51
|
Schroeder T, Geyh S, Germing U, Haas R. Mesenchymal stromal cells in myeloid malignancies. Blood Res 2016; 51:225-232. [PMID: 28090484 PMCID: PMC5234241 DOI: 10.5045/br.2016.51.4.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal myeloid disorders characterized by hematopoietic insufficiency. As MDS and AML are considered to originate from genetic and molecular defects of hematopoietic stem and progenitor cells (HSPC), the main focus of research in this field has focused on the characterization of these cells. Recently, the contribution of BM microenvironment to the pathogenesis of myeloid malignancies, in particular MDS and AML has gained more interest. This is based on a better understanding of its physiological role in the regulation of hematopoiesis. Additionally, it was demonstrated as a ‘proof of principle’ that genetic disruption of cells of the mesenchymal or osteoblastic lineage can induce MDS, MPS or AML in mice. In this review, we summarize the current knowledge about the contribution of the BM microenvironment, in particular mesenchymal stromal cells (MSC) to the pathogenesis of AML and MDS. Furthermore, potential models integrating the BM microenvironment into the pathophysiology of these myeloid disorders are discussed. Finally, strategies to therapeutically exploit this knowledge and to interfere with the crosstalk between clonal hematopoietic cells and altered stem cell niches are introduced.
Collapse
Affiliation(s)
- Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Düesseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Düesseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Düesseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, Düesseldorf, Germany
| |
Collapse
|
52
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
53
|
Massive parallel RNA sequencing of highly purified mesenchymal elements in low-risk MDS reveals tissue-context-dependent activation of inflammatory programs. Leukemia 2016; 30:1938-42. [PMID: 27109510 PMCID: PMC5240018 DOI: 10.1038/leu.2016.91] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
54
|
Flores-Figueroa E, Gratzinger D. Beyond the Niche: Myelodysplastic Syndrome Topobiology in the Laboratory and in the Clinic. Int J Mol Sci 2016; 17:553. [PMID: 27089321 PMCID: PMC4849009 DOI: 10.3390/ijms17040553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022] Open
Abstract
We review the murine and human microenvironment and hematopoietic stem cell niche in the context of intact bone marrow architecture in man and mouse, both in normal and in myelodysplastic syndrome marrow. We propose that the complexity of the hematopoietic stem cell niche can usefully be approached in the context of its topobiology, and we provide a model that incorporates in vitro and in vivo models as well as in situ findings from intact human marrow to explain the changes seen in myelodysplastic syndrome patients. We highlight the clinical application of the study of the bone marrow microenvironment and its topobiology in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Eugenia Flores-Figueroa
- Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Avenida Cuauhtémoc 330, Colonia Doctores, c.p. 06720 Mexico City, Mexico.
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine 300 Pasteur Dr., L235, Stanford, CA 94305, USA.
| |
Collapse
|
55
|
Endothelial progenitor cell dysfunction in myelodysplastic syndromes: possible contribution of a defective vascular niche to myelodysplasia. Neoplasia 2016; 17:401-9. [PMID: 26025663 PMCID: PMC4468365 DOI: 10.1016/j.neo.2015.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 12/20/2022] Open
Abstract
We set a model to replicate the vascular bone marrow niche by using endothelial colony forming cells (ECFCs), and we used it to explore the vascular niche function in patients with low-risk myelodysplastic syndromes (MDS). Overall, we investigated 56 patients and we observed higher levels of ECFCs in MDS than in healthy controls; moreover, MDS ECFCs were found variably hypermethylated for p15INK4b DAPK1, CDH1, or SOCS1. MDS ECFCs exhibited a marked adhesive capacity to normal mononuclear cells. When normal CD34 + cells were co-cultured with MDS ECFCs, they generated significant lower amounts of CD11b + and CD41 + cells than in co-culture with normal ECFCs. At gene expression profile, several genes involved in cell adhesion were upregulated in MDS ECFCs, while several members of the Wingless and int (Wnt) pathways were underexpressed. Furthermore, at miRNA expression profile, MDS ECFCs hypo-expressed various miRNAs involved in Wnt pathway regulation. The addition of Wnt3A reduced the expression of intercellular cell adhesion molecule-1 on MDS ECFCs and restored the defective expression of markers of differentiation. Overall, our data demonstrate that in low-risk MDS, ECFCs exhibit various primary abnormalities, including putative MDS signatures, and suggest the possible contribution of the vascular niche dysfunction to myelodysplasia.
