51
|
Valencia-Sama I, Ladumor Y, Kee L, Adderley T, Christopher G, Robinson CM, Kano Y, Ohh M, Irwin MS. NRAS Status Determines Sensitivity to SHP2 Inhibitor Combination Therapies Targeting the RAS-MAPK Pathway in Neuroblastoma. Cancer Res 2020; 80:3413-3423. [PMID: 32586982 DOI: 10.1158/0008-5472.can-19-3822] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
Survival for high-risk neuroblastoma remains poor and treatment for relapsed disease rarely leads to long-term cures. Large sequencing studies of neuroblastoma tumors from diagnosis have not identified common targetable driver mutations other than the 10% of tumors that harbor mutations in the anaplastic lymphoma kinase (ALK) gene. However, at neuroblastoma recurrence, more frequent mutations in genes in the RAS-MAPK pathway have been detected. The PTPN11-encoded tyrosine phosphatase SHP2 is an activator of the RAS pathway, and we and others have shown that pharmacologic inhibition of SHP2 suppresses the growth of various tumor types harboring KRAS mutations such as pancreatic and lung cancers. Here we report inhibition of growth and downstream RAS-MAPK signaling in neuroblastoma cells in response to treatment with the SHP2 inhibitors SHP099, II-B08, and RMC-4550. However, neuroblastoma cell lines harboring endogenous NRAS Q61K mutation (which is commonly detected at relapse) or isogenic neuroblastoma cells engineered to overexpress NRASQ61K were distinctly resistant to SHP2 inhibitors. Combinations of SHP2 inhibitors with other RAS pathway inhibitors such as trametinib, vemurafenib, and ulixertinib were synergistic and reversed resistance to SHP2 inhibition in neuroblastoma in vitro and in vivo. These results suggest for the first time that combination therapies targeting SHP2 and other components of the RAS-MAPK pathway may be effective against conventional therapy-resistant relapsed neuroblastoma, including those that have acquired NRAS mutations. SIGNIFICANCE: These findings suggest that conventional therapy-resistant, relapsed neuroblastoma may be effectively treated via combined inhibition of SHP2 and MEK or ERK of the RAS-MAPK pathway.
Collapse
Affiliation(s)
- Ivette Valencia-Sama
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Yagnesh Ladumor
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Teresa Adderley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | | | - Claire M Robinson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Yoshihito Kano
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada.,Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Meredith S Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
52
|
Lasho T, Patnaik MM. Juvenile myelomonocytic leukemia – A bona fide RASopathy syndrome. Best Pract Res Clin Haematol 2020; 33:101171. [DOI: 10.1016/j.beha.2020.101171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
|
53
|
Washington C, Chernet R, Gokhale RH, Martino-Cortez Y, Liu HY, Rosenberg AM, Shahar S, Pfleger CM. A conserved, N-terminal tyrosine signal directs Ras for inhibition by Rabex-5. PLoS Genet 2020; 16:e1008715. [PMID: 32559233 PMCID: PMC7329146 DOI: 10.1371/journal.pgen.1008715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/01/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023] Open
Abstract
Dysregulation of the Ras oncogene in development causes developmental disorders, "Rasopathies," whereas mutational activation or amplification of Ras in differentiated tissues causes cancer. Rabex-5 (also called RabGEF1) inhibits Ras by promoting Ras mono- and di-ubiquitination. We report here that Rabex-5-mediated Ras ubiquitination requires Ras Tyrosine 4 (Y4), a site of known phosphorylation. Ras substitution mutants insensitive to Y4 phosphorylation did not undergo Rabex-5-mediated ubiquitination in cells and exhibited Ras gain-of-function phenotypes in vivo. Ras Y4 phosphomimic substitution increased Rabex-5-mediated ubiquitination in cells. Y4 phosphomimic substitution in oncogenic Ras blocked the morphological phenotypes associated with oncogenic Ras in vivo dependent on the presence of Rabex-5. We developed polyclonal antibodies raised against an N-terminal Ras peptide phosphorylated at Y4. These anti-phospho-Y4 antibodies showed dramatic recognition of recombinant wild-type Ras and RasG12V proteins when incubated with JAK2 or SRC kinases but not of RasY4F or RasY4F,G12V recombinant proteins suggesting that JAK2 and SRC could promote phosphorylation of Ras proteins at Y4 in vitro. Anti-phospho-Y4 antibodies also showed recognition of RasG12V protein, but not wild-type Ras, when incubated with EGFR. A role for JAK2, SRC, and EGFR (kinases with well-known roles to activate signaling through Ras), to promote Ras Y4 phosphorylation could represent a feedback mechanism to limit Ras activation and thus establish Ras homeostasis. Notably, rare variants of Ras at Y4 have been found in cerebellar glioblastomas. Therefore, our work identifies a physiologically relevant Ras ubiquitination signal and highlights a requirement for Y4 for Ras inhibition by Rabex-5 to maintain Ras pathway homeostasis and to prevent tissue transformation.
Collapse
Affiliation(s)
- Chalita Washington
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rachel Chernet
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rewatee H. Gokhale
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yesenia Martino-Cortez
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Hsiu-Yu Liu
- Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ashley M. Rosenberg
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Columbia University, New York, New York, United States of America
| | - Sivan Shahar
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- New York Medical College, Valhalla, New York, United States of America
| | - Cathie M. Pfleger
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Graduate School of Biomedical Sciences, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
54
|
Hamarsheh S, Osswald L, Saller BS, Unger S, De Feo D, Vinnakota JM, Konantz M, Uhl FM, Becker H, Lübbert M, Shoumariyeh K, Schürch C, Andrieux G, Venhoff N, Schmitt-Graeff A, Duquesne S, Pfeifer D, Cooper MA, Lengerke C, Boerries M, Duyster J, Niemeyer CM, Erlacher M, Blazar BR, Becher B, Groß O, Brummer T, Zeiser R. Oncogenic Kras G12D causes myeloproliferation via NLRP3 inflammasome activation. Nat Commun 2020; 11:1659. [PMID: 32246016 PMCID: PMC7125138 DOI: 10.1038/s41467-020-15497-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/11/2020] [Indexed: 12/03/2022] Open
Abstract
Oncogenic Ras mutations occur in various leukemias. It was unclear if, besides the direct transforming effect via constant RAS/MEK/ERK signaling, an inflammation-related effect of KRAS contributes to the disease. Here, we identify a functional link between oncogenic KrasG12D and NLRP3 inflammasome activation in murine and human cells. Mice expressing active KrasG12D in the hematopoietic system developed myeloproliferation and cytopenia, which is reversed in KrasG12D mice lacking NLRP3 in the hematopoietic system. Therapeutic IL-1-receptor blockade or NLRP3-inhibition reduces myeloproliferation and improves hematopoiesis. Mechanistically, KrasG12D-RAC1 activation induces reactive oxygen species (ROS) production causing NLRP3 inflammasome-activation. In agreement with our observations in mice, patient-derived myeloid leukemia cells exhibit KRAS/RAC1/ROS/NLRP3/IL-1β axis activity. Our findings indicate that oncogenic KRAS not only act via its canonical oncogenic driver function, but also enhances the activation of the pro-inflammatory RAC1/ROS/NLRP3/IL-1β axis. This paves the way for a therapeutic approach based on immune modulation via NLRP3 blockade in KRAS-mutant myeloid malignancies.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Osswald
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt S Saller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Franziska M Uhl
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Sandra Duquesne
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Burkard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Olaf Groß
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany.
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
55
|
After 95 years, it's time to eRASe JMML. Blood Rev 2020; 43:100652. [PMID: 31980238 DOI: 10.1016/j.blre.2020.100652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/07/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Juvenile myelomonocytic leukaemia (JMML) is a rare clonal disorder of early childhood. Constitutive activation of the RAS pathway is the initial event in JMML. Around 90% of patients diagnosed with JMML carry a mutation in the PTPN11, NRAS, KRAS, NF1 or CBL genes. It has been demonstrated that after this first genetic event, an additional somatic mutation or epigenetic modification is involved in disease progression. The available genetic and clinical data have enabled researchers to establish relationships between JMML and several clinical conditions, including Noonan syndrome, Ras-associated lymphoproliferative disease, and Moyamoya disease. Despite scientific progress and the development of more effective treatments, JMML is still a deadly disease: the 5-year survival rate is ~50%. Here, we report on recent research having led to a better understanding of the genetic and molecular mechanisms involved in JMML.
