified at these orthologous loci imply that species-specific mechanisms control gene expression.
Collapse
|
85
|
Sikkeland J, Sheng X, Jin Y, Saatcioglu F. STAMPing at the crossroads of normal physiology and disease states. Mol Cell Endocrinol 2016; 425:26-36. [PMID: 26911931 DOI: 10.1016/j.mce.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/11/2016] [Accepted: 02/14/2016] [Indexed: 10/24/2022]
Abstract
The six transmembrane protein of prostate (STAMP) proteins, also known as six transmembrane epithelial antigen of prostate (STEAPs), comprises three members: STAMP1-3. Their expression is regulated by a variety of stimuli, including hormones and cytokines, in varied settings and tissues with important roles in secretion and cell differentiation. In addition, they are implicated in metabolic and inflammatory diseases and cancer. Here, we review the current knowledge on the role of STAMPs in both physiological and pathological states.
Collapse
Affiliation(s)
| | - Xia Sheng
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Yang Jin
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
86
|
|
87
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
88
|
Gammella E, Buratti P, Cairo G, Recalcati S. Macrophages: central regulators of iron balance. Metallomics 2015; 6:1336-45. [PMID: 24905850 DOI: 10.1039/c4mt00104d] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages are important to immune function and also actively participate in iron homeostasis. The involvement of splenic and liver macrophages in the processing of effete erythrocytes and the subsequent return of iron to the circulation is well established, and the molecular details of iron recycling have been characterized recently. Another important aspect regarding iron handling by macrophages is their capacity to act as immune cells, which involves the inflammatory response, as well as other pathological conditions in which macrophages are central. This review discusses the latest advances in macrophage iron trafficking and the pathophysiological consequences of altered iron homeostasis in these cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
89
|
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 2014; 6:88-100. [PMID: 25476483 PMCID: PMC4312762 DOI: 10.1007/s13238-014-0119-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| | | |
Collapse
|
90
|
Zhang C. Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 2014; 5:750-60. [PMID: 25000876 PMCID: PMC4180463 DOI: 10.1007/s13238-014-0083-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/04/2014] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells contain numerous iron-requiring proteins such as iron-sulfur (Fe-S) cluster proteins, hemoproteins and ribonucleotide reductases (RNRs). These proteins utilize iron as a cofactor and perform key roles in DNA replication, DNA repair, metabolic catalysis, iron regulation and cell cycle progression. Disruption of iron homeostasis always impairs the functions of these iron-requiring proteins and is genetically associated with diseases characterized by DNA repair defects in mammals. Organisms have evolved multi-layered mechanisms to regulate iron balance to ensure genome stability and cell development. This review briefly provides current perspectives on iron homeostasis in yeast and mammals, and mainly summarizes the most recent understandings on iron-requiring protein functions involved in DNA stability maintenance and cell cycle control.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| |
Collapse
|
91
|
Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother 2014; 41:213-21. [PMID: 25053935 DOI: 10.1159/000362888] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Collapse
Affiliation(s)
| | - Gérard Waeber
- Service de médecine interne, CHUV, Lausanne, Switzerland
| | | | | | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion sanguine, Epalinges, Switzerland
| |
Collapse
|
92
|
Intestinal iron homeostasis and colon tumorigenesis. Nutrients 2013; 5:2333-51. [PMID: 23812305 PMCID: PMC3738976 DOI: 10.3390/nu5072333] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/07/2013] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.
Collapse
|
93
|
Tong AN, Lv XY, Yan P, Wang YM. Magnetic resonance T2*-weighted study of U87 MG glioma tumors and its relationship between tumor hypoxia and VEGF expression. CNS Neurosci Ther 2013; 19:201-3. [PMID: 23347691 DOI: 10.1111/cns.12055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 01/24/2023] Open
|
94
|
Grunewald TGP, Bach H, Cossarizza A, Matsumoto I. The STEAP protein family: versatile oxidoreductases and targets for cancer immunotherapy with overlapping and distinct cellular functions. Biol Cell 2012; 104:641-57. [PMID: 22804687 DOI: 10.1111/boc.201200027] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/08/2012] [Indexed: 12/26/2022]
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) protein family contains at least five homologous members. The necessity of multiple homologous STEAP proteins is still unclear, but their peculiar and tissue-specific expression suggests that they are assigned to distinct functional tasks. This concept is supported by the fact that especially STEAP1, and to a lesser extent STEAP2 and -4, are highly over-expressed in many different cancer entities, while being only minimally expressed in a few normal tissues. Despite their very similar domain organisation, STEAP3 seems to act as a potent metalloreductase essential for physiological iron uptake and turnover, while in particular STEAP4 appears to be rather involved in responses to nutrients and inflammatory stress, fatty acid and glucose metabolism. Moreover, individual STEAP proteins possess overlapping functions important for growth and survival of cancer cells. Due to their membrane-bound localisation and their high expression in many different cancers such as prostate, breast and bladder carcinoma as well as Ewing's sarcoma, STEAP proteins have been recognised and utilised as promising targets for cell- and antibody-based immunotherapy. This review summarises our present knowledge of the individual members of the human STEAP family and highlights the functional differences between them.
Collapse
Affiliation(s)
- Thomas G P Grunewald
- INSERM Unit 830 'Genetics and Biology of Cancer', Institut Curie Research Center, Paris, France.
| | | | | | | |
Collapse
|