51
|
Veen CSB, Huisman EJ, Romano LGR, Schipaanboord CWA, Cnossen MH, de Maat MPM, Leebeek FWG, Kruip MJHA. Outcome of Surgical Interventions and Deliveries in Patients with Bleeding of Unknown Cause: An Observational Study. Thromb Haemost 2021; 121:1409-1416. [PMID: 33853179 DOI: 10.1055/s-0041-1726344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The most optimal management for patients with bleeding of unknown cause (BUC) is unknown, as limited data are available. OBJECTIVE Evaluate management and outcome of surgical procedures and deliveries in patients with BUC. MATERIALS AND METHODS All patients ≥12 years of age, referred to a tertiary center for a bleeding tendency, were included. Bleeding phenotype was assessed and hemostatic laboratory work-up was performed. Patients were diagnosed with BUC or an established bleeding disorder (BD). Data on bleeding and treatment during surgical procedures and delivery following diagnosis were collected. RESULTS Of 380 included patients, 228 (60%) were diagnosed with BUC and 152 (40%) with an established BD. In 14/72 (19%) surgical procedures major bleeding occurred and 14/41 (34%) deliveries were complicated by major postpartum hemorrhage (PPH). More specifically, 29/53 (55%) of the BUC patients who underwent surgery received prophylactic treatment to support hemostasis. Despite these precautions, 4/29 (14%) experienced major bleeding. Of BUC patients not treated prophylactically, bleeding occurred in 6/24 (25%). Of pregnant women with BUC, 2/26 (8%) received prophylactic treatment during delivery, one women with and 11 (46%) women without treatment developed major PPH. CONCLUSION Bleeding complications are frequent in BUC patients, irrespective of pre- or perioperative hemostatic treatment. We recommend a low-threshold approach toward administration of hemostatic treatment in BUC patients, especially during delivery.
Collapse
Affiliation(s)
- Caroline S B Veen
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elise J Huisman
- Department of Paediatric Haematology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lorenzo G R Romano
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Marjon H Cnossen
- Department of Paediatric Haematology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Moniek P M de Maat
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank W G Leebeek
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marieke J H A Kruip
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
52
|
Learning the Ropes of Platelet Count Regulation: Inherited Thrombocytopenias. J Clin Med 2021; 10:jcm10030533. [PMID: 33540538 PMCID: PMC7867147 DOI: 10.3390/jcm10030533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Inherited thrombocytopenias (IT) are a group of hereditary disorders characterized by a reduced platelet count sometimes associated with abnormal platelet function, which can lead to bleeding but also to syndromic manifestations and predispositions to other disorders. Currently at least 41 disorders caused by mutations in 42 different genes have been described. The pathogenic mechanisms of many forms of IT have been identified as well as the gene variants implicated in megakaryocyte maturation or platelet formation and clearance, while for several of them the pathogenic mechanism is still unknown. A range of therapeutic approaches are now available to improve survival and quality of life of patients with IT; it is thus important to recognize an IT and establish a precise diagnosis. ITs may be difficult to diagnose and an initial accurate clinical evaluation is mandatory. A combination of clinical and traditional laboratory approaches together with advanced sequencing techniques provide the highest rate of diagnostic success. Despite advancement in the diagnosis of IT, around 50% of patients still do not receive a diagnosis, therefore further research in the field of ITs is warranted to further improve patient care.
Collapse
|
53
|
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians. Blood Rev 2020; 48:100784. [PMID: 33317862 DOI: 10.1016/j.blre.2020.100784] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
The great advances in the knowledge of inherited thrombocytopenias (ITs) made since the turn of the century have significantly changed our view of these conditions. To date, ITs encompass 45 disorders with different degrees of complexity of the clinical picture and very wide variability in the prognosis. They include forms characterized by thrombocytopenia alone, forms that present with other congenital defects, and conditions that predispose to acquire additional diseases over the course of life. In this review, we recapitulate the clinical features of ITs with emphasis on the forms predisposing to additional diseases. We then discuss the key issues for a rational approach to the diagnosis of ITs in clinical practice. Finally, we aim to provide an updated and comprehensive guide to the treatment of ITs, including the management of hemostatic challenges, the treatment of severe forms, and the approach to the manifestations that add to thrombocytopenia.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy.
| | | |
Collapse
|
54
|
Platelet Dysfunction Diseases and Conditions: Clinical Implications and Considerations. Adv Ther 2020; 37:3707-3722. [PMID: 32729008 DOI: 10.1007/s12325-020-01453-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Platelet diseases and dysfunction are taught early in medical school to all future physicians. Understanding of the coagulation cascade and hemostatic mechanisms has allowed for targeted pharmacological therapies that have been significantly impactful in clinical practice. Platelets are an early participant in hemostasis physiologically and under pathophysiological states. METHODS A review of literature involving platelet disfunction. RESULTS Various presentations of platelet diseases and dysfunction challenge clinicians and require a firm understanding of normal platelet function, drugs that mediate or modulate platelet effectiveness, and nonpharmacologic etiologies of platelet diseases and dysfunction with corresponding best practice treatment approaches. CONCLUSION This review summarizes normal and abnormal states associated with platelets and treatment strategies.
Collapse
|
55
|
Dupuis A, Bordet JC, Eckly A, Gachet C. Platelet δ-Storage Pool Disease: An Update. J Clin Med 2020; 9:jcm9082508. [PMID: 32759727 PMCID: PMC7466064 DOI: 10.3390/jcm9082508] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Platelet dense-granules are small organelles specific to the platelet lineage that contain small molecules (calcium, adenyl nucleotides, serotonin) and are essential for the activation of blood platelets prior to their aggregation in the event of a vascular injury. Delta-storage pool diseases (δ-SPDs) are platelet pathologies leading to hemorrhagic syndromes of variable severity and related to a qualitative (content) or quantitative (numerical) deficiency in dense-granules. These pathologies appear in a syndromic or non-syndromic form. The syndromic forms (Chediak–Higashi disease, Hermansky–Pudlak syndromes), whose causative genes are known, associate immune deficiencies and/or oculocutaneous albinism with a platelet function disorder (PFD). The non-syndromic forms correspond to an isolated PFD, but the genes responsible for the pathology are not yet known. The diagnosis of these pathologies is complex and poorly standardized. It is based on orientation tests performed by light transmission aggregometry or flow cytometry, which are supplemented by complementary tests based on the quantification of platelet dense-granules by electron microscopy using the whole platelet mount technique and the direct determination of granule contents (ADP/ATP and serotonin). The objective of this review is to present the state of our knowledge concerning platelet dense-granules and the tools available for the diagnosis of different forms of δ-SPD.
Collapse
Affiliation(s)
- Arnaud Dupuis
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (A.E.); (C.G.)
- Correspondence: ; Tel.: +33-38-821-2506
| | - Jean-Claude Bordet
- Laboratoire D’hématologie, Hospices Civils de Lyon, 59 Bd Pinel, CEDEX, 69677 Bron, France;
| | - Anita Eckly
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (A.E.); (C.G.)
| | - Christian Gachet
- INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Université de Strasbourg, F-67000 Strasbourg, France; (A.E.); (C.G.)