Collapse
|
56
|
Meynier S, Rieux-Laucat F. FAS and RAS related Apoptosis defects: From autoimmunity to leukemia. Immunol Rev 2019; 287:50-61. [PMID: 30565243 DOI: 10.1111/imr.12720] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
The human adaptive immune system recognizes almost all the pathogens that we encounter and all the tumor antigens that may arise during our lifetime. Primary immunodeficiencies affecting lymphocyte development or function therefore lead to severe infections and tumor susceptibility. Furthermore, the fact that autoimmunity is a frequent feature of primary immunodeficiencies reveals a third function of the adaptive immune system: its self-regulation. Indeed, the generation of a broad repertoire of antigen receptors (via a unique strategy of random somatic rearrangements of gene segments in T cell and B cell receptor loci) inevitably creates receptors with specificity for self-antigens and thus leads to the presence of autoreactive lymphocytes. There are many different mechanisms for controlling the emergence or action of autoreactive lymphocytes, including clonal deletion in the primary lymphoid organs, receptor editing, anergy, suppression of effector lymphocytes by regulatory lymphocytes, and programmed cell death. Here, we review the genetic defects affecting lymphocyte apoptosis and that are associated with lymphoproliferation and autoimmunity, together with the role of somatic mutations and their potential involvement in more common autoimmune diseases.
Collapse
Affiliation(s)
- Sonia Meynier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
57
|
Jang H, Oakley E, Forbes-Osborne M, Kesler MV, Norcross R, Morris AC, Galperin E. Hematopoietic and neural crest defects in zebrafish shoc2 mutants: a novel vertebrate model for Noonan-like syndrome. Hum Mol Genet 2019; 28:501-514. [PMID: 30329053 DOI: 10.1093/hmg/ddy366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/12/2018] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-related kinase 1 and 2 (ERK1/2) pathway is a highly conserved signaling cascade with numerous essential functions in development. The scaffold protein Shoc2 amplifies the activity of the ERK1/2 pathway and is an essential modulator of a variety of signaling inputs. Germline mutations in Shoc2 are associated with the human developmental disease known as the Noonan-like syndrome with loose anagen hair. Clinical manifestations of this disease include congenital heart defects, developmental delays, distinctive facial abnormalities, reduced growth and cognitive deficits along with hair anomalies. The many molecular details of pathogenesis of the Noonan-like syndrome and related developmental disorders, cumulatively called RASopathies, remain poorly understood. Mouse knockouts for Shoc2 are embryonic lethal, emphasizing the need for additional animal models to study the role of Shoc2 in embryonic development. Here, we characterize a zebrafish shoc2 mutant, and show that Shoc2 is essential for development, and that its loss is detrimental for the development of the neural crest and for hematopoiesis. The zebrafish model of the Noonan-like syndrome described here provides a novel system for the study of structure-function analyses and for genetic screens in a tractable vertebrate system.
Collapse
Affiliation(s)
- HyeIn Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Erin Oakley
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | - Melissa V Kesler
- Division of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Rebecca Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
58
|
Abstract
Advances in genomic research and risk-directed therapy have led to improvements in the long-term survival and quality of life outcomes of patients with childhood acute lymphoblastic leukaemia (ALL). The application of next-generation sequencing technologies, especially transcriptome sequencing, has resulted in the identification of novel molecular subtypes of ALL with prognostic and therapeutic implications, as well as cooperative mutations that account for much of the heterogeneity in clinical responses observed among patients with specific ALL subtypes. In addition, germline genetic variants have been shown to influence the risk of developing ALL and/or the responses of non-malignant and leukaemia cells to therapy; shared pathways for drug activation and metabolism are implicated in treatment-related toxicity and drug sensitivity or resistance, depending on whether the genetic changes are germline, somatic or both. Indeed, although once considered a non-hereditary disease, genomic investigations of familial and sporadic ALL have revealed a growing number of genetic alterations or conditions that predispose individuals to the development of ALL and treatment-related second cancers. The identification of these genetic alterations holds the potential to direct genetic counselling, testing and possibly monitoring for the early detection of ALL and other cancers. Herein, we review these advances in our understanding of the genomic landscape of childhood ALL and their clinical implications.
Collapse
|
59
|
Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019; 363:1170-1175. [PMID: 30872516 PMCID: PMC7757338 DOI: 10.1126/science.aaw3535] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed a major increase in our understanding of the genetic underpinnings of childhood cancer. Genomic sequencing studies have highlighted key differences between pediatric and adult cancers. Whereas many adult cancers are characterized by a high number of somatic mutations, pediatric cancers typically have few somatic mutations but a higher prevalence of germline alterations in cancer predisposition genes. Also noteworthy is the remarkable heterogeneity in the types of genetic alterations that likely drive the growth of pediatric cancers, including copy number alterations, gene fusions, enhancer hijacking events, and chromoplexy. Because most studies have genetically profiled pediatric cancers only at diagnosis, the mechanisms underlying tumor progression, therapy resistance, and metastasis remain poorly understood. We discuss evidence that points to a need for more integrative approaches aimed at identifying driver events in pediatric cancers at both diagnosis and relapse. We also provide an overview of key aspects of germline predisposition for cancer in this age group.
Collapse
Affiliation(s)
- E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California, San Francisco, CA 94158, USA.
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
60
|
Flotho C. Gene mutations do not operate in a vacuum: the increasing importance of epigenetics in juvenile myelomonocytic leukemia. Epigenetics 2019; 14:236-244. [PMID: 30773984 PMCID: PMC6557547 DOI: 10.1080/15592294.2019.1583039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) stands out among malignant neoplasms of childhood in several ways. First, JMML is a model condition to elucidate the relevance of deregulated Ras signal transduction in human cancer. Second, the identification of Ras pathway mutations in JMML has informed the field of germline cancer predisposition and advanced the understanding of molecular mechanisms underlying the progression from predisposition to neoplasia. Third and not least, genomic DNA methylation was discovered to play a salient role in the classification and prognostication of the disease. This article discusses the evolution of epigenetic research on JMML over the past years and reviews the relevance of aberrant DNA methylation in the diagnosis, concept, and clinical decision-making of JMML.
Collapse
Affiliation(s)
- Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Freiburg, Heidelberg, Germany
| |
Collapse
|
61
|
Burkardt DD, Graham JM. Abnormal Body Size and Proportion. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS 2019:81-143. [DOI: 10.1016/b978-0-12-812536-6.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
62
|
Niemeyer CM. JMML genomics and decisions. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:307-312. [PMID: 30504325 PMCID: PMC6245977 DOI: 10.1182/asheducation-2018.1.307] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a unique clonal hematopoietic disorder of early childhood characterized by hyperactivation of the RAS signal transduction pathway. Approximately 90% of patients harbor molecular alteration in 1 of 5 genes (PTPN11, NRAS, KRAS, NF1, CBL), which define genetically and clinically distinct JMML subtypes. Three subtypes, PTPN11- , NRAS-, and KRAS-mutated JMML, are characterized by heterozygous somatic gain-of-function mutations in non syndromic children, while two subtypes, JMML in neurofibromatosis type 1 and in JMML in children with CBL syndrome, are characterized by germ line RAS disease and acquired biallelic inactivation of the respective tumor suppressor genes in hematopoietic cells. In addition to the initiating RAS pathway lesion, secondary genetic alterations within and outside of the RAS pathway are detected in about half the patients. Most recently, genome-wide DNA methylation profiles identified distinct methylation signatures correlating with clinical and genetic features and highly predictive of outcome. JMML is a stem cell disorder, and most JMML patients require allogeneic stem cell transplantation for long-term survival. However, spontaneous disease regression is noted in the majority of children with CBL-mutated JMML and in some NRAS-mutated cases. In the absence of 1 of the 5 canonical RAS pathway alteration, rare mutations in other RAS genes and non-JMML myeloproliferative disorders need to be excluded. Understanding the genetic basis of myeloproliferative disorders in early childhood will greatly improve clinical decision making.