Collapse
|
56
|
Results of a multicenter prospective phase II trial investigating the safety and efficacy of lenalidomide in patients with myelodysplastic syndromes with isolated del(5q) (LE-MON 5). Leukemia 2015; 30:1580-2. [DOI: 10.1038/leu.2015.340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
57
|
Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood 2015; 127:616-25. [PMID: 26637787 DOI: 10.1182/blood-2015-06-653113] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
In vitro evidence suggests that the bone marrow microenvironment (BMME) is altered in myelodysplastic syndromes (MDSs). Here, we study the BMME in MDS in vivo using a transgenic murine model of MDS with hematopoietic expression of the translocation product NUP98-HOXD13 (NHD13). This model exhibits a prolonged period of cytopenias prior to transformation to leukemia and is therefore ideal to interrogate the role of the BMME in MDS. In this model, hematopoietic stem and progenitor cells (HSPCs) were decreased in NHD13 mice by flow cytometric analysis. The reduction in the total phenotypic HSPC pool in NHD13 mice was confirmed functionally with transplantation assays. Marrow microenvironmental cellular components of the NHD13 BMME were found to be abnormal, including increases in endothelial cells and in dysfunctional mesenchymal and osteoblastic populations, whereas megakaryocytes were decreased. Both CC chemokine ligand 3 and vascular endothelial growth factor, previously shown to be increased in human MDS, were increased in NHD13 mice. To assess whether the BMME contributes to disease progression in NHD13 mice, we performed transplantation of NHD13 marrow into NHD13 mice or their wild-type (WT) littermates. WT recipients as compared with NHD13 recipients of NHD13 marrow had a lower rate of the combined outcome of progression to leukemia and death. Moreover, hematopoietic function was superior in a WT BMME as compared with an NHD13 BMME. Our data therefore demonstrate a contributory role of the BMME to disease progression in MDS and support a therapeutic strategy whereby manipulation of the MDS microenvironment may improve hematopoietic function and overall survival.
Collapse
|
58
|
García-García A, de Castillejo CLF, Méndez-Ferrer S. BMSCs and hematopoiesis. Immunol Lett 2015; 168:129-35. [PMID: 26192443 DOI: 10.1016/j.imlet.2015.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
Recent discoveries have significantly expanded our previous knowledge about the role of bone marrow mesenchymal stem cells (BMSCs) in hematopoiesis. BMSCs and their derivatives modulate blood production and immunity at different levels but a prominent role has emerged for BMSCs in the regulation of hematopoietic stem and progenitor cells (HSPCs). Additionally, BMSC-like cells regulate B and T cell lymphopoiesis and also probably myelopoiesis. Furthermore, BMSCs might also exhibit key regulatory properties in non-physiological conditions. BMSCs in extramedullary sites might provide a permissive microenvironment to allow for transient hematopoiesis. BMSCs might be also involved in the manifestation and/or the development of hematopoietic diseases, as stemming from their emerging roles in the progression of hematological malignancies. Here we review some key molecular pathways, adhesion molecules and ligand/receptor interactions that mediate the crosstalk between BMSCs and hematopoietic stem cells (HSCs) in health and disease. The development of novel markers to visualize and isolate individual cells will help to dissect the stromal-hematopoietic interplay.
Collapse
Affiliation(s)
- Andrés García-García
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Stem Cell Institute and Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, CB20PT Cambridge, United Kingdom
| | - Carlos L F de Castillejo
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Stem Cell Institute and Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, CB20PT Cambridge, United Kingdom
| | - Simón Méndez-Ferrer
- Stem Cell Niche Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Stem Cell Institute and Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, CB20PT Cambridge, United Kingdom.