| |
Collapse
|
56
|
Paciullo F, Bury L, Noris P, Falcinelli E, Melazzini F, Orsini S, Zaninetti C, Abdul-Kadir R, Obeng-Tuudah D, Heller PG, Glembotsky AC, Fabris F, Rivera J, Lozano ML, Butta N, Favier R, Cid AR, Fouassier M, Podda GM, Santoro C, Grandone E, Henskens Y, Nurden P, Zieger B, Cuker A, Devreese K, Tosetto A, De Candia E, Dupuis A, Miyazaki K, Othman M, Gresele P. Antithrombotic prophylaxis for surgery-associated venous thromboembolism risk in patients with inherited platelet disorders. The SPATA-DVT Study. Haematologica 2020; 105:1948-1956. [PMID: 31558677 PMCID: PMC7327644 DOI: 10.3324/haematol.2019.227876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Major surgery is associated with an increased risk of venous thromboembolism (VTE), thus the application of mechanical or pharmacologic prophylaxis is recommended. The incidence of VTE in patients with inherited platelet disorders (IPD) undergoing surgical procedures is unknown and no information on the current use and safety of thromboprophylaxis, particularly of low-molecular-weight-heparin in these patients is available. Here we explored the approach to thromboprophylaxis and thrombotic outcomes in IPD patients undergoing surgery at VTE-risk participating in the multicenter SPATA study. We evaluated 210 surgical procedures carried out in 155 patients with well-defined forms of IPD (VTE-risk: 31% high, 28.6% intermediate, 25.2% low, 15.2% very low). The use of thromboprophylaxis was low (23.3% of procedures), with higher prevalence in orthopedic and gynecological surgeries, and was related to VTE-risk. The most frequently employed thromboprophylaxis was mechanical and appeared to be effective, as no patients developed thrombosis, including patients belonging to the highest VTE-risk classes. Low-molecular-weight-heparin use was low (10.5%) and it did not influence the incidence of post-surgical bleeding or of antihemorrhagic prohemostatic interventions use. Two thromboembolic events were registered, both occurring after high VTE-risk procedures in patients who did not receive thromboprophylaxis (4.7%). Our findings suggest that VTE incidence is low in patients with IPD undergoing surgery at VTE-risk and that it is predicted by the Caprini score. Mechanical thromboprophylaxis may be of benefit in patients with IPD undergoing invasive procedures at VTE-risk and low-molecular-weight-heparin should be considered for major surgery.
Collapse
Affiliation(s)
- Francesco Paciullo
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Federica Melazzini
- Department of Internal Medicine, IRCCS Policlinico S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Sara Orsini
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| | - Carlo Zaninetti
- Department of Internal Medicine, IRCCS Policlinico S. Matteo Foundation, University of Pavia, Pavia, Italy
- PhD program in Experimental Medicine, University of Pavia, Pavia, Italy
| | - Rezan Abdul-Kadir
- Haemophilia Centre and Haemostasis Unit, The Royal Free Foundation Hospital and University College London, London, UK
| | - Deborah Obeng-Tuudah
- Haemophilia Centre and Haemostasis Unit, The Royal Free Foundation Hospital and University College London, London, UK
| | - Paula G Heller
- Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Buenos Aires,
Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Médicas -IDIM-, Buenos Aires, Argentina
| | - Ana C Glembotsky
- Hematología Investigación, Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Buenos Aires,
Argentina
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Médicas -IDIM-, Buenos Aires, Argentina
| | - Fabrizio Fabris
- Clinica Medica 1 - Medicina Interna CLOPD, Dipartimento Assistenziale Integrato di Medicina, Azienda-Ospedale Università di Padova, Dipartimento di Medicina, Università di Padova, Padova, Italy
| | - Jose Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguery Centro Regional de Hemodonación, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Maria Luisa Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguery Centro Regional de Hemodonación, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Nora Butta
- Unidad de Hematología, Hospital Universitario La Paz-IDIPaz, Madrid, Spain
| | - Remi Favier
- Assistance Publique-Hôpitaux de Paris, Armand Trousseau Children's Hospital, French Reference Centre for Inherited Platelet Disorders, Paris, France
| | - Ana Rosa Cid
- Unidad de Hemostasia y Trombosis, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | - Marc Fouassier
- Consultations d'Hémostase - CRTH, CHU de Nantes, Nantes, France
| | - Gian Marco Podda
- Medicina III, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Cristina Santoro
- Hematology, Department of Translational and Precision Medicine, La Sapienza University of Rome, Rome, Italy
| | - Elvira Grandone
- Unità di Ricerca in Aterosclerosi e Trombosi, I.R.C.C.S. "Casa Sollievo della Sofferenza", S. Giovanni Rotondo, Foggia, Italy
- Ob/Gyn Department of the First I.M. Sechenov Moscow State Medical University, Moscow, The Russian Federation
| | - Yvonne Henskens
- Hematological Laboratory, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Paquita Nurden
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguery Centro Regional de Hemodonación, IMIB-Arrixaca, Universidad de Murcia, Murcia, Spain
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Adam Cuker
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katrien Devreese
- Coagulation Laboratory, Department of Laboratory Medicine, Ghent University Hospital, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Erica De Candia
- Hemostasis and Thrombosis Unit, Insitute of Internal Medicine, Policlinico Agostino Gemelli Foundation, IRCCS, Rome, Italy
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Arnaud Dupuis
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Koji Miyazaki
- Department of Transfusion and Cell Transplantation Kitasato University School of Medicine, Sagamihara, Japan
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Italy
| |
Collapse
|
57
|
Brunet J, Badin M, Chong M, Iyer J, Tasneem S, Graf L, Rivard GE, Paterson AD, Pare G, Hayward CPM. Bleeding risks for uncharacterized platelet function disorders. Res Pract Thromb Haemost 2020; 4:799-806. [PMID: 32685888 PMCID: PMC7354414 DOI: 10.1002/rth2.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The bleeding risks for nonsyndromic platelet function disorders (PFDs) that impair aggregation responses and/or cause dense granule deficiency (DGD) are uncertain. OBJECTIVES Our goal was to quantify bleeding risks for a cohort of consecutive cases with uncharacterized PFD. METHODS Sequential cases with uncharacterized PFDs that had reduced maximal aggregation (MA) with multiple agonists and/or nonsyndromic DGD were invited to participate along with additional family members to reduce bias. Index cases were further evaluated by exome sequencing, with analysis of RUNX1-dependent genes for cases with RUNX1 sequence variants. Bleeding assessment tools were used to estimate bleeding scores, with bleeding risks estimated as odds ratios (ORs) relative to general population controls. Relationships between symptoms and laboratory findings were also explored. RESULTS Participants with uncharacterized PFD (n = 37; 23 index cases) had impaired aggregation function (70%), nonsyndromic DGD (19%) or both (11%), unlike unaffected relatives. Probable pathogenic RUNX1 variants were found in 2 (9%) index cases/families, whereas others had PFD of unknown cause. Participants with PFD had increased bleeding scores compared to unaffected family members and general population controls, and increased risks for mucocutaneous (OR, 4-207) and challenge-related bleeding (OR, 12-43), and for receiving transfusions for bleeding (OR, 100). Reduced MA with collagen was associated with wound healing problems and bruising, and more severe DGD was associated with surgical bleeding (P < .04). CONCLUSIONS PFDs that impair MA and/or cause nonsyndromic DGD have significantly increased bleeding risks, and some symptoms are more common in those with more severe DGD or impaired collagen aggregation.