Collapse
MESH Headings
- Allografts
- Child
- DNA Methylation
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Decision Making
- Genome-Wide Association Study
- Humans
- Leukemia, Myelomonocytic, Juvenile/genetics
- Leukemia, Myelomonocytic, Juvenile/metabolism
- Leukemia, Myelomonocytic, Juvenile/pathology
- Leukemia, Myelomonocytic, Juvenile/therapy
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Signal Transduction
- Stem Cell Transplantation
Collapse
Affiliation(s)
- Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, University Children's Hospital, University of Freiburg, Freiburg, Germany
| |
Collapse
|
63
|
Craniofacial and cutaneous findings in Noonan, Costello and LEOPARD syndromes. Postepy Dermatol Alergol 2018; 35:437-441. [PMID: 30429698 PMCID: PMC6232548 DOI: 10.5114/pdia.2017.70330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/21/2018] [Indexed: 11/17/2022] Open
Abstract
Noonan, Costello and LEOPARD syndromes belong to a family of cardiofaciocutaneous disorders and share common genetic traits. As they are associated with a germline mutation in genes encoding proteins involved in RAS/MAPK, patients suffering from these syndromes are at a greater risk of cancer and abnormal myelopoiesis in infancy. Patients with cardio faciocutaneous syndromes share some clinically overlapping syndromes, therefore differential diagnosis can be problematic. In this paper we aim at demonstrating distinctive craniofacial and cutaneous manifestations of Noonan, Costello and LEOPARD syndromes which can be useful for clinicians who aim at treatment of children with rare diseases.
Collapse
|
64
|
Cai YL, Zhang JL, Zhu XF. [Advances in the treatment of juvenile myelomonocytic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:958-963. [PMID: 30477631 PMCID: PMC7389026 DOI: 10.7499/j.issn.1008-8830.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare chronic myeloid leukemia in children and has the features of both myelodysplastic syndrome and myeloproliferative neoplasm. It is highly malignant and has a poor treatment outcome. Children with JMML have a poor response to conventional chemotherapy. At present, hematopoietic stem cell transplantation is the only possible cure for this disease. In recent years, significant progress has been made in targeted therapy for mutant genes in the Ras signaling pathway and demethylation treatment of aberrant methylation of polygenic CpG islands. This article reviews the treatment and efficacy evaluation of JMML.
Collapse
Affiliation(s)
- Yu-Li Cai
- Department of Pediatrics, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China.
| | | | | |
Collapse
|
65
|
Unique dependence on Sos1 in Kras G12D -induced leukemogenesis. Blood 2018; 132:2575-2579. [PMID: 30377195 DOI: 10.1182/blood-2018-09-874107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
We and others have previously shown that Kras G12D is a much more potent oncogene than oncogenic Nras in hematological malignancies. We attributed the strong leukemogenic activity of KrasG12D at least partially to its unique capability to hyperactivate wild-type (WT) Nras and Hras. Here, we report that Sos1, a guanine nucleotide exchange factor, is required to mediate this process. Sos1 is overexpressed in Kras G12D/+ cells, but not in Nras Q61R/+ and Nras G12D/+ cells. KrasG12D proteins form a complex with Sos1 in vivo. Sos1 deficiency attenuates hyperactivation of WT Nras, Hras, and the downstream ERK signaling in Kras G12D/+ cells. Thus, Sos1 deletion ameliorates oncogenic Kras-induced myeloproliferative neoplasm (MPN) phenotypes and prolongs the survival of Kras G12D/+ mice. In contrast, Sos1 is dispensable for hyperactivated granulocyte-macrophage colony-stimulating factor signaling in Nras Q61R/+ cells, and Sos1 -/- does not affect MPN phenotypes in Nras Q61R/+ mice. Moreover, the survival of Kras G12D/+ ; Sos1 -/- recipients is comparable to that of Kras G12D/+ recipients treated with combined MEK and JAK inhibitors. Our study suggests that targeting Sos1-oncogenic Kras interaction may improve the survival of cancer patients with KRAS mutations.
Collapse
|
66
|
Yao R, Yu T, Xu Y, Li G, Yin L, Zhou Y, Wang J, Yan Z. Concurrent somatic KRAS mutation and germline 10q22.3-q23.2 deletion in a patient with juvenile myelomonocytic leukemia, developmental delay, and multiple malformations: a case report. BMC Med Genomics 2018; 11:60. [PMID: 30012129 PMCID: PMC6048798 DOI: 10.1186/s12920-018-0377-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background The proto-oncogene KRAS performs an essential function in normal tissue signaling, and the mutation of KRAS gene is a key step in the development of many cancers. Somatic KRAS mutations are often detected in patients with solid and non-solid tumors, whereas germline KRAS mutations are implicated in patients with the Noonan syndrome, cardio-facio-cutaneous (CFC) syndrome and Costello syndrome. The deletion of chromosome 10q22.3-q23.2 is a rare cytogenetic abnormality, which often leads to distinct facial appearance and delays in speech and global development. Case presentation Herein, we report the case of a 4-year-old boy diagnosed with juvenile myelomonocytic leukemia. The boy also had syndromic features, such as speech and motor developmental delay, multiple congenital malformations, including distinct facial features, club feet, and cryptorchidism. Using whole-exome sequencing, we identified a pathogenic mutation in KRAS [c.34G > A, p.Gly12Ser] isolated from peripheral blood DNA. Sanger sequencing confirmed the wild-type sequence in the parents and patient’s salivary cell DNA indicating its somatic state. A 7311-kb deletion in 10q22.3-q23.2 was also revealed by chromosomal microarray analysis, which was later proved as a germline de novo variant. Conclusion Juvenile myelomonocytic leukemia in the patient was attributed to a somatic KRAS mutation, whereas the syndromic features of the patient were considered a consequence of germline chromosome 10q22.3-q23.2 deletion. Genetic testing for patients with complicated phenotypes can be valuable in detecting multiple pathogenic variants.
Collapse
Affiliation(s)
- Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.,Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China. .,Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.,Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.,Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Lei Yin
- Department of Internal Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.,Rare Diseases Outpatient Clinic, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yunfang Zhou
- Rare Diseases Outpatient Clinic, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.,Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Zhilong Yan
- Department of Pediatric Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
67
|
Hofmans M, Lammens T, Helsmoortel HH, Bresolin S, Cavé H, Flotho C, Hasle H, van den Heuvel-Eibrink MM, Niemeyer C, Stary J, Van Roy N, Van Vlierberghe P, Philippé J, De Moerloose B. The long non-coding RNA landscape in juvenile myelomonocytic leukemia. Haematologica 2018; 103:e501-e504. [PMID: 29858388 DOI: 10.3324/haematol.2018.189977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mattias Hofmans
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium .,Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium.,Cancer Research Institute Ghent, Belgium
| | | | - Silvia Bresolin
- Department of Women and Child Health, University of Padova, Italy
| | - Hélène Cavé
- Department of Genetics, University Hospital of Robert Debré and Paris-Diderot University, Paris, France
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Germany
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Dutch Childhood Oncology Group, The Hague, the Netherlands
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Germany
| | - Jan Stary
- Department of Pediatric Hematology/ Oncology, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Nadine Van Roy
- Cancer Research Institute Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Belgium
| | - Jan Philippé
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Belgium.,Cancer Research Institute Ghent, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium.,Cancer Research Institute Ghent, Belgium
| |
Collapse
|
68
|
Porter CC, Druley TE, Erez A, Kuiper RP, Onel K, Schiffman JD, Wolfe Schneider K, Scollon SR, Scott HS, Strong LC, Walsh MF, Nichols KE. Recommendations for Surveillance for Children with Leukemia-Predisposing Conditions. Clin Cancer Res 2018; 23:e14-e22. [PMID: 28572263 DOI: 10.1158/1078-0432.ccr-17-0428] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2017] [Accepted: 04/20/2017] [Indexed: 11/16/2022]
Abstract
Leukemia, the most common childhood cancer, has long been recognized to occasionally run in families. The first clues about the genetic mechanisms underlying familial leukemia emerged in 1990 when Li-Fraumeni syndrome was linked to TP53 mutations. Since this discovery, many other genes associated with hereditary predisposition to leukemia have been identified. Although several of these disorders also predispose individuals to solid tumors, certain conditions exist in which individuals are specifically at increased risk to develop myelodysplastic syndrome (MDS) and/or acute leukemia. The increasing identification of affected individuals and families has raised questions around the efficacy, timing, and optimal methods of surveillance. As part of the AACR Childhood Cancer Predisposition Workshop, an expert panel met to review the spectrum of leukemia-predisposing conditions, with the aim to develop consensus recommendations for surveillance for pediatric patients. The panel recognized that for several conditions, routine monitoring with complete blood counts and bone marrow evaluations is essential to identify disease evolution and enable early intervention with allogeneic hematopoietic stem cell transplantation. However, for others, less intensive surveillance may be considered. Because few reports describing the efficacy of surveillance exist, the recommendations derived by this panel are based on opinion, and local experience and will need to be revised over time. The development of registries and clinical trials is urgently needed to enhance understanding of the natural history of the leukemia-predisposing conditions, such that these surveillance recommendations can be optimized to further enhance long-term outcomes. Clin Cancer Res; 23(11); e14-e22. ©2017 AACRSee all articles in the online-only CCR Pediatric Oncology Series.