| |
Collapse
|
59
|
Fei C, Guo J, Zhao Y, Gu S, Zhao S, Li X, Chang C. Notch-Hes pathway mediates the impaired osteogenic differentiation of bone marrow mesenchymal stromal cells from myelodysplastic syndromes patients through the down-regulation of Runx2. Am J Transl Res 2015; 7:1939-1951. [PMID: 26692937 PMCID: PMC4656770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Previous studies have demonstrated that bone marrow mesenchymal stromal cells (BMMSCs) from patients with myelodysplastic syndromes (MDS) display defective proliferative potential and impaired osteogenic differentiation ability. However, the underlying mechanisms are unclear. In the present study, the impaired osteogenic differentiation potential of BMMSCs was found in cases with RARS (83.3%), RCMD (75.0%), RAEB I (44.4%), RAEB II (40%). We also observed that MDS-BMMSCs with impaired osteogenic differentiation potential exhibited accelerate senescence and decreased hematopoietic supporting function. Further, we found that an abnormal activation of Notch-Hes signaling pathway in MDS-BMMSCs. By overexpression of Notch intracellular domain (NICD) in BMMSCs from healthy donors, we confirmed that Notch signaling pathway negatively regulated BMMSCs osteogenesis through inhibition of Runx2 transcriptional activity. Importantly, treatment with DAPT, a γ-secretase inhibitor of Notch signaling reversed the osteogenic differentiation in MDS-BMMSCs. Collectively, we provide evidence that activation of Notch-Hes signaling pathway is involved in the impaired osteogenic differentiation of MDS-BMMSCs and support the concept of a primary BMMSCs defect that might have a contributory effect in MDS pathogenesis.
Collapse
Affiliation(s)
- Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Shucheng Gu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Sida Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| |
Collapse
|
60
|
Loiseau C, Ali A, Itzykson R. New therapeutic approaches in myelodysplastic syndromes: Hypomethylating agents and lenalidomide. Exp Hematol 2015; 43:661-72. [PMID: 26123365 DOI: 10.1016/j.exphem.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 01/17/2023]
Abstract
Recent advances in the treatment of myelodysplastic syndromes have come from the use of the hypomethylating agents decitabine and azacitidine as well as the immunomodulatory drug lenalidomide. Their clinical benefit has been demonstrated by randomized phase III clinical trials, mostly in high-risk and del(5q) myelodysplastic syndromes, respectively. Neither drug, however, appears to eradicate myelodysplastic stem cells, and thus they currently do not represent curative options. Here, we review data from both clinical and translational research on those drugs to identify their molecular and cellular mechanisms of action and to delineate paths for improved treatment allocation and further therapeutic advances in myelodysplastic syndromes.
Collapse
Affiliation(s)
- Clémence Loiseau
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France
| | - Raphael Itzykson
- Department of Hematology, Saint-Louis Hospital, Assistance Publique, Hopitaux de Paris, Paris Diderot University, Paris, France; Institut National de la Santé et de la Recherche Médicale, Saint-Louis Institute, Paris, France.
| |
Collapse
|
61
|
Increased expression of interferon signaling genes in the bone marrow microenvironment of myelodysplastic syndromes. PLoS One 2015; 10:e0120602. [PMID: 25803272 PMCID: PMC4372597 DOI: 10.1371/journal.pone.0120602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/24/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The bone marrow (BM) microenvironment plays an important role in the pathogenesis of myelodysplastic syndromes (MDS) through a reciprocal interaction with resident BM hematopoietic cells. We investigated the differences between BM mesenchymal stromal cells (MSCs) in MDS and normal individuals and identified genes involved in such differences. Materials and Methods BM-derived MSCs from 7 MDS patients (3 RCMD, 3 RAEB-1, and 1 RAEB-2) and 7 controls were cultured. Global gene expression was analyzed using a microarray. Result We found 314 differentially expressed genes (DEGs) in RCMD vs. control, 68 in RAEB vs. control, and 51 in RAEB vs. RCMD. All comparisons were clearly separated from one another by hierarchical clustering. The overall similarity between differential expression signatures from the RCMD vs. control comparison and the RAEB vs. control comparison was highly significant (p = 0), which indicates a common transcriptomic response in these two MDS subtypes. RCMD and RAEB simultaneously showed an up-regulation of interferon alpha/beta signaling and the ISG15 antiviral mechanism, and a significant fraction of the RAEB vs. control DEGs were also putative targets of transcription factors IRF and ICSBP. Pathways that involved RNA polymerases I and III and mitochondrial transcription were down-regulated in RAEB compared to RCMD. Conclusion Gene expression in the MDS BM microenvironment was different from that in normal BM and exhibited altered expression according to disease progression. The present study provides genetic evidence that inflammation and immune dysregulation responses that involve the interferon signaling pathway in the BM microenvironment are associated with MDS pathogenesis, which suggests BM MSCs as a possible therapeutic target in MDS.