Collapse
Affiliation(s)
- Justin Brunet
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Matthew Badin
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Michael Chong
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Janaki Iyer
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Subia Tasneem
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Lucas Graf
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Centre for Laboratory Medicine and Hemophilia and Hemostasis CentreSt. GallenSwitzerland
| | | | - Andrew D. Paterson
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoONCanada
- The Dalla Lana School of Public Health and Institute of Medical SciencesUniversity of TorontoTorontoONCanada
| | - Guillaume Pare
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Catherine P. M. Hayward
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
- Hamilton Regional Laboratory Medicine ProgramMcMaster UniversityHamiltonONCanada
| |
Collapse
|
58
|
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives. Haematologica 2020; 105:2004-2019. [PMID: 32527953 PMCID: PMC7395261 DOI: 10.3324/haematol.2019.233197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Over the last 100 years the role of platelets in hemostatic events and their production by megakaryocytes have gradually been defined. Progressively, thrombocytopenia was recognized as a cause of bleeding, first through an acquired immune disorder; then, since 1948, when Bernard-Soulier syndrome was first described, inherited thrombocytopenia became a fascinating example of Mendelian disease. The platelet count is often severely decreased and platelet size variable; associated platelet function defects frequently aggravate bleeding. Macrothrombocytopenia with variable proportions of enlarged platelets is common. The number of circulating platelets will depend on platelet production, consumption and lifespan. The bulk of macrothrombocytopenias arise from defects in megakaryopoiesis with causal variants in transcription factor genes giving rise to altered stem cell differentiation and changes in early megakaryocyte development and maturation. Genes encoding surface receptors, cytoskeletal and signaling proteins also feature prominently and Sanger sequencing associated with careful phenotyping has allowed their early classification. It quickly became apparent that many inherited thrombocytopenias are syndromic while others are linked to an increased risk of hematologic malignancies. In the last decade, the application of next-generation sequencing, including whole exome sequencing, and the use of gene platforms for rapid testing have greatly accelerated the discovery of causal genes and extended the list of variants in more common disorders. Genes linked to an increased platelet turnover and apoptosis have also been identified. The current challenges are now to use next-generation sequencing in first-step screening and to define bleeding risk and treatment better.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Pessac, France
| | | |
Collapse
|
59
|
Platelet Responses in Cardiovascular Disease: Sex-Related Differences in Nutritional and Pharmacological Interventions. Cardiovasc Ther 2020; 2020:2342837. [PMID: 32547635 PMCID: PMC7273457 DOI: 10.1155/2020/2342837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) represent one of the biggest causes of death globally, and their prevalence, aetiology, and outcome are related to genetic, metabolic, and environmental factors, among which sex- and age-dependent differences may play a key role. Among CVD risk factors, platelet hyperactivity deserves particular mention, as it is involved in the pathophysiology of main cardiovascular events (including stroke, myocardial infarction, and peripheral vascular injury) and is closely related to sex/age differences. Several determinants (e.g., hormonal status and traditional cardiovascular risk factors), together with platelet-related factors (e.g., plasma membrane composition, receptor signaling, and platelet-derived microparticles) can elucidate sex-related disparity in platelet functionality and CVD onset and outcome, especially in relation to efficacy of current primary and secondary interventional strategies. Here, we examined the state of the art concerning sex differences in platelet biology and their relationship with specific cardiovascular events and responses to common antiplatelet therapies. Moreover, as healthy nutrition is widely recognized to play a key role in CVD, we also focused our attention on specific dietary components (especially polyunsaturated fatty acids and flavonoids) and patterns (such as Mediterranean diet), which also emerged to impact platelet functions in a sex-dependent manner. These results highlight that full understanding of gender-related differences will be useful for designing personalized strategies, in order to prevent and/or treat platelet-mediated vascular damage.
Collapse
|
60
|
Paciullo F, Fierro T, Calcinaro F, Zucca Giucca G, Gresele P, Bury L. Long-term treatment with thalidomide for severe recurrent hemorrhage from intestinal angiodysplasia in Glanzmann Thrombasthenia. Platelets 2020; 32:288-291. [PMID: 32200672 DOI: 10.1080/09537104.2020.1745169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gastrointestinal angiodysplasia (GIA) is the most common cause of occult gastrointestinal bleeding (GIB) requiring often hospitalization and transfusions, especially in patients with hemorrhagic disorders. Thalidomide, impairing neo-angiogenesis, has been successfully used in the management of bleeding in patients with GIA and in particular in patients with inherited bleeding disorders. Only one case of short-term treatment with thalidomide in a patient with Glanzmann thrombasthenia (GT) and recurrent GIB due to GIA has been reported so far.We report the case of a woman with GT developing high frequency recurrent GIB due to GIA requiring repeated blood and platelet transfusions, who was treated with thalidomide obtaining a striking and stable reduction of GIB and of the requirement of platelet and blood transfusions for over 5 years. Moreover, we raise the suspicion that the association between GT and GIA may not be fortuitous.
Collapse
Affiliation(s)
- Francesco Paciullo
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Tiziana Fierro
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Filippo Calcinaro
- Division of Internal Medicine and Division of Immunology and Transfusion, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Gianfranco Zucca Giucca
- Division of Internal Medicine and Division of Immunology and Transfusion, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
61
|
Gresele P, Falcinelli E, Bury L. Inherited platelet disorders in women. Thromb Res 2020; 181 Suppl 1:S54-S59. [PMID: 31477229 DOI: 10.1016/s0049-3848(19)30368-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023]
Abstract
Inherited platelet disorders (IPD) are a heterogeneous group of hemorrhagic diseases affecting both men and women, but usually associated with more evident bleeding symptoms in women due to the exposure to sexspecific hemostatic challenges, like menstruation and delivery. Indeed, up to 50% of women presenting with menorrhagia are diagnosed an IPD, moreover women with IPD can have ovulation-associated bleeding events and are at higher risk of endometriosis. Large retrospective studies have shown that women with IPD have a significantly increased risk of post-partum hemorrhage, predicted by a high bleeding score at previous history and by a platelet count below 50X109/L. In addition, in patients with IPD, female sex was associated with a higher frequency of excessive bleeding after surgery, even when excluding gynecological procedures. In conclusion, IPD may represent a serious problem for women's health, and their diagnosis and appropriate management is crucial to ensure female patients a good quality of life.
Collapse
Affiliation(s)
- Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy.
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
62
|
Gresele P, Orsini S, Noris P, Falcinelli E, Alessi MC, Bury L, Borhany M, Santoro C, Glembotsky AC, Cid AR, Tosetto A, De Candia E, Fontana P, Guglielmini G, Pecci A. Validation of the ISTH/SSC bleeding assessment tool for inherited platelet disorders: A communication from the Platelet Physiology SSC. J Thromb Haemost 2020; 18:732-739. [PMID: 31750621 DOI: 10.1111/jth.14683] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Careful assessment of bleeding history is the first step in the evaluation of patients with mild/moderate bleeding disorders, and the use of a bleeding assessment tool (BAT) is strongly encouraged. Although a few studies have assessed the utility of the ISTH-BAT in patients with inherited platelet function disorders (IPFD) none of them was sufficiently large to draw conclusions and/or included appropriate control groups. OBJECTIVES The aim of the present study was to test the utility of the ISTH-BAT in a large cohort of patients with a well-defined diagnosis of inherited platelets disorder in comparison with two parallel cohorts, one of patients with type-1 von Willebrand disease (VWD-1) and one of healthy controls (HC). PATIENTS/METHODS We enrolled 1098 subjects, 482 of whom had inherited platelet disorders (196 IPFD and 286 inherited platelet number disorders [IT]) from 17 countries. RESULTS IPFD patients had significantly higher bleeding score (BS; median 9) than VWD-1 patients (median 5), a higher number of hemorrhagic symptoms (4 versus 3), and higher percentage of patients with clinically relevant symptoms (score > 2). The ISTH-BAT showed excellent discrimination power between IPFD and HC (0.9 < area under the curve [AUC] < 1), moderate (0.7 < AUC < 0.9) between IPFD and VWD-1 and between IPFD and inherited thrombocytopenia (IT), while it was inaccurate (AUC ≤ 0.7) in discriminating IT from HC. CONCLUSIONS The ISTH-BAT allows to efficiently discriminate IPFD from HC, while it has lower accuracy in distinguishing IPFD from VWD-1. Therefore, the ISTH-BAT appears useful for identifying subjects requiring laboratory evaluation for a suspected IPFD once VWD is preliminarily excluded.