Collapse
Affiliation(s)
- Christopher C Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.
| | - Todd E Druley
- Pediatric Hematology Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kenan Onel
- Department of Pediatrics, Hofstra Northwell School of Medicine and Cohen Children's Medical Center, Manhasset, New York
| | | | - Kami Wolfe Schneider
- Section of Hematology, Oncology, and Bone Marrow Transplantion, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado
| | - Sarah R Scollon
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and UniSA alliance, Adelaide, Australia
| | - Louise C Strong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael F Walsh
- Departments of Pediatrics & Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kim E Nichols
- Division of Cancer Predisposition, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
69
|
MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget 2018; 7:55395-55408. [PMID: 27447965 PMCID: PMC5342425 DOI: 10.18632/oncotarget.10577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive leukemia of early childhood characterized by aberrant proliferation of myelomonocytic cells and hypersensitivity to GM-CSF stimulation. Mutually exclusive mutations in the RAS/ERK pathway genes such as PTPN11, NRAS, KRAS, CBL, or NF1 are found in ~90% of the cases. These mutations give rise to disease at least in part by activating STAT5 through phosphorylation and by promoting cell growth. MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression, which are often deregulated in leukemia. However, little is known about their role in JMML. Here, we report distinctive miR expression signatures associated with the molecular subgroups of JMML. Among the downregulated miRs in JMML, miR-150-5p was found to target STAT5b, a gene which is often over-activated in JMML, and contributes to the characteristic aberrant signaling of this disorder. Moreover, loss of miR-150-5p and upregulation of STAT5b expression were also identified in a murine model of JMML. Ectopic overexpression of miR-150-5p in mononuclear cells from three JMML patients significantly decreased cell proliferation. Altogether, our data indicate that miR expression is deregulated in JMML and may play a role in the pathogenesis of this disorder by modulating key effectors of cytokine receptor pathways.
Collapse
|
70
|
Locatelli F, Algeri M, Merli P, Strocchio L. Novel approaches to diagnosis and treatment of Juvenile Myelomonocytic Leukemia. Expert Rev Hematol 2018; 11:129-143. [DOI: 10.1080/17474086.2018.1421937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Franco Locatelli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
71
|
Flotho C, Sommer S, Lübbert M. DNA-hypomethylating agents as epigenetic therapy before and after allogeneic hematopoietic stem cell transplantation in myelodysplastic syndromes and juvenile myelomonocytic leukemia. Semin Cancer Biol 2017; 51:68-79. [PMID: 29129488 DOI: 10.1016/j.semcancer.2017.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 11/15/2022]
Abstract
Myelodysplastic syndrome (MDS) is a clonal bone marrow disorder, typically of older adults, which is characterized by ineffective hematopoiesis, peripheral blood cytopenias and risk of progression to acute myeloid leukemia. Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasm occurring in young children. The common denominator of these malignant myeloid disorders is the limited benefit of conventional chemotherapy and a particular responsiveness to epigenetic therapy with the DNA-hypomethylating agents 5-azacytidine (azacitidine) or decitabine. However, hypomethylating therapy does not eradicate the malignant clone in MDS or JMML and allogeneic hematopoietic stem cell transplantation (HSCT) remains the only curative treatment option. An emerging concept with intriguing potential is the combination of hypomethylating therapy and HSCT. Possible advantages include disease control with good tolerability during donor search and HSCT preparation, improved antitumoral alloimmunity, and reduced risk of relapse even with non-myeloablative regimens. Herein we review the current role of pre- and post-transplant therapy with hypomethylating agents in MDS and JMML.
Collapse
Affiliation(s)
- Christian Flotho
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sebastian Sommer
- Department of Hematology-Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology-Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
72
|
Nakamura Y, Umeki N, Abe M, Sako Y. Mutation-Specific Mechanisms of Hyperactivation of Noonan Syndrome SOS Molecules Detected with Single-molecule Imaging in Living Cells. Sci Rep 2017; 7:14153. [PMID: 29074966 PMCID: PMC5658395 DOI: 10.1038/s41598-017-14190-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome (NS) is a congenital hereditary disorder associated with developmental and cardiac defects. Some patients with NS carry mutations in SOS, a guanine nucleotide exchange factor (GEF) for the small GTPase RAS. NS mutations have been identified not only in the GEF domain, but also in various domains of SOS, suggesting that multiple mechanisms disrupt SOS function. In this study, we examined three NS mutations in different domains of SOS to clarify the abnormality in its translocation to the plasma membrane, where SOS activates RAS. The association and dissociation kinetics between SOS tagged with a fluorescent protein and the living cell surface were observed in single molecules. All three mutants showed increased affinity for the plasma membrane, inducing excessive RAS signalling. However, the mechanisms by which their affinity was increased were specific to each mutant. Conformational disorder in the resting state, increased probability of a conformational change on the plasma membrane, and an increased association rate constant with the membrane receptor are the suggested mechanisms. These different properties cause the specific phenotypes of the mutants, which should be rescuable with different therapeutic strategies. Therefore, single-molecule kinetic analyses of living cells are useful for the pathological analysis of genetic diseases.
Collapse
Affiliation(s)
- Yuki Nakamura
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Japan.
| |
Collapse
|
73
|
Case report: Left ventricular noncompaction cardiomyopathy and RASopathies. Eur J Med Genet 2017; 60:680-684. [PMID: 28911804 DOI: 10.1016/j.ejmg.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 11/20/2022]
Abstract
The following is a case report of 6 patients with Noonan syndrome (NS) and/or a related RASsopathy that also have evidence of left ventricular noncompaction cardiomyopathy (LVNC). Noonan syndrome,a type of RASopathy, is an autosomal dominant disorder that is typically associated with congenital heart defects and hypertrophic cardiomyopathy. There have been minimal reports of Noonan syndrome or other RASopathy and the association of LVNC. This report promulgates 6 nonrelated cases of Noonan syndrome or unspecified RASopathy and LVNC.
Collapse
|
74
|
Stefan E, Troppmair J, Bister K. Targeting the Architecture of Deregulated Protein Complexes in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 111:101-132. [PMID: 29459029 DOI: 10.1016/bs.apcsb.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The architectures of central signaling hubs are precisely organized by static and dynamic protein-protein interactions (PPIs). Upon deregulation, these PPI platforms are capable to propagate or initiate pathophysiological signaling events. This causes the acquisition of molecular features contributing to the etiology or progression of many diseases, including cancer, where deregulated molecular interactions of signaling proteins have been best studied. The reasons for PPI-dependent reprogramming of cancer-initiating cells are manifold; in many cases, mutations perturb PPIs, enzyme activities, protein abundance, or protein localization. Consequently, the pharmaceutical targeting of PPIs promises to be of remarkable therapeutic value. For this review we have selected three key players of oncogenic signaling which are differently affected by PPI deregulation: two (the small G proteins of the RAS family and the transcription factor MYC) are considered "undruggable" using classical drug discovery approaches and in the case of the third protein discussed here, PKA, standard kinase inhibitors, may be unsuitable in the clinic. These circumstances require alternative strategies, which may lie in pharmaceutical drug interference of critical PPIs accountable for oncogenic signaling.