Collapse
|
62
|
Calkoen FGJ, Vervat C, van Pel M, de Haas V, Vijfhuizen LS, Eising E, Kroes WGM, 't Hoen PAC, van den Heuvel-Eibrink MM, Egeler RM, van Tol MJD, Ball LM. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro. Stem Cell Res 2015; 14:198-210. [PMID: 25679997 DOI: 10.1016/j.scr.2015.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/03/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
Abstract
Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets.
Collapse
Affiliation(s)
- F G J Calkoen
- Department of Pediatrics, Section Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands.
| | - C Vervat
- Department of Pediatrics, Section Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | - M van Pel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - V de Haas
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - L S Vijfhuizen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - E Eising
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - W G M Kroes
- Laboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - P A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - M M van den Heuvel-Eibrink
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands; Department of Pediatric Oncology/Hematology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - R M Egeler
- Department of Pediatrics, Section Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands; Department of Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - M J D van Tol
- Department of Pediatrics, Section Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | - L M Ball
- Department of Pediatrics, Section Immunology, Hematology/Oncology and Hematopoietic Stem Cell Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
63
|
Balderman SR, Calvi LM. Biology of BM failure syndromes: role of microenvironment and niches. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2014; 2014:71-76. [PMID: 25696837 PMCID: PMC4419374 DOI: 10.1182/asheducation-2014.1.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The BM microenvironment and its components regulate hematopoietic stem and progenitor cell (HSC) fate. An abnormality in the BM microenvironment and specific dysfunction of the HSC niche could play a critical role in initiation, disease progression, and response to therapy of BM failure syndromes. Therefore, the identification of changes in the HSC niche in BM failure syndromes should lead to further knowledge of the signals that disrupt the normal microenvironment. In turn, niche disruption may contribute to disease morbidity, resulting in pancytopenia and clonal evolution, and its understanding could suggest new therapeutic targets for these conditions. In this chapter, we briefly review the evidence for the importance of the BM microenvironment as a regulator of normal hematopoiesis, summarize current knowledge regarding the role of dysfunctions in the BM microenvironment in BM failure syndromes, and propose a strategy through which niche stimulation can complement current treatment for myelodysplastic syndrome.
Collapse
Affiliation(s)
- Sophia R. Balderman
- Instructor of Medicine, Division of Hematology/Oncology, Wilmot Cancer Center, University of Rochester School of Medicine
| | - Laura M. Calvi
- Professor of Medicine, Pharmacology and Physiology, Neurologic Surgery, Wilmot Cancer Center, University of Rochester School of Medicine, 601 Elmwood Avenue Box 693, Rochester, NY 14642, (585) 275-5011
| |
Collapse
|
64
|
Delta-Like Homologue 1 and Its Role in the Bone Marrow Niche and Hematologic Malignancies. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:451-5. [DOI: 10.1016/j.clml.2014.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 01/08/2023]
|
65
|
Bulycheva E, Rauner M, Medyouf H, Theurl I, Bornhäuser M, Hofbauer LC, Platzbecker U. Myelodysplasia is in the niche: novel concepts and emerging therapies. Leukemia 2014; 29:259-68. [PMID: 25394715 PMCID: PMC4320287 DOI: 10.1038/leu.2014.325] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/25/2014] [Indexed: 12/28/2022]
Abstract
Myelodysplastic syndromes (MDSs) represent clonal disorders mainly of the elderly that are characterized by ineffective hematopoiesis and an increased risk of transformation into acute myeloid leukemia. The pathogenesis of MDS is thought to evolve from accumulation and selection of specific genetic or epigenetic events. Emerging evidence indicates that MDS is not solely a hematopoietic disease but rather affects the entire bone marrow microenvironment, including bone metabolism. Many of these cells, in particular mesenchymal stem and progenitor cells (MSPCs) and osteoblasts, express a number of adhesion molecules and secreted factors that regulate blood regeneration throughout life by contributing to hematopoietic stem and progenitor cell (HSPC) maintenance, self-renewal and differentiation. Several endocrine factors, such as erythropoietin, parathyroid hormone and estrogens, as well as deranged iron metabolism modulate these processes. Thus, interactions between MSPC and HSPC contribute to the pathogenesis of MDS and associated pathologies. A detailed understanding of these mechanisms may help to define novel targets for diagnosis and possibly therapy. In this review, we will discuss the scientific rationale of ‘osteohematology' as an emerging research field in MDS and outline clinical implications.