Collapse
Affiliation(s)
- Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Sara Orsini
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico S. Matteo Foundation, University of Pavia, Pavia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | | | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Munira Borhany
- Department of Hematology, Haemostasis & Thrombosis at National Institute of Blood Disease & Bone Marrow Transplantation, Karachi, Pakistan
| | - Cristina Santoro
- Hematology, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Ana C Glembotsky
- Instituto de Investigaciones Médicas A. Lanari, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento Hematología Investigación, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Buenos Aires, Argentina
| | - Ana Rosa Cid
- Unidad de Hemostasia y Trombosis, Hospital Universitario y Politecnico La Fe, Valencia, Spain
| | | | - Erica De Candia
- Hemostasis and Thrombosis Unit, Fondazione Policlinico Agostino Gemelli IRCCS, Roma, Italy
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Pierre Fontana
- Platelet Group and Division of Angiology and Hemostasis, University Hospitals of Geneva, Geneva, Switzerland
| | - Giuseppe Guglielmini
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico S. Matteo Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
63
|
Zaninetti C, Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J Clin Med 2020; 9:jcm9020539. [PMID: 32079152 PMCID: PMC7074415 DOI: 10.3390/jcm9020539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. In principle, it is based on visualizing alterations in the distribution of proteins, which result from specific genetic mutations by using monoclonal antibodies. It can be applied to identify deficiencies in membrane proteins, disturbed distribution of cytoskeletal proteins, and alpha as well as delta granules. On the other hand, mutations associated with impaired signal transduction are difficult to identify by immunofluorescence of blood smears. This review summarizes technical aspects and the main diagnostic patterns achievable by this method.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-865482; Fax: +49-3834-865489
| |
Collapse
|
64
|
Rabbolini D, Connor D, Morel-Kopp MC, Donikian D, Kondo M, Chen W, Alessi MC, Stevenson W, Chen V, Joseph J, Brighton T, Ward C. An integrated approach to inherited platelet disorders: results from a research collaborative, the Sydney Platelet Group. Pathology 2020; 52:243-255. [PMID: 31932033 DOI: 10.1016/j.pathol.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023]
Abstract
Inherited disorders of platelet function (IPFD) and/or number (IPND) are heterogeneous conditions that result in variable mucocutaneous bleeding symptoms as a result of deranged primary haemostasis caused by platelet dysfunction or thrombocytopenia. Diagnosis is important to guide post-operative bleeding prophylactic strategies, to avoid treatment with inappropriate medications, and inform prognosis. Achieving an accurate diagnosis has traditionally been hampered by the requirement of multiple, often complex, laboratory tests that are not always available at single centres. To improve the diagnosis of these disorders a research collaborative was established, the Sydney Platelet Group, that explored an integrated approach combining traditional and contemporary platelet phenotypic and genetic diagnostic platforms available at four Sydney tertiary hospitals. Herein we report the outcomes of the first 50 patients evaluated using this approach. The cohort included 22 individuals with suspected IPFD and 28 with thrombocytopenia. Bleeding scores were higher in individuals with IPFD (mean 5.75; SD 4.83) than those with IPNDs (mean 2.14; SD 2.45). In cases with suspected IPFD, diagnosis to the level of the defective pathway was achieved in 71% and four individuals were found not to have a definitive platelet function defect. Dense granule secretion disorders were the most common platelet pathway abnormality detected (n=5). Mean bleeding scores in these individuals were not significantly different to individuals with defects in other commonly detected platelet pathways (dense granules, signal transduction and 'undetermined'). A molecular diagnosis was achieved in 52% of individuals with IPNDs and 5% with IPFD. Likely pathogenic and pathogenic variants detected included variants associated with extra-haematological complications (DIAPH1, MYH9) and potential for malignancy (ANKRD26 and RUNX1). The level of platelet investigation undertaken by this initiative is currently not available elsewhere in Australia and initial results confirm the utility of this integrated phenotypic-genetic approach.
Collapse
Affiliation(s)
- David Rabbolini
- Lismore Base Hospital, Lismore, NSW, Australia; Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
| | - David Connor
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - Marie-Christine Morel-Kopp
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Dea Donikian
- Prince of Wales Hospital, Sydney, NSW, Australia; Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Mayuko Kondo
- Prince of Wales Hospital, Sydney, NSW, Australia; Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Walter Chen
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Marie-Christine Alessi
- Laboratory of Haematology, University Hospital of La Timone, French Reference Centre for Rare Platelet Disorders, Marseille, France
| | - William Stevenson
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Vivien Chen
- ANZAC Research Institute and Concord Repatriation Hospital, Concord, NSW, Australia; Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Joanne Joseph
- St Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia; St Vincent's Hospital, Sydney, NSW, Australia
| | - Timothy Brighton
- Prince of Wales Hospital, Sydney, NSW, Australia; Haematology NSW Health Pathology Randwick, Sydney, NSW, Australia
| | - Christopher Ward
- Northern Blood Research Centre, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
65
|
Lee RH, Piatt R, Dhenge A, Lozano ML, Palma-Barqueros V, Rivera J, Bergmeier W. Impaired hemostatic activity of healthy transfused platelets in inherited and acquired platelet disorders: Mechanisms and implications. Sci Transl Med 2019; 11:eaay0203. [PMID: 31826978 PMCID: PMC10824274 DOI: 10.1126/scitranslmed.aay0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
Abstract
Platelet transfusions can fail to prevent bleeding in patients with inherited platelet function disorders (IPDs), such as Glanzmann's thrombasthenia (GT; integrin αIIbβ3 dysfunction), Bernard-Soulier syndrome [BSS; glycoprotein (GP) Ib/V/IX dysfunction], and the more recently identified nonsyndromic RASGRP2 variants. Here, we used IPD mouse models and real-time imaging of hemostatic plug formation to investigate whether dysfunctional platelets impair the hemostatic function of healthy donor [wild-type (WT)] platelets. In Rasgrp2-/- mice or mice with platelet-specific deficiency in the integrin adaptor protein TALIN1 ("GT-like"), WT platelet transfusion was ineffective unless the ratio between mutant and WT platelets was ~2:1. In contrast, thrombocytopenic mice or mice lacking the extracellular domain of GPIbα ("BSS-like") required very few transfused WT platelets to normalize hemostasis. Both Rasgrp2-/- and GT-like, but not BSS-like, platelets effectively localized to the injury site. Mechanistic studies identified at least two mechanisms of interference by dysfunctional platelets in IPDs: (i) delayed adhesion of WT donor platelets due to reduced access to GPIbα ligands exposed at sites of vascular injury and (ii) impaired consolidation of the hemostatic plug. We also investigated the hemostatic activity of transfused platelets in the setting of dual antiplatelet therapy (DAPT), an acquired platelet function disorder (APD). "DAPT" platelets did not prolong the time to initial hemostasis, but plugs were unstable and frequent rebleeding was observed. Thus, we propose that the endogenous platelet count and the ratio of transfused versus endogenous platelets should be considered when treating select IPD and APD patients with platelet transfusions.