Collapse
Affiliation(s)
- Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
75
|
Fluhr S, Krombholz CF, Meier A, Epting T, Mücke O, Plass C, Niemeyer CM, Flotho C. Epigenetic dysregulation of the erythropoietic transcription factor KLF1 and the β-like globin locus in juvenile myelomonocytic leukemia. Epigenetics 2017; 12:715-723. [PMID: 28749240 DOI: 10.1080/15592294.2017.1356959] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Increased levels of fetal hemoglobin (HbF) are a hallmark of more than half of the children diagnosed with juvenile myelomonocytic leukemia (JMML). Elevated HbF levels in JMML are associated with DNA hypermethylation of distinct gene promoter regions in leukemic cells. Since the regulation of globin gene transcription is known to be under epigenetic control, we set out to study the relation of DNA methylation patterns at β-/γ-globin promoters, mRNA and protein expression of globins, and epigenetic modifications of genes encoding the globin-regulatory transcription factors BCL11A and KLF1 in nucleated erythropoietic precursor cells of patients with JMML. We describe several altered epigenetic components resulting in disordered globin synthesis in JMML. We identify a cis-regulatory upstream KLF1 enhancer sequence as highly sensitive to DNA methylation and frequently hypermethylated in JMML. The data indicate that the dysregulation of β-like globin genes is a genuine attribute of the leukemic cell clone in JMML and involves mechanisms not taking part in the normal fetal-to-adult hemoglobin switch.
Collapse
Affiliation(s)
- Silvia Fluhr
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Christopher Felix Krombholz
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Angelina Meier
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Thomas Epting
- b Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany
| | - Oliver Mücke
- c Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany
| | - Christoph Plass
- c Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center , Heidelberg , Germany.,d Multicenter Consortium, The German Cancer Consortium , Heidelberg , Germany
| | - Charlotte M Niemeyer
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,d Multicenter Consortium, The German Cancer Consortium , Heidelberg , Germany
| | - Christian Flotho
- a Department of Pediatrics and Adolescent Medicine , Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,d Multicenter Consortium, The German Cancer Consortium , Heidelberg , Germany
| |
Collapse
|
76
|
Abstract
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene (RasV12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia.
Collapse
|
77
|
Abstract
In this article we discuss the occurrence of myeloid neoplasms in patients with a range of syndromes that are due to germline defects of the RAS signaling pathway and in patients with trisomy 21. Both RAS mutations and trisomy 21 are common somatic events contributing to leukemogenis. Thus, the increased leukemia risk observed in children affected by these conditions is biologically highly plausible. Children with myeloid neoplasms in the context of these syndromes require different treatments than children with sporadic myeloid neoplasms and provide an opportunity to study the role of trisomy 21 and RAS signaling during leukemogenesis and development.
Collapse
Affiliation(s)
- Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | - Shai Izraeli
- The Genes, Development and Environment Institute for Pediatric Research, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
78
|
Villani A, Greer MLC, Kalish JM, Nakagawara A, Nathanson KL, Pajtler KW, Pfister SM, Walsh MF, Wasserman JD, Zelley K, Kratz CP. Recommendations for Cancer Surveillance in Individuals with RASopathies and Other Rare Genetic Conditions with Increased Cancer Risk. Clin Cancer Res 2017; 23:e83-e90. [DOI: 10.1158/1078-0432.ccr-17-0631] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 11/16/2022]
|
79
|
Predispositions to Leukemia in Down Syndrome and Other Hereditary Disorders. Curr Treat Options Oncol 2017; 18:41. [DOI: 10.1007/s11864-017-0485-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
80
|
Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Arch Toxicol 2017; 91:2763-2780. [PMID: 28536863 DOI: 10.1007/s00204-017-1986-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Infant leukaemia (<1 year old) is a rare disease of an in utero origin at an early phase of foetal development. Rearrangements of the mixed-lineage leukaemia (MLL) gene producing abnormal fusion proteins are the most frequent genetic/molecular findings in infant B cell-acute lymphoblastic leukaemia. In small epidemiological studies, mother/foetus exposures to some chemicals including pesticides have been associated with infant leukaemia; however, the strength of evidence and power of these studies are weak at best. Experimental in vitro or in vivo models do not sufficiently recapitulate the human disease and regulatory toxicology studies are unlikely to capture this kind of hazard. Here, we develop an adverse outcome pathway (AOP) based substantially on an analogous disease-secondary acute leukaemia caused by the topoisomerase II (topo II) poison etoposide-and on cellular and animal models. The hallmark of the AOP is the formation of MLL gene rearrangements via topo II poisoning, leading to fusion genes and ultimately acute leukaemia by global (epi)genetic dysregulation. The AOP condenses molecular, pathological, regulatory and clinical knowledge in a pragmatic, transparent and weight of evidence-based framework. This facilitates the interpretation and integration of epidemiological studies in the process of risk assessment by defining the biologically plausible causative mechanism(s). The AOP identified important gaps in the knowledge relevant to aetiology and risk assessment, including the specific embryonic target cell during the short and spatially restricted period of susceptibility, and the role of (epi)genetic features modifying the initiation and progression of the disease. Furthermore, the suggested AOP informs on a potential Integrated Approach to Testing and Assessment to address the risk caused by environmental chemicals in the future.
Collapse
|
81
|
Genotype and phenotype spectrum of NRAS germline variants. Eur J Hum Genet 2017; 25:823-831. [PMID: 28594414 DOI: 10.1038/ejhg.2017.65] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
RASopathies comprise a group of disorders clinically characterized by short stature, heart defects, facial dysmorphism, and varying degrees of intellectual disability and cancer predisposition. They are caused by germline variants in genes encoding key components or modulators of the highly conserved RAS-MAPK signalling pathway that lead to dysregulation of cell signal transmission. Germline changes in the genes encoding members of the RAS subfamily of GTPases are rare and associated with variable phenotypes of the RASopathy spectrum, ranging from Costello syndrome (HRAS variants) to Noonan and Cardiofaciocutaneous syndromes (KRAS variants). A small number of RASopathy cases with disease-causing germline NRAS alterations have been reported. Affected individuals exhibited features fitting Noonan syndrome, and the observed germline variants differed from the typical oncogenic NRAS changes occurring as somatic events in tumours. Here we describe 19 new cases with RASopathy due to disease-causing variants in NRAS. Importantly, four of them harbored missense changes affecting Gly12, which was previously described to occur exclusively in cancer. The phenotype in our cohort was variable but well within the RASopathy spectrum. Further, one of the patients (c.35G>A; p.(Gly12Asp)) had a myeloproliferative disorder, and one subject (c.34G>C; p.(Gly12Arg)) exhibited an uncharacterized brain tumour. With this report, we expand the genotype and phenotype spectrum of RASopathy-associated germline NRAS variants and provide evidence that NRAS variants do not spare the cancer-associated mutation hotspots.
Collapse
|
82
|
Coe RR, McKinnon ML, Tarailo-Graovac M, Ross CJ, Wasserman WW, Friedman JM, Rogers PC, van Karnebeek CDM. A case of splenomegaly in CBL syndrome. Eur J Med Genet 2017; 60:374-379. [PMID: 28414188 DOI: 10.1016/j.ejmg.2017.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
INTRODUCTION We present a child with unexplained splenomegaly to highlight this feature as a presenting sign of the RASopathy CBL syndrome and to draw attention to the power and utility of next generation genomic sequencing for providing rapid diagnosis and critical information to guide care in the pediatric clinical setting. CLINICAL REPORT A 7-year-old boy presented with unexplained splenomegaly, attention deficit hyperactivity disorder, mild learning difficulties, easy bruising, mild thrombocytopenia, and subtle dysmorphic features. Extensive haematological testing including a bone marrow biopsy showed mild megaloblastoid erythropoiesis and borderline fibrosis. There were no haematological cytogenetic anomalies or other haematological pathology to explain the splenomegaly. Metabolic testing and chromosomal microarray were unremarkable. Trio whole-exome sequencing (WES) identified a pathogenic de novo heterozygous germline CBL variant (c.1111T > C, p.Y371H), previously reported to cause CBL syndrome and implicated in development of juvenile myelomonocytic leukemia (JMML). DISCUSSION CBL syndrome (more formally known as "Noonan-syndrome-like disorder with or without juvenile myelomonocytic leukemia") has overlapping features to Noonan syndrome with significant variability. CBL syndrome and other RASopathy disorders-including Noonan syndrome, neurofibromatosis 1, and Costello syndrome-are important to recognize as these are associated with a cancer-predisposition. CBL syndrome carries a very high risk for JMML, thus accurate diagnosis is of utmost importance. The diagnosis of CBL syndrome in this patient would not have been possible based on clinical features alone. Through WES, a specific genetic diagnosis was made, allowing for an optimized management and surveillance plan, illustrating the power of genomics in clinical practice.