Collapse
Affiliation(s)
- E Bulycheva
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| | - M Rauner
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| | - H Medyouf
- Georg-Speyer-Haus, Institut for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - I Theurl
- Department of Internal Medicine VI, Medical University of Innsbruck, Innsbruck, Austria
| | - M Bornhäuser
- 1] Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| | - L C Hofbauer
- 1] Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany [2] Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| | - U Platzbecker
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl-Gustav-Carus, Technische Universität, Dresden, Germany
| |
Collapse
|
66
|
Zhao Y, Wu D, Fei C, Guo J, Gu S, Zhu Y, Xu F, Zhang Z, Wu L, Li X, Chang C. Down-regulation of Dicer1 promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells in patients with myelodysplastic syndrome. Haematologica 2014; 100:194-204. [PMID: 25361944 DOI: 10.3324/haematol.2014.109769] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although it has been reported that mesenchymal stromal cells are unable to provide sufficient hematopoietic support in myelodysplastic syndrome, the underlying mechanisms remain elusive. In this study, we found that mesenchymal stromal cells from patients with myelodysplastic syndrome displayed a significant increase in senescence, as evidenced by their decreased proliferative capacity, flattened morphology and increased expression of SA-β-gal and p21. Senescent mesenchymal stromal cells from patients had decreased differentiation potential and decreased stem cell support capacity. Gene knockdown of Dicer1, which was down-regulated in mesenchymal stromal cells from patients, induced senescence. The differentiation and stem cell-supporting capacities were significantly inhibited by Dicer1 knockdown. Overexpression of Dicer1 in mesenchymal stromal cells from patients reversed cellular senescence and enhanced stem cell properties. Furthermore, we identified reduced expression in the microRNA-17 family (miR-17-5p, miR-20a/b, miR-106a/b and miR-93) as a potential factor responsible for increased p21 expression, a key senescence mediator, in Dicer1 knockdown cells. Moreover, we found that miR-93 and miR-20a expression levels were significantly reduced in mesenchymal stromal cells from patients and miR-93/miR-20a gain of function resulted in a decrease of cellular senescence. Collectively, the results of our study show that mesenchymal stromal cells from patients with myelodysplastic syndrome are prone to senescence and that Dicer1 down-regulation promotes cellular senescence and decreases the differentiation and stem cell-supporting capacities of mesenchymal stromal cells. Dicer1 down-regulation seems to contribute to the insufficient hematopoietic support capacities of mesenchymal stromal cells from patients with myelodysplastic syndrome.
Collapse
Affiliation(s)
- Youshan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shuncheng Gu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Zhu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingyun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
67
|
Fei C, Zhao Y, Guo J, Gu S, Li X, Chang C. Senescence of bone marrow mesenchymal stromal cells is accompanied by activation of p53/p21 pathway in myelodysplastic syndromes. Eur J Haematol 2014; 93:476-86. [PMID: 24889123 DOI: 10.1111/ejh.12385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Chengming Fei
- Department of Hematology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai China
| | - Youshan Zhao
- Department of Hematology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai China
| | - Juan Guo
- Department of Hematology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai China
| | - Shucheng Gu
- Department of Hematology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai China
| | - Xiao Li
- Department of Hematology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai China
| | - Chunkang Chang
- Department of Hematology; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; Shanghai China
| |
Collapse
|
68
|
Fei C, Zhao Y, Gu S, Guo J, Zhang X, Li X, Chang C. Impaired osteogenic differentiation of mesenchymal stem cells derived from bone marrow of patients with lower-risk myelodysplastic syndromes. Tumour Biol 2014; 35:4307-16. [PMID: 24443267 DOI: 10.1007/s13277-013-1565-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022] Open
Abstract
The pathogenesis of myelodysplastic syndromes (MDS) has not been completely understood, and insufficiency of the hematopoietic microenvironment can be an important factor. Mesenchymal stem cells (MSCs) and osteoblasts are key components of the hematopoietic microenvironment. Here, we measured the expression of multiple osteogenic genes in 58 MSCs from MDS patients with different disease stages and subtypes by real-time PCR and compared the osteogenic differentiation of MSCs from 20 MDS patients with those of MSCs from eight normal controls quantitatively and dynamically. The mRNA level of Osterix and RUNX2, two key factors involved in the early differentiation process toward osteoblasts, was significantly reduced in undifferentiated MSCs from lower-risk MDS. After osteogenic induction, lower-risk MDS showed lower alkaline phosphatase activity, less intense alizarin red S staining, and lower gene expression of osteogenic differentiation markers; however, higher-risk MDS was normal. Finally, in bone marrow biopsy, the number of osteoblasts was significantly decreased in lower-risk MDS. These results indicate that MSCs from lower-risk MDS have impaired osteogenic differentiation functions, suggesting their insufficient stromal support in MDS.