Collapse
Affiliation(s)
- Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Raymond Piatt
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ankita Dhenge
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - María L Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Murcia 30003, Spain
| | - Verónica Palma-Barqueros
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Murcia 30003, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CB15/00055-CIBERER, Murcia 30003, Spain
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
66
|
Carrascal Y, Laguna G, Blanco M, Segura B, Martínez‐Almeida I. Gray platelet syndrome: Management of perioperative bleeding in redo cardiac surgery. J Card Surg 2019; 35:457-459. [DOI: 10.1111/jocs.14354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yolanda Carrascal
- Cardiac Surgery DepartmentUniversity Hospital ValladolidValladolid Spain
| | - Gregorio Laguna
- Cardiac Surgery DepartmentUniversity Hospital ValladolidValladolid Spain
| | - Miriam Blanco
- Cardiac Surgery DepartmentUniversity Hospital ValladolidValladolid Spain
| | - Bárbara Segura
- Cardiac Surgery DepartmentUniversity Hospital ValladolidValladolid Spain
| | | |
Collapse
|
67
|
Bury L, Megy K, Stephens JC, Grassi L, Greene D, Gleadall N, Althaus K, Allsup D, Bariana TK, Bonduel M, Butta NV, Collins P, Curry N, Deevi SVV, Downes K, Duarte D, Elliott K, Falcinelli E, Furie B, Keeling D, Lambert MP, Linger R, Mangles S, Mapeta R, Millar CM, Penkett C, Perry DJ, Stirrups KE, Turro E, Westbury SK, Wu J, BioResource N, Gomez K, Freson K, Ouwehand WH, Gresele P, Simeoni I. Next-generation sequencing for the diagnosis of MYH9-RD: Predicting pathogenic variants. Hum Mutat 2019; 41:277-290. [PMID: 31562665 PMCID: PMC6972977 DOI: 10.1002/humu.23927] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
The heterogeneous manifestations of MYH9‐related disorder (MYH9‐RD), characterized by macrothrombocytopenia, Döhle‐like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE‐BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9‐RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9‐RD should always be considered. A HTS‐based strategy is a reliable method to reach a conclusive diagnosis of MYH9‐RD in clinical practice.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Jonathan C Stephens
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Daniel Greene
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,Department of Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nick Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Karina Althaus
- Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.,Transfusion Medicine, Medical Faculty Tübingen, Tübingen, Germany
| | - David Allsup
- Hull York Medical School, University of Hull, York, UK
| | - Tadbir K Bariana
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, UK
| | - Mariana Bonduel
- Hematology/Oncology Department, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Nora V Butta
- Servicio de Hematología y Hemoterapia Hospital, Universitario La Paz-IDIPaz, Madrid, Spain
| | - Peter Collins
- Arthur Bloom Haemophilia Centre, Institute of Infection and Immunity, School of Medicine, Cardiff University, UK
| | - Nicola Curry
- Department of Clinical Haematology, Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford, UK
| | - Sri V V Deevi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Daniel Duarte
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Kim Elliott
- Oxford Haemophilia & Thrombosis Centre, Department of Haematology, Oxford University Hospitals NHS Trust, Churchill Hospital, Oxford and the NIHR BRC, Blood Theme, Oxford Centre for Haematology, Oxford, UK
| | - Emanuela Falcinelli
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Bruce Furie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | | | - Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rachel Linger
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Sarah Mangles
- Basingstoke and Hampshire Hospital, NHS Foundation Trust, UK
| | - Rutendo Mapeta
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Carolyn M Millar
- Hampshire Hospital NHS Foundation Trust, UK.,Centre for Haematology, Hammersmith Campus, Imperial College Academic Health Sciences Centre, Imperial College London, London, UK
| | - Christopher Penkett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - David J Perry
- Department of Haematology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kathleen E Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, Cambridge Institute of Public Health, Cambridge, UK
| | - Sarah K Westbury
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John Wu
- British Columbia Children's Hospital, Vancouver, Canada
| | - Nihr BioResource
- NIHR BioResource, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| | - Keith Gomez
- Transfusion Medicine, Medical Faculty Tübingen, Tübingen, Germany
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK.,NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, UK.,Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Paolo Gresele
- Department of Internal Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Ilenia Simeoni
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.,NIHR BioResource - Rare Diseases, Cambridge Biomedical Campus, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
68
|
Fundamentals for a Systematic Approach to Mild and Moderate Inherited Bleeding Disorders: An EHA Consensus Report. Hemasphere 2019; 3:e286. [PMID: 31942541 PMCID: PMC6919472 DOI: 10.1097/hs9.0000000000000286] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Healthy subjects frequently report minor bleedings that are frequently ‘background noise’ of normality rather than a true disorder. Nevertheless, unexpected or unusual bleeding may be alarming. Thus, the distinction between normal and pathologic bleeding is critical. Understanding the underlying pathologic mechanism in patients with an excessive bleeding is essential for their counseling and treatment. Most of these patients with significant bleeding will result affected by non-severe inherited bleeding disorders (BD), collectively denominated mild or moderate BD for their relatively benign course. Unfortunately, practical recommendations for the management of these disorders are still lacking due to the current state of fragmented knowledge of pathophysiology and lack of a systematic diagnostic approach. To address this gap, an International Working Group (IWG) was established by the European Hematology Association (EHA) to develop consensus-based guidelines on these disorders. The IWG agreed that grouping these disorders by their clinical phenotype under the single category of mild-to-moderate bleeding disorders (MBD) reflects current clinical practice and will facilitate a systematic diagnostic approach. Based on standardized and harmonized definitions a conceptual unified framework is proposed to distinguish normal subjects from affected patients. The IWG proposes a provisional comprehensive patient-centered initial diagnostic approach that will result in classification of MBD into distinct clinical-pathological entities under the overarching principle of clinical utility for the individual patient. While we will present here a general overview of the global management of patients with MBD, this conceptual framework will be adopted and validated in the evidence-based, disease-specific guidelines under development by the IWG.
Collapse
|
69
|
Gentilini F, Turba ME, Giancola F, Chiocchetti R, Bernardini C, Dajbychova M, Jagannathan V, Drögemüller M, Drögemüller C. A large deletion in the GP9 gene in Cocker Spaniel dogs with Bernard-Soulier syndrome. PLoS One 2019; 14:e0220625. [PMID: 31484196 PMCID: PMC6726462 DOI: 10.1371/journal.pone.0220625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/20/2019] [Indexed: 12/16/2022] Open
Abstract
Inherited bleeding disorders including abnormalities of platelet number and function rarely occur in a variety of dog breeds, but are probably underdiagnosed. Genetically characterized canine forms of platelet disorders provide valuable large animal models for understanding similar platelet disorders in people. Breed-specific disease associated genetic variants in only eight different genes are known to cause intrinsic platelet disorders in dogs. However, the causative genetic variant in many dog breeds has until now remained unknown. Four cases of a mild to severe bleeding disorder in Cocker Spaniel dogs are herein presented. The affected dogs showed a platelet adhesion defect characterized by macrothrombocytopenia with variable platelet counts resembling human Bernard-Soulier syndrome (BSS). Furthermore, the lack of functional GPIb-IX-V was demonstrated by immunocytochemistry. Whole genome sequencing of one affected dog and visual inspection of the candidate genes identified a deletion in the glycoprotein IX platelet (GP9) gene. The GP9 gene encodes a subunit of a platelet surface membrane glycoprotein complex; this functions as a receptor for von Willebrand factor, which initiates the maintenance of hemostasis after injury. Variants in human GP9 are associated with Bernard-Soulier syndrome, type C. The deletion spanned 2460 bp, and included a significant part of the single coding exon of the canine GP9 gene on dog chromosome 20. The variant results in a frameshift and premature stop codon which is predicted to truncate almost two-thirds of the encoded protein. PCR-based genotyping confirmed recessive inheritance. The homozygous variant genotype seen in affected dogs did not occur in 98 control Cocker Spaniels. Thus, it was concluded that the structural variant identified in the GP9 gene was most likely causative for the BSS-phenotype in the dogs examined. These findings provide the first large animal GP9 model for this group of inherited platelet disorders and greatly facilitate the diagnosis and identification of affected and/or normal carriers in Cocker Spaniels.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| | | | - Fiorella Giancola
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
70
|
Shapiro A. The use of prophylaxis in the treatment of rare bleeding disorders. Thromb Res 2019; 196:590-602. [PMID: 31420204 DOI: 10.1016/j.thromres.2019.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022]
Abstract
Rare bleeding disorders (RBDs) are a heterogeneous group of coagulation factor deficiencies that include fibrinogen, prothrombin, α2-antiplasmin, plasminogen activator inhibitor-1, and factors II, V, V/VIII, VII, X, XI and XIII. The incidence varies based upon the disorder and typically ranges from 1 in 500,000 to 1 per million population. Symptoms vary with the disorder and residual level of the clotting factor, and can range from relatively minor such as epistaxis, to life threatening, such as intracranial hemorrhage. Rapid treatment of bleeding episodes in individuals with severe bleeding phenotypes is essential to preserve life or limb and to prevent long-term sequelae; therapeutic options depend on the deficiency and range from plasma-derived (eg, fresh frozen plasma, prothrombin complex concentrates, factor X concentrate) to highly purified and recombinant single factor concentrates. The rarity of these disorders limits the feasibility of conventional prospective clinical trials; instead, clinicians rely upon registries, published case reports/series and experience to guide treatment. In some disorders, long-term prophylactic therapy is administered in response to the bleeding phenotype in an individual patient or based on the known natural history and severity of the deficiency. Intermittent prophylaxis, surrounding surgery, pregnancy, labor, and menstruation may be required to prevent or control excessive bleeding. This review summarizes therapeutic options, guidelines, recommendations and observations from the published literature for long-term, surgical, gynecological, and obstetric prophylaxis in deficiencies of fibrinogen; prothrombin; factors II, V, V/VIII, VII, X, XI and XIII; combined vitamin-K dependent factors; α2-antiplasmin; and plasminogen activator inhibitor 1. Platelet disorders including Glanzmann's thrombasthenia and Bernard-Soulier syndrome are also addressed.
Collapse
Affiliation(s)
- Amy Shapiro
- Indiana Hemophilia & Thrombosis Center, 8326 Naab Rd., Indianapolis, IN 46260, USA.
| |
Collapse
|
71
|
Zaninetti C, Gresele P, Bertomoro A, Klersy C, De Candia E, Veneri D, Barozzi S, Fierro T, Alberelli MA, Musella V, Noris P, Fabris F, Balduini CL, Pecci A. Eltrombopag for the treatment of inherited thrombocytopenias: a phase II clinical trial. Haematologica 2019; 105:820-828. [PMID: 31273088 PMCID: PMC7049343 DOI: 10.3324/haematol.2019.223966] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with inherited thrombocytopenias often require platelet transfusions to raise their platelet count before surgery or other invasive procedures; moreover, subjects with clinically significant spontaneous bleeding may benefit from an enduring improvement of thrombocytopenia. The hypothesis that thrombopoietin-mimetics can increase platelet count in inherited thrombocytopenias is appealing, but evidence is scarce. We conducted a prospective, phase II clinical trial to investigate the efficacy of the oral thrombopoietin-mimetic eltrombopag in different forms of inherited thrombocytopenia. We enrolled 24 patients affected by MYH9-related disease, ANKRD26-related thrombocytopenia, X-linked thrombocytopenia/ Wiskott-Aldrich syndrome, monoallelic Bernard-Soulier syndrome, or ITGB3-related thrombocytopenia. The average pre-treatment platelet count was 40.4 ×109/L. Patients received a 3- to 6-week course of eltrombopag in a dose-escalated manner. Of 23 patients evaluable for response, 11 (47.8%) achieved a major response (platelet count >100 ×109/L), ten (43.5%) had a minor response (platelet count at least twice the baseline value), and two patients (8.7%) did not respond. The average increase of platelet count compared to baseline was 64.5 ×109/L (P<0.001). Four patients with clinically significant spontaneous bleeding entered a program of long-term eltrombopag administration (16 additional weeks): all of them obtained remission of mucosal hemorrhages, with the remission persisting throughout the treatment period. Treatment was globally well tolerated: five patients reported mild adverse events and one patient a moderate adverse event. In conclusion, eltrombopag was safe and effective in increasing platelet count and reducing bleeding symptoms in different forms of inherited thrombocytopenia. Despite these encouraging results, caution is recommended when using thrombopoietinmimetics in inherited thrombocytopenias predisposing to leukemia. ClinicalTrials.gov identifier: NCT02422394.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia.,PhD course in Experimental Medicine, University of Pavia, Pavia
| | - Paolo Gresele
- Department of Medicine, University of Perugia, Perugia
| | | | - Catherine Klersy
- Service of Clinical Epidemiology & Biometry, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| | - Erica De Candia
- IRCCS Policlinico Universitario A. Gemelli Foundation, Roma.,Institute of Internal Medicine and Geriatrics, Catholic University of the Sacred Heart, Roma
| | - Dino Veneri
- Department of Medicine, Section of Hematology, University of Verona, Verona
| | - Serena Barozzi
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| | | | | | - Valeria Musella
- Service of Clinical Epidemiology & Biometry, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| | - Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| | | | - Carlo L Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia.,Ferrata-Storti Foundation, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia
| |
Collapse
|
72
|
Hayward CPM, Moffat KA, Brunet J, Carlino SA, Plumhoff E, Meijer P, Zehnder JL. Update on diagnostic testing for platelet function disorders: What is practical and useful? Int J Lab Hematol 2019; 41 Suppl 1:26-32. [PMID: 31069975 DOI: 10.1111/ijlh.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Platelet function disorders (PFD) are an important group of bleeding disorders that require validated and practical laboratory strategies for diagnosis. METHODS This review summarizes the authors' experiences, current literature, and an international survey to evaluate the practices of diagnostic laboratories that offer tests for PFD. RESULTS Blood counts, blood film review, and aggregation tests are the most commonly performed investigations for PFD and help determine whether there is thrombocytopenia and/or defective platelet function due to a variety of causes. The performance characteristics of tests for PFD, and the level of evidence that these tests detect bleeding problems, are important issues to determine where tests are useful for diagnostic or correlative purposes, or research only uses. Platelet aggregation assays, and quantitative analysis of platelet dense granule numbers, are tests with good performance characteristics that detect abnormalities associated with increased bleeding in a significant proportion of individuals referred for PFD investigations. Lumiaggregometry estimates of platelet adenosine triphosphate release show greater variability which limits the diagnostic usefulness. Diagnostic laboratories report that fiscal and other constraints, including a lack of high-quality evidence, limit their ability to offer an expanded test menu for PFD. CONCLUSION PFD are clinically important bleeding disorders that remain challenging for diagnostic laboratories to investigate. While some PFD tests are well validated for diagnostic purposes, gaps in scientific evidence and resource limitations influence diagnostic laboratory decisions on which PFD tests to offer.
Collapse
Affiliation(s)
- Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Karen A Moffat
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Justin Brunet
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephen A Carlino
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | | | - Piet Meijer
- ECAT Foundation, Voorschoten, The Netherlands
| | - James L Zehnder
- Departments of Pathology and Medicine, Stanford University, Stanford, California
| |
Collapse
|
73
|
Acquired platelet function disorders. Thromb Res 2019; 196:561-568. [PMID: 31229273 DOI: 10.1016/j.thromres.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
Abstract
The possibility of an acquired platelet function disorder should be considered in patients who present with recent onset muco-cutaneous bleeding. Despite the availability of newer and faster platelet function assays, light transmission aggregometry (LTA) remains the preferred diagnostic test. This review examines and discusses the causes of acquired platelet dysfunction; most commonly drugs, dietary factors, medical disorders and procedures. In addition to well-known antiplatelet therapies, clinicians should be alert for newer drugs which can affect platelets, such as ibrutinib. There is little clinical trial evidence to guide the management of acquired platelet function defects, but we summarise commonly employed strategies, which include addressing the underlying cause, antifibrinolytic agents, desmopressin infusions, and in selected patients, platelet transfusions.
Collapse
|
74
|
Godier A, Garrigue D, Lasne D, Fontana P, Bonhomme F, Collet JP, de Maistre E, Ickx B, Gruel Y, Mazighi M, Nguyen P, Vincentelli A, Albaladejo P, Lecompte T. Management of antiplatelet therapy for non elective invasive procedures of bleeding complications: proposals from the French working group on perioperative haemostasis (GIHP), in collaboration with the French Society of Anaesthesia and Intensive Care Medicine (SFAR). Anaesth Crit Care Pain Med 2019; 38:289-302. [DOI: 10.1016/j.accpm.2018.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 12/12/2022]
|
75
|
Rehni AK, Shukla V, Navarro Quero H, Bidot C, Haase CR, Crane EAA, Patel SG, Koch S, Ahn YS, Jy W, Dave KR. Preclinical Evaluation of Safety and Biodistribution of Red Cell Microparticles: A Novel Hemostatic Agent. J Cardiovasc Pharmacol Ther 2019; 24:474-483. [PMID: 31035782 DOI: 10.1177/1074248419838512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Uncontrollable bleeding is a major cause of mortality and morbidity worldwide. Effective hemostatic agents are urgently needed. Red cell microparticles (RMPs) are a highly promising hemostatic agent. This study evaluated the safety profile of RMPs preliminary to clinical trial. METHODS AND RESULTS RMPs were prepared from type O+ human red blood cell by high-pressure extrusion. Male rats were treated with RMPs either a 1 × bolus, or 4 × or 20 × administered over 60 minutes. The vehicle-treated group was used as a control. Effects on physiological parameters were evaluated; namely, blood pressure, body and head temperature, hematocrit, and blood gases. We did not observe any adverse effects of RMPs on these physiological parameters. In addition, brain, heart, and lungs of rats treated with 4 × dose (bolus followed by infusion over 60 minutes) or vehicle were examined histologically for signs of thrombosis or other indications of toxicity. No thrombosis or indications of toxicity in brain, heart, or lungs were observed. Studies revealed that RMPs were distributed mainly in liver, spleen, and lymph nodes, and were potentially excreted through the kidneys. CONCLUSIONS Our study indicates that RMP administration appears not to have any negative impact on the parameters studied and did not produce thrombosis in heart, brain, and lungs. However, more detailed long-term studies confirming the safety of RMP as a hemostatic agent are warranted.
Collapse
Affiliation(s)
- Ashish K Rehni
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vibha Shukla
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hever Navarro Quero
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos Bidot
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Conner R Haase
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ensign Anise A Crane
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shivam G Patel
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Koch
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yeon S Ahn
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenche Jy
- 3 Wallace H Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- 1 Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA.,2 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,4 Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
76
|
Boknäs N, Macwan AS, Södergren AL, Ramström S. Platelet function testing at low platelet counts: When can you trust your analysis? Res Pract Thromb Haemost 2019; 3:285-290. [PMID: 31011713 PMCID: PMC6462761 DOI: 10.1002/rth2.12193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/09/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although flow cytometry is often brought forward as a preferable method in the setting of thrombocytopenia, the relative effects of low sample counts on results from flow cytometry-based platelet function testing (FC-PFT) in comparison with light transmission aggregometry (LTA) and multiple electrode aggregometry (MEA) has not been reported. OBJECTIVES To compare the effects of different sample platelet counts (10, 50, 100, and 200 × 109 L-1) on platelet activation measured with FC-PFT, LTA, and MEA using the same anticoagulant and agonist concentrations as for the commercial MEA test. METHODS Platelets were stimulated with two commonly used platelet agonists (ADP [6.5 μmol L-1] and PAR1-AP [TRAP, 32 μmol L-1]). The specified sample platelet counts were obtained by combining platelet-rich and platelet poor hirudinized plasma in different proportions with or without red blood cells. RESULTS For FC, P-selectin exposure and PAC-1 binding was reduced at 10 × 109 L-1 after stimulation with PAR1-AP (by approximately 20% and 50%, respectively), but remained relatively unchanged when ADP was used as agonist (n = 9). The platelet count-dependent effects observed with PAR1-AP were eliminated when samples were pre-incubated with apyrase, implying that reduced purinergic signaling was the main underlying factor (n = 5). Both aggregometry-based PFTs showed a 50% reduction at 50 × 109 L-1 and more than 80% reduction at 10 × 109 L-1, irrespective of agonist used (n = 7). CONCLUSIONS Although FC-PFT is generally preferable to aggregometry-based PFTs in situations with low sample platelet counts, a careful optimization of experimental parameters is still required in order to eliminate platelet count-related effects.
Collapse
Affiliation(s)
- Niklas Boknäs
- Department of Haematology and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- Australian Centre for Blood DiseasesMonash UniversityMelbourneAustralia
| | - Ankit S. Macwan
- Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Anna L. Södergren
- Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
- Cardiovascular Research CentreÖrebro UniversitySchool of Medical SciencesÖrebroSweden
| |
Collapse
|
77
|
Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Riddez L, Samama CM, Vincent JL, Rossaint R. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23:98. [PMID: 30917843 PMCID: PMC6436241 DOI: 10.1186/s13054-019-2347-3] [Citation(s) in RCA: 743] [Impact Index Per Article: 123.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Severe traumatic injury continues to present challenges to healthcare systems around the world, and post-traumatic bleeding remains a leading cause of potentially preventable death among injured patients. Now in its fifth edition, this document aims to provide guidance on the management of major bleeding and coagulopathy following traumatic injury and encourages adaptation of the guiding principles described here to individual institutional circumstances and resources. METHODS The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma was founded in 2004, and the current author group included representatives of six relevant European professional societies. The group applied a structured, evidence-based consensus approach to address scientific queries that served as the basis for each recommendation and supporting rationale. Expert opinion and current clinical practice were also considered, particularly in areas in which randomised clinical trials have not or cannot be performed. Existing recommendations were re-examined and revised based on scientific evidence that has emerged since the previous edition and observed shifts in clinical practice. New recommendations were formulated to reflect current clinical concerns and areas in which new research data have been generated. RESULTS Advances in our understanding of the pathophysiology of post-traumatic coagulopathy have supported improved management strategies, including evidence that early, individualised goal-directed treatment improves the outcome of severely injured patients. The overall organisation of the current guideline has been designed to reflect the clinical decision-making process along the patient pathway in an approximate temporal sequence. Recommendations are grouped behind the rationale for key decision points, which are patient- or problem-oriented rather than related to specific treatment modalities. While these recommendations provide guidance for the diagnosis and treatment of major bleeding and coagulopathy, emerging evidence supports the author group's belief that the greatest outcome improvement can be achieved through education and the establishment of and adherence to local clinical management algorithms. CONCLUSIONS A multidisciplinary approach and adherence to evidence-based guidance are key to improving patient outcomes. If incorporated into local practice, these clinical practice guidelines have the potential to ensure a uniform standard of care across Europe and beyond and better outcomes for the severely bleeding trauma patient.
Collapse
Affiliation(s)
- Donat R. Spahn
- Institute of Anaesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Bertil Bouillon
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Vladimir Cerny
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Socialni pece 3316/12A, CZ-40113 Usti nad Labem, Czech Republic
- Centre for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic, Sokolska 581, CZ-50005 Hradec Kralove, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, CZ-50003 Hradec Kralove, Czech Republic
- Department of Anaesthesia, Pain Management and Perioperative Medicine, QE II Health Sciences Centre, Dalhousie University, Halifax, 10 West Victoria, 1276 South Park St, Halifax, NS B3H 2Y9 Canada
| | - Jacques Duranteau
- Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires Paris Sud, University of Paris XI, Faculté de Médecine Paris-Sud, 78 rue du Général Leclerc, F-94275 Le Kremlin-Bicêtre Cedex, France
| | - Daniela Filipescu
- Department of Cardiac Anaesthesia and Intensive Care, C. C. Iliescu Emergency Institute of Cardiovascular Diseases, Sos Fundeni 256-258, RO-022328 Bucharest, Romania
| | - Beverley J. Hunt
- King’s College and Departments of Haematology and Pathology, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH UK
| | - Radko Komadina
- Department of Traumatology, General and Teaching Hospital Celje, Medical Faculty Ljubljana University, SI-3000 Celje, Slovenia
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Giuseppe Nardi
- Department of Anaesthesia and ICU, AUSL della Romagna, Infermi Hospital Rimini, Viale Settembrini, 2, I-47924 Rimini, Italy
| | - Louis Riddez
- Department of Surgery and Trauma, Karolinska University Hospital, S-171 76 Solna, Sweden
| | - Charles-Marc Samama
- Hotel-Dieu University Hospital, 1, place du Parvis de Notre-Dame, F-75181 Paris Cedex 04, France
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Rolf Rossaint
- Department of Anaesthesiology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
78
|
Godier A, Garrigue D, Lasne D, Fontana P, Bonhomme F, Collet JP, de Maistre E, Ickx B, Gruel Y, Mazighi M, Nguyen P, Vincentelli A, Albaladejo P, Lecompte T. Management of antiplatelet therapy for non-elective invasive procedures or bleeding complications: Proposals from the French Working Group on Perioperative Haemostasis (GIHP) and the French Study Group on Thrombosis and Haemostasis (GFHT), in collaboration with the French Society for Anaesthesia and Intensive Care (SFAR). Arch Cardiovasc Dis 2019; 112:199-216. [DOI: 10.1016/j.acvd.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022]
|
79
|
Bury L, Malara A, Momi S, Petito E, Balduini A, Gresele P. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Haematologica 2019; 104:1473-1481. [PMID: 30655369 PMCID: PMC6601082 DOI: 10.3324/haematol.2018.200378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/11/2019] [Indexed: 11/09/2022] Open
Abstract
Platelet-type von Willebrand disease is an inherited platelet disorder characterized by thrombocytopenia with large platelets caused by gain-of-function variants in GP1BA leading to enhanced GPIbα-von Willebrand factor (vWF) interaction. GPIbα and vWF play a role in megakaryocytopoiesis, thus we aimed to investigate megakaryocyte differentiation and proplatelet-formation in platelet-type von Willebrand disease using megakaryocytes from a patient carrying the Met239Val variant and from mice carrying the Gly233Val variant. Platelet-type von Willebrand disease megakaryocytes bound vWF at an early differentiation stage and generated proplatelets with a decreased number of enlarged tips compared to control megakaryocytes. Moreover, they formed proplatelets upon contact with collagen, differently from normal megakaryocytes. Similarly, collagen triggered megakaryocytes showed defective activation of the RhoA-MLC2 axis, which prevents proplatelet formation, and increased phosphorylation of Lyn, which acts as a negative regulator of GPVI signaling, thus preventing ectopic proplatelet-formation on collagen. Consistently, human and murine bone marrow contained an increased number of extravascular platelets compared to controls. In addition, platelet survival of mutant mice was shortened compared to control mice, and the administration of desmopressin, raising circulating vWF, caused a marked drop in platelet count. Taken together, these results show for the first time that thrombocytopenia in platelet-type von Willebrand disease is due to the combination of different pathogenic mechanisms, i.e. the formation of a reduced number of platelets by megakaryocytes, the ectopic release of platelets in the bone marrow, and the increased clearance of platelet/vWF complexes.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Stefania Momi
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Eleonora Petito
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| |
Collapse
|
80
|
Gresele P, Bury L, Mezzasoma AM, Falcinelli E. Platelet function assays in diagnosis: an update. Expert Rev Hematol 2019; 12:29-46. [DOI: 10.1080/17474086.2019.1562333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Anna Maria Mezzasoma
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
81
|
Nagrebetsky A, Al-Samkari H, Davis N, Kuter D, Wiener-Kronish J. Perioperative thrombocytopenia: evidence, evaluation, and emerging therapies. Br J Anaesth 2019; 122:19-31. [DOI: 10.1016/j.bja.2018.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/19/2023] Open
|
82
|
Vries MJ, van der Meijden PE, Kuiper GJ, Nelemans PJ, Wetzels RJ, van Oerle RG, Lancé MD, ten Cate H, Henskens YM. Preoperative screening for bleeding disorders: A comprehensive laboratory assessment of clinical practice. Res Pract Thromb Haemost 2018; 2:767-777. [PMID: 30349896 PMCID: PMC6178633 DOI: 10.1002/rth2.12114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/22/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with mild bleeding disorders are at risk of perioperative bleeding, but screening for these disorders remains challenging. OBJECTIVES We aimed to assess the prevalence of hemostatic abnormalities in patients with and without reported bleeding symptoms on a preoperative questionnaire, consisting of guideline-proposed questions, and appraised the diagnostic value of several screening modalities for the identification of patients with hemostatic abnormalities. METHODS In this observational study, 240 patients with and 95 patients without bleeding symptoms on the preoperative questionnaire were included. Patients with known bleeding disorders, antithrombotic drugs, thrombocytopenia, and anemia were excluded. Preoperatively, all patients underwent elaborate hemostatic testing. Hemostatic abnormalities were defined as coagulation, vWF, or fibrinolysis factor levels below reference range and platelet function defects. Screening modalities included the ISTH Bleeding Assessment Tool (ISTH-BAT), PT, aPTT, TT, Euglobulin Lysis Time (ELT), and Platelet Function Analyser (PFA). RESULTS In 21 of 240 (8.8%) patients reporting bleeding symptoms, hemostatic abnormalities were found, including 7 reduced coagulation factor levels, 10 platelet function abnormalities, and 4 reduced vWF levels. In comparison, 10 of 95 (10.5%) patients not reporting bleeding symptoms had abnormalities. The ISTH-BAT could not identify patients with abnormalities, while PT, aPTT, TT, ELT, and PFA had high specificity but low sensitivity to detect abnormalities. CONCLUSIONS The prevalence of hemostatic abnormalities in both patients with and without reported bleeding symptoms was 9%-10%. This suggests that the guideline-based questionnaire cannot differentiate between patients with and without abnormalities, while the discriminative power of the screening modalities is also limited.
Collapse
Affiliation(s)
- Minka J. Vries
- Laboratory for Clinical Thrombosis and HaemostasisDepartment of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
| | - Paola E. van der Meijden
- Laboratory for Clinical Thrombosis and HaemostasisDepartment of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Thrombosis Expertise CentreMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Gerhardus J. Kuiper
- Department of AnaesthesiologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Patricia J. Nelemans
- Department of EpidemiologySchool for Public Health and Primary CareMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Rick J. Wetzels
- Central Diagnostic LaboratoryMaastricht University Medical CentreMaastrichtThe Netherlands
| | - René G. van Oerle
- Laboratory for Clinical Thrombosis and HaemostasisDepartment of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Central Diagnostic LaboratoryMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Marcus D. Lancé
- Department of AnaesthesiologyMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Hugo ten Cate
- Laboratory for Clinical Thrombosis and HaemostasisDepartment of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Thrombosis Expertise CentreMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Yvonne M. Henskens
- Laboratory for Clinical Thrombosis and HaemostasisDepartment of BiochemistryCardiovascular Research Institute MaastrichtMaastricht UniversityMaastrichtThe Netherlands
- Central Diagnostic LaboratoryMaastricht University Medical CentreMaastrichtThe Netherlands
| |
Collapse
|
83
|
Grainger JD, Thachil J, Will AM. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults. Br J Haematol 2018; 182:621-632. [DOI: 10.1111/bjh.15409] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- John D. Grainger
- Faculty of Medical & Human Sciences; University of Manchester; England UK
- Department of Paediatric Haematology; Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust; Manchester UK
| | - Jecko Thachil
- Department of Haematology; Manchester Royal Infirmary; Manchester University NHS Foundation Trust; Manchester UK
| | - Andrew M. Will
- Department of Paediatric Haematology; Royal Manchester Children's Hospital; Manchester University NHS Foundation Trust; Manchester UK
| |
Collapse
|
84
|
Inherited platelet disorders : Management of the bleeding risk. Transfus Clin Biol 2018; 25:228-235. [PMID: 30077511 DOI: 10.1016/j.tracli.2018.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
Inherited platelet disorders are rare bleeding syndromes due to either platelet function abnormalities or thrombocytopenia which may be associated with functional defects. The haemorrhagic symptoms observed in these patients are mostly muco-cutaneous and of highly variable severity. Although 30 to 50% of the platelet disorders are still of unknown origin, the precise diagnosis of these pathologies by specialized laboratories together with haemorrhagic scores enables an assessment of the risk of bleeding in each patient. Depending on the diagnostic elements collected, an appropriate medical procedure can be proposed for each situation: scheduled or emergency surgical interventions and pregnancy follow-up. The pathologies most at risk correspond to Glanzmann's thrombasthenia, Bernard-Soulier syndrome, severe thrombocytopenia (<40,000 platelets/μL) and signalling protein abnormalities affecting the activation of GPIIb-IIIa, a membrane glycoprotein essential for platelet aggregation. For these particular patients, in whom the risk of bleeding can be increased by a factor of 40, management protocols during surgical procedures are generally based on the use of conventional platelet concentrates, for both prophylaxis and the control of active bleeding. The perinatal period in women with platelet disorders and their new-born also require special attention. Indeed, beyond unpredictable delivery haemorrhages, bleeding requiring a blood transfusion is observed after delivery in more than 50% of women with Glanzmann's thrombastenia or Bernard-Soulier syndrome.
Collapse
|
85
|
Nurden AT. Acquired Antibodies to αIIbβ3 in Glanzmann Thrombasthenia: From Transfusion and Pregnancy to Bone Marrow Transplants and Beyond. Transfus Med Rev 2018; 32:S0887-7963(18)30037-3. [PMID: 29884513 DOI: 10.1016/j.tmrv.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
Abstract
Patients with the inherited bleeding disorder Glanzmann thrombasthenia (GT) possess platelets that lack αIIbβ3 integrin and fail to aggregate, and have moderate to severe mucocutaneous bleeding. Many become refractory to platelet transfusions due to the formation of isoantibodies to αIIbβ3 with the rapid elimination of donor platelets and/or a block of function. Epitope characterization has shown isoantibodies to be polyclonal and to recognize different epitopes on the integrin with β3 a major site and αvβ3 on endothelial and vascular cells a newly recognized target. Pregnancy in GT can also lead to isoantibody formation when fetal cells with β3 integrins pass into the circulation of a mother lacking them; a consequence is neonatal thrombocytopenia and a high risk of mortality. Antibody removal prior to donor transfusions can