Collapse
Affiliation(s)
- Rachel R Coe
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Margaret L McKinnon
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Maja Tarailo-Graovac
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada; Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia
| | - Colin J Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Paul C Rogers
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplantation, B.C. Children's Hospital and University of British Columbia, Vancouver, Canada
| | - Clara D M van Karnebeek
- British Columbia Children's Hospital Research Institute, Vancouver, Canada; Centre for Molecular Medicine & Therapeutics, University of British Columbia, Vancouver, Canada; Treatable Intellectual Disability Endeavour in British Columbia (TIDE-BC), Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada; Department of Pediatrics, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
83
|
De Novo Truncating Mutations in the Last and Penultimate Exons of PPM1D Cause an Intellectual Disability Syndrome. Am J Hum Genet 2017; 100:650-658. [PMID: 28343630 DOI: 10.1016/j.ajhg.2017.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/03/2017] [Indexed: 12/30/2022] Open
Abstract
Intellectual disability (ID) is a highly heterogeneous disorder involving at least 600 genes, yet a genetic diagnosis remains elusive in ∼35%-40% of individuals with moderate to severe ID. Recent meta-analyses statistically analyzing de novo mutations in >7,000 individuals with neurodevelopmental disorders highlighted mutations in PPM1D as a possible cause of ID. PPM1D is a type 2C phosphatase that functions as a negative regulator of cellular stress-response pathways by mediating a feedback loop of p38-p53 signaling, thereby contributing to growth inhibition and suppression of stress-induced apoptosis. We identified 14 individuals with mild to severe ID and/or developmental delay and de novo truncating PPM1D mutations. Additionally, deep phenotyping revealed overlapping behavioral problems (ASD, ADHD, and anxiety disorders), hypotonia, broad-based gait, facial dysmorphisms, and periods of fever and vomiting. PPM1D is expressed during fetal brain development and in the adult brain. All mutations were located in the last or penultimate exon, suggesting escape from nonsense-mediated mRNA decay. Both PPM1D expression analysis and cDNA sequencing in EBV LCLs of individuals support the presence of a stable truncated transcript, consistent with this hypothesis. Exposure of cells derived from individuals with PPM1D truncating mutations to ionizing radiation resulted in normal p53 activation, suggesting that p53 signaling is unaffected. However, a cell-growth disadvantage was observed, suggesting a possible effect on the stress-response pathway. Thus, we show that de novo truncating PPM1D mutations in the last and penultimate exons cause syndromic ID, which provides additional insight into the role of cell-cycle checkpoint genes in neurodevelopmental disorders.
Collapse
|
84
|
Guey S, Grangeon L, Brunelle F, Bergametti F, Amiel J, Lyonnet S, Delaforge A, Arnould M, Desnous B, Bellesme C, Hervé D, Schwitalla JC, Kraemer M, Tournier-Lasserve E, Kossorotoff M. De novo mutations in CBL causing early-onset paediatric moyamoya angiopathy. J Med Genet 2017; 54:550-557. [PMID: 28343148 DOI: 10.1136/jmedgenet-2016-104432] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND Moyamoya angiopathy (MMA) is characterised by a progressive stenosis of the terminal part of the internal carotid arteries and the development of abnormal collateral deep vessels. Its pathophysiology is unknown. MMA can be the sole manifestation of the disease (moyamoya disease) or be associated with various conditions (moyamoya syndrome) including some Mendelian diseases. We aimed to investigate the genetic basis of moyamoya using a whole exome sequencing (WES) approach conducted in sporadic cases without any overt symptom suggestive of a known Mendelian moyamoya syndrome. METHODS A WES was performed in four unrelated early-onset moyamoya sporadic cases and their parents (trios). Exome data were analysed under dominant de novo, autosomal recessive and X-linked hypotheses. A panel of 17 additional sporadic cases with early-onset moyamoya was available for mutation recurrence analysis. RESULTS We identified two germline de novo mutations in CBL in two out of the four trio probands, two girls presenting with an infancy-onset severe MMA. Both mutations were predicted to alter the ubiquitin ligase activity of the CBL protein that acts as a negative regulator of the RAS pathway. These two germline CBL mutations have previously been described in association with a developmental Noonan-like syndrome and susceptibility to juvenile myelomonocytic leukaemia (JMML). Notably, the two mutated girls never developed JMML and presented only subtle signs of RASopathy that did not lead to evoke this diagnosis during follow-up. CONCLUSIONS These data suggest that CBL gene screening should be considered in early-onset moyamoya, even in the absence of obvious signs of RASopathy.
Collapse
Affiliation(s)
- Stéphanie Guey
- INSERM UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lou Grangeon
- INSERM UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Brunelle
- AP-HP Department of Pediatric Radiology, University Hospital Necker-Enfants malades, Paris Descartes University, Paris, France.,Department of Neuroradiology, University Hospital Necker-Enfants malades, Paris Descartes University, Paris, France
| | - Françoise Bergametti
- INSERM UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jeanne Amiel
- AP-HP, Department of Genetic, University Hospital Necker-Enfants malades, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Stanislas Lyonnet
- AP-HP, Department of Genetic, University Hospital Necker-Enfants malades, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Audrey Delaforge
- AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France
| | - Minh Arnould
- INSERM UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Béatrice Desnous
- AP-HP, Department of Pediatric Neurology, Robert-Debré University Hospital, Paris, France
| | - Céline Bellesme
- AP-HP, Department of Pediatric Neurology, Bicêtre University Hospital, Le Kremlin Bicêtre, France
| | - Dominique Hervé
- INSERM UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, Groupe Hospitalier Saint-Louis Lariboisière, Service de Neurologie, Paris, France
| | - Jan C Schwitalla
- Department of Neurology, Alfried-Krupp-Hospital Essen, Essen, Germany
| | - Markus Kraemer
- Department of Neurology, Alfried-Krupp-Hospital Essen, Essen, Germany
| | - Elisabeth Tournier-Lasserve
- INSERM UMR-S1161, Génétique et physiopathologie des maladies cérébro-vasculaires, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'œil, Groupe Hospitalier Saint-Louis Lariboisière, Paris, France
| | - Manoelle Kossorotoff
- French Center for Pediatric Stroke, University Hospital Necker-Enfants malades, Paris, France.,AP-HP, French Center for Pediatric Stroke and Pediatric Neurology Department, University Hospital Necker-Enfants malades, Paris, France
| |
Collapse
|
85
|
Case 16. Neuroophthalmology 2017. [DOI: 10.1007/978-1-4471-2410-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
86
|
Porter CC. Germ line mutations associated with leukemias. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:302-308. [PMID: 27913495 PMCID: PMC6142470 DOI: 10.1182/asheducation-2016.1.302] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several genetic syndromes have long been associated with a predisposition to the development of leukemia, including bone marrow failure syndromes, Down syndrome, and Li Fraumeni syndrome. Recent work has better defined the leukemia risk and outcomes in these syndromes. Also, in the last several years, a number of other germ line mutations have been discovered to define new leukemia predisposition syndromes, including ANKRD26, GATA2, PAX5, ETV6, and DDX41 In addition, data suggest that a substantial proportion of patients with therapy related leukemias harbor germ line mutations in DNA damage response genes such as BRCA1/2 and TP53 Recognition of clinical associations, acquisition of a thorough family history, and high index-of-suspicion are critical in the diagnosis of these leukemia predisposition syndromes. Accurate identification of patients with germ line mutations associated with leukemia can have important clinical implications as it relates to management of the leukemia, as well as genetic counseling of family members.