Collapse
Affiliation(s)
- Chengming Fei
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600, Yi Shan Road, 200233, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
69
|
Ye ZL, Hou XX, Chen RL, Ding J, Zheng GH, Chen MZ, Tian C. Effects of methylthiouracil on the proliferation and apoptosis of rat bone marrow stromal cells. Exp Ther Med 2014; 7:1738-1744. [PMID: 24926377 PMCID: PMC4043562 DOI: 10.3892/etm.2014.1612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the effects of methylthiouracil (MTU) on the proliferation and apoptosis of rat bone marrow stromal cells (BMSCs). Rat BMSCs were isolated, cultured in vitro and treated with various concentrations of MTU. Cell growth curves were determined using the Cell Counting Kit-8 method and the effect of MTU on BMSCs in a logarithmic growth phase was observed. BMSC apoptosis following MTU treatment was detected by flow cytometry. The experimental results demonstrated that the proliferation-inhibition effect was gradually enhanced with increasing MTU concentrations and the extension of treatment time. Statistically significant differences were observed between the treatment and the control groups (P<0.05). In addition, the BMSC apoptosis rate gradually increased with increasing drug concentrations and treatment time extension; statistically significant differences were observed between the treatment and the control groups (P<0.05). Therefore, the results of the present study demonstrated that MTU inhibited the proliferation of BMSCs and promoted apoptosis, indicating the cytotoxic effects of MTU on BMSCs.
Collapse
Affiliation(s)
- Zhong-Lu Ye
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiao-Xiao Hou
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Re-Ling Chen
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Jie Ding
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Guo-Hua Zheng
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Ming-Zhen Chen
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital and First Clinical College, Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
70
|
Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, Snyder R. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci 2014; 1310:7-31. [PMID: 24495159 PMCID: PMC4002179 DOI: 10.1111/nyas.12362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells (HPCs), which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow (BM) niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within HPCs and cells within the BM niche, may lead to the development of strategies for prevention of occupational and cancer therapy-induced disease.
Collapse
|
71
|
Li X, Deeg HJ. Murine xenogeneic models of myelodysplastic syndrome: an essential role for stroma cells. Exp Hematol 2014; 42:4-10. [PMID: 24125777 PMCID: PMC4053244 DOI: 10.1016/j.exphem.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/03/2013] [Accepted: 10/03/2013] [Indexed: 12/18/2022]
Abstract
The objective of is this article is to review murine xenotransplantation models for myelodysplastic syndromes (MDS). The difficulties in achieving sustained engraftment of MDS cells in immunodeficient mice may lie in innate characteristics of the MDS clones and microenvironmental factors. Engraftment of very low numbers of CD45(+) clonal MDS cells has been achieved with intravenous injection; higher rates of engraftment are obtained via the intramedullary route. Coinjection of certain stroma components with hematopoietic cells overcomes limitations of intravenous (IV) administration, allowing for engraftment of high proportions of human CD45(+) cells in mouse spleen and marrow. Expression of CD146 on stroma cells conveys an engraftment-facilitating effect. Clonal MDS cells have been propagated for periods beyond 6 months and have been transplanted successfully into secondary recipients. Engraftment of human clonal MDS cells with stem cell characteristics in immunodeficient mice is greatly facilitated by coinjection of stroma/mesenchymal cells, particularly with IV administration. CD146 expression on stroma is an essential factor; however, no model develops the laboratory and clinical features of human MDS. Additional work is needed to determine cellular and noncellular factors required for the full evolution of MDS.
Collapse
Affiliation(s)
- Xiang Li
- Wu'Xi Medical School, Jiangnan University, Wu'Xi, China
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|