Collapse
|
87
|
Zambrano RM, Marble M, Chalew SA, Lilje C, Vargas A, Lacassie Y. Further evidence that variants in PPP1CB
cause a rasopathy similar to Noonan syndrome with loose anagen hair. Am J Med Genet A 2016; 173:565-567. [DOI: 10.1002/ajmg.a.38056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Regina M. Zambrano
- Division of Genetics; Department of Pediatrics; Louisiana State University Health Sciences Center School of Medicine, and Children's Hospital; New Orleans Louisiana
| | - Michael Marble
- Division of Genetics; Department of Pediatrics; Louisiana State University Health Sciences Center School of Medicine, and Children's Hospital; New Orleans Louisiana
| | - Stuart A. Chalew
- Division of Endocrinology, Department of Pediatrics; Louisiana State University Health Sciences Center School of Medicine, and Children's Hospital; New Orleans Louisiana
| | - Christian Lilje
- Division of Cardiology, Department of Pediatrics; Louisiana State University Health Sciences Center School of Medicine, and Children's Hospital; New Orleans Louisiana
| | - Alfonso Vargas
- Division of Endocrinology, Department of Pediatrics; Louisiana State University Health Sciences Center School of Medicine, and Children's Hospital; New Orleans Louisiana
| | - Yves Lacassie
- Division of Genetics; Department of Pediatrics; Louisiana State University Health Sciences Center School of Medicine, and Children's Hospital; New Orleans Louisiana
| |
Collapse
|
88
|
Shahrabi S, Khosravi A, Shahjahani M, Rahim F, Saki N. Genetics and Epigenetics of Myelodysplastic Syndromes and Response to Drug Therapy: New Insights. Oncol Rev 2016; 10:311. [PMID: 28058097 PMCID: PMC5178845 DOI: 10.4081/oncol.2016.311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematologic neoplasms ocurring mostly in the elderly. The clinical outcome of MDS patients is still poor despite progress in treatment approaches. About 90% of patients harbor at least one somatic mutation. This review aimed to assess the potential of molecular abnormalities in understanding pathogenesis, prognosis, diagnosis and in guiding choice of proper therapy in MDS patients. Papers related to this topic from 2000 to 2016 in PubMed and Scopus databases were searched and studied. The most common molecular abnormalities were TET2, ASXL1 as well as molecules involved in spliceosome machinery (U2AF1, SRSF2 and SF3B1). Patients with defects in TET2 molecule show better response to treatment with azacitidine. IDH and DNMT3A mutations are associated with a good response to decitabine therapy. In addition, patients with del5q subtype harboring TP53 mutation do not show a good response to lenalidomide therapy. In general, the results of this study show that molecular abnormalities can be associated with the occurrence of a specific morphological phenotype in patients. Therefore, considering the morphology of patients, different gene profiling methods can be selected to choice the most appropriate therapeutic measure in these patients in addition to faster and more cost-effective diagnosis of molecular abnormalities.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Semnan University of Medical Sciences, Semnan
| | - Abbas Khosravi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Mohammad Shahjahani
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
- Colestan Hospital Clinical Research Development Unit. Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
89
|
Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis. Sci Rep 2016; 6:34449. [PMID: 27698462 PMCID: PMC5048141 DOI: 10.1038/srep34449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.
Collapse
|
90
|
Lin FY, Bergstrom K, Person R, Bavle A, Ballester LY, Scollon S, Raesz-Martinez R, Jea A, Birchansky S, Wheeler DA, Berg SL, Chintagumpala MM, Adesina AM, Eng C, Roy A, Plon SE, Parsons DW. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle. Cold Spring Harb Mol Case Stud 2016; 2:a001057. [PMID: 27626068 PMCID: PMC5002928 DOI: 10.1101/mcs.a001057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care.
Collapse
Affiliation(s)
- Frank Y Lin
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Katie Bergstrom
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Richard Person
- Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Abhishek Bavle
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Leomar Y Ballester
- Department of Pathology, Texas Children's Hospital Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah Scollon
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robin Raesz-Martinez
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andrew Jea
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sherri Birchansky
- Department of Pediatric Radiology, Texas Children's Hospital Baylor College of Medicine, Houston, Texas 77030, USA
| | - David A Wheeler
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA;; Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stacey L Berg
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Murali M Chintagumpala
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adekunle M Adesina
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA;; Department of Pathology, Texas Children's Hospital Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christine Eng
- Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Angshumoy Roy
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA;; Department of Pathology, Texas Children's Hospital Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sharon E Plon
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA;; Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - D Williams Parsons
- Texas Children's Cancer Center and the Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA;; Department of Molecular and Human Genetics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA;; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
91
|
Geissler K, Jäger E, Barna A, Alendar T, Ljubuncic E, Sliwa T, Valent P. Chronic myelomonocytic leukemia patients with RAS pathway mutations show high in vitro myeloid colony formation in the absence of exogenous growth factors. Leukemia 2016; 30:2280-2281. [PMID: 27585952 PMCID: PMC5097063 DOI: 10.1038/leu.2016.235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K Geissler
- Fifth Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
| | - E Jäger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - A Barna
- Blood Transfusion Service for Upper Austria, Austrian Red Cross, Linz, Austria
| | - T Alendar
- Fifth Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
| | - E Ljubuncic
- Fifth Medical Department with Hematology, Oncology and Palliative Medicine, Hospital Hietzing, Vienna, Austria
| | - T Sliwa
- Third Medical Department, Hanusch Hospital, Vienna, Austria
| | - P Valent
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
92
|
Hernández-Martín A, Duat-Rodríguez A. An Update on Neurofibromatosis Type 1: Not Just Café-au-Lait Spots, Freckling, and Neurofibromas. An Update. Part I. Dermatological Clinical Criteria Diagnostic of the Disease. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2016.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
93
|
Hernández-Martín A, Duat-Rodríguez A. An Update on Neurofibromatosis Type 1: Not Just Café-au-Lait Spots, Freckling, and Neurofibromas. An Update. Part I. Dermatological Clinical Criteria Diagnostic of the Disease. ACTAS DERMO-SIFILIOGRAFICAS 2016; 107:454-464. [PMID: 26979265 DOI: 10.1016/j.ad.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/07/2016] [Accepted: 01/17/2016] [Indexed: 01/10/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is the most common neurocutaneous syndrome and probably the one best known to dermatologists, who are generally the first physicians to suspect its diagnosis. Although the genetic locus of NF1 was identified on chromosome 17 in 1987, diagnosis of the disease is still mainly based on clinical observations and the diagnostic criteria of the National Institute of Health, dating from 1988. Cutaneous manifestations are particularly important because café-au-lait spots, freckling on flexural areas, and cutaneous neurofibromas comprise 3 of the 7 clinical diagnostic criteria. However, café-au-lait spots and freckling can also be present in other diseases. These manifestations are therefore not pathognomonic and are insufficient for definitive diagnosis in the early years of life. NF1 is a multisystemic disease associated with a predisposition to cancer. A multidisciplinary follow-up is necessary and dermatologists play an important role.
Collapse
Affiliation(s)
- A Hernández-Martín
- Servicio de Dermatología, Hospital Infantil del Niño Jesús, Madrid, España.
| | - A Duat-Rodríguez
- Servicio de Neurología, Hospital Infantil del Niño Jesús, Madrid, España
| |
Collapse
|
94
|
Hernández-Porras I, Schuhmacher AJ, Garcia-Medina R, Jiménez B, Cañamero M, de Martino A, Guerra C. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice. J Pathol 2016; 239:206-17. [PMID: 27174785 DOI: 10.1002/path.4719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 01/17/2023]
Abstract
The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Alberto J Schuhmacher
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Raquel Garcia-Medina
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Beatriz Jiménez
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Marta Cañamero
- Biotechnology Programs, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Alba de Martino
- Biotechnology Programs, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
95
|
Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet 2015; 47:1334-40. [DOI: 10.1038/ng.3420] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022]
|
96
|
Strauss A, Furlan I, Steinmann S, Buchholz B, Kremens B, Rossig C, Corbacioglu S, Rajagopal R, Lahr G, Yoshimi A, Strahm B, Niemeyer CM, Schulz A. Unmistakable Morphology? Infantile Malignant Osteopetrosis Resembling Juvenile Myelomonocytic Leukemia in Infants. J Pediatr 2015; 167:486-8. [PMID: 25982139 DOI: 10.1016/j.jpeds.2015.04.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
The initial clinical and hematologic presentation of infantile malignant osteopetrosis may be indistinguishable from that of juvenile myelomonocytic leukemia in infants. Timely radiographic imaging, however, allows straightforward delineation of these 2 severe diseases and facilitates immediate initiation of appropriate therapy.
Collapse
Affiliation(s)
- Anne Strauss
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany.
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Sandra Steinmann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Bernd Buchholz
- Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bernhard Kremens
- Department of Pediatric Hematology and Oncology, University of Duisburg-Essen, Essen, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Regensburg, Children's Hospital Regensburg, Regensburg, Germany
| | - Revathi Rajagopal
- Pediatric Hematology-Oncology Unit, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Georgia Lahr
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
97
|
Peripheral blood cells from children with RASopathies show enhanced spontaneous colonies growth in vitro and hyperactive RAS signaling. Blood Cancer J 2015; 5:e324. [PMID: 26186557 PMCID: PMC4526778 DOI: 10.1038/bcj.2015.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023] Open
Abstract
Germline mutations in genes coding for molecules involved in the RAS/RAF/MEK/ERK pathway are the hallmarks of a newly classified family of autosomal dominant syndromes termed RASopathies. Myeloproliferative disorders (MPDs), in particular, juvenile myelomonocytic leukemia, can lead to potentially severe complications in children with Noonan syndrome (NS). We studied 27 children with NS or other RASopathies and 35 age-matched children as control subjects. Peripheral blood (PB) cells from these patients were studied for in vitro colony-forming units (CFUs) activity, as well as for intracellular phosphosignaling. Higher spontaneous growth of both burst-forming units-erythroid (BFU-E) and CFU-granulocyte/macrophage (CFU-GM) colonies from RAS-mutated patients were observed as compared with control subjects. We also observed a significantly higher amount of GM-colony-stimulating factor-induced p-ERK in children with RASopathies. Our findings demonstrate for the first time that PB cells isolated from children suffering from NS or other RASopathies without MPD display enhanced BFU-E and CFU-GM colony formation in vitro. The biological significance of these findings clearly awaits further studies. Collectively, our data provide a basis for further investigating of only partially characterized hematological alterations present in children suffering from RASopathies, and may provide new markers for progression toward malignant MPD in these patients.
Collapse
|
98
|
García-Cruz R, Camats M, Calin GA, Liu CG, Volinia S, Taccioli C, Croce CM, Bach-Elias M. The role of p19 and p21 H-Ras proteins and mutants in miRNA expression in cancer and a Costello syndrome cell model. BMC MEDICAL GENETICS 2015; 16:46. [PMID: 26138095 PMCID: PMC4631104 DOI: 10.1186/s12881-015-0184-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/01/2015] [Indexed: 02/03/2023]
Abstract
Background P19 H-Ras, a second product derived from the H-Ras gene by alternative splicing, induces a G1/S phase delay, thereby maintaining cells in a reversible quiescence state. When P21 H-Ras is mutated in tumour cells, the alternative protein P19 H-Ras is also mutated. The H-Ras mutation Q61L is frequently detected in different tumours, which acts as constitutive activator of Ras functions and is considered to be a strong activating mutant. Additionally, a rare congenital disorder named Costello Syndrome, is described as a H-Ras disorder in children, mainly due to mutation G12S in p19 and p21 H-Ras proteins, which is present in 90 % of the Costello Syndrome patients. Our aim is to better understand the role of p19 and p21 H-Ras proteins in the cancer and Costello Syndrome development, concerning the miRNAs expression. Methods Total miRNAs expression regulated by H-Ras proteins were first analyzed in human miRNA microarrays assays. Previously selected miRNAs, were further analyzed in developed cell lines containing H-Ras protein mutants, that included the G12S Costello Syndrome mutant, with PCR Real-Time Taq Man miRNA Assays primers. Results This study describes how p19 affects the RNA world and shows that: i) miR-342, miR-206, miR-330, miR-138 and miR-99b are upregulated by p19 but not by p19W164A mutant; ii) anti-miR-206 can restore the G2 phase in the presence of p19; iii) p19 and p21Q61L regulate their own alternative splicing; iv) miR-206 and miR-138 are differentially regulated by p19 and p21 H-Ras and v) P19G12S Costello mutants show a clear upregulation of miR-374, miR-126, miR-342, miR-330, miR-335 and let-7. Conclusions These results allow us to conclude that the H-Ras G12S mutation plays an important role in miRNA expression and open up a new line of study to understand the consequences of this mutation on Costello syndrome. Furthermore, they suggest that oncogenes may have a sufficiently important impact on miRNA expression to promote the development of numerous cancers. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0184-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roseli García-Cruz
- Instituto de Investigaciones Biomédicas de Barcelona- CSIC, C/ Egipcíacas15, 08001, Barcelona, Spain.
| | - Maria Camats
- Instituto de Investigaciones Biomédicas de Barcelona- CSIC, C/ Egipcíacas15, 08001, Barcelona, Spain.
| | - George A Calin
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA. .,Present address: Departments of Experimental Therapeutics & Cancer Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Chang-Gong Liu
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Stefano Volinia
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Cristian Taccioli
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Carlo M Croce
- Ohio State University, Department of Molecular Immunology, Virology and Molecular Genetics, Columbus, Ohio, 43210, USA.
| | - Montse Bach-Elias
- Instituto de Investigaciones Biomédicas de Barcelona- CSIC, C/ Egipcíacas15, 08001, Barcelona, Spain.
| |
Collapse
|
99
|
|
100
|
Garavelli L, Cordeddu V, Errico S, Bertolini P, Street ME, Rosato S, Pollazzon M, Wischmeijer A, Ivanovski I, Daniele P, Bacchini E, Lombardi AA, Izzi G, Biasucci G, Del Rossi C, Corradi D, Cazzaniga G, Dominici C, Rossi C, De Luca A, Bernasconi S, Riccardi R, Legius E, Tartaglia M. Noonan syndrome-like disorder with loose anagen hair: a second case with neuroblastoma. Am J Med Genet A 2015; 167A:1902-7. [PMID: 25846317 DOI: 10.1002/ajmg.a.37082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/13/2015] [Indexed: 01/24/2023]
Abstract
Noonan-like syndrome with loose anagen hair (NSLH), also known as Mazzanti syndrome, is a RASopathy characterized by craniofacial features resembling Noonan syndrome, cardiac defects, cognitive deficits and behavioral issues, reduced growth generally associated with GH deficit, darkly pigmented skin, and an unique combination of ectodermal anomalies. Virtually all cases of NSLH are caused by an invariant and functionally unique mutation in SHOC2 (c.4A>G, p.Ser2Gly). Here, we report on a child with molecularly confirmed NSLH who developed a neuroblastoma, first suspected at the age 3 months by abdominal ultrasound examination. Based on this finding, scanning of the SHOC2 coding sequence encompassing the c.4A>G change was performed on selected pediatric cohorts of malignancies documented to occur in RASopathies (i.e., neuroblastoma, brain tumors, rhabdomyosarcoma, acute lymphoblastic, and myeloid leukemia), but failed to identify a functionally relevant cancer-associated variant. While these results do not support a major role of somatic SHOC2 mutations in these pediatric cancers, this second instance of neuroblastoma in NSLAH suggests a possible predisposition to this malignancy in subjects heterozygous for the c.4A>G SHOC2 mutation.
Collapse
Affiliation(s)
- Livia Garavelli
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy
| | - Viviana Cordeddu
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Errico
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy
| | - Patrizia Bertolini
- Department of Pediatric Oncology, Parma University Hospital, Parma, Italy
| | | | - Simonetta Rosato
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy
| | - Anita Wischmeijer
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy.,Department of Medical Genetics, Policlinico Sant'Orsola-Malpighi, University of Bologna, Italy
| | - Ivan Ivanovski
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, IRCCS S. Maria Nuova Hospital, Reggio Emilia, Italy
| | - Paola Daniele
- IRCCS-Casa Sollievo della Sofferenza Hospital, Mendel Institute, Rome, Italy
| | - Ermanno Bacchini
- Department of Pediatrics Radiology, Parma University Hospital, Parma, Italy
| | | | - Giancarlo Izzi
- Department of Pediatric Oncology, Parma University Hospital, Parma, Italy
| | - Giacomo Biasucci
- Department of Pediatrics, "Guglielmo da Saliceto" Hospital, Piacenza, Italy
| | - Carmine Del Rossi
- Department of Pediatric Surgery, Parma University Hospital, Parma, Italy
| | | | - Giovanni Cazzaniga
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Carlo Dominici
- Department of Pediatrics, Università "La Sapienza", Rome, Italy
| | - Cesare Rossi
- Department of Medical Genetics, Policlinico Sant'Orsola-Malpighi, University of Bologna, Italy
| | - Alessandro De Luca
- IRCCS-Casa Sollievo della Sofferenza Hospital, Mendel Institute, Rome, Italy
| | | | - Riccardo Riccardi
- Department of Pediatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eric Legius
- Department of Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marco Tartaglia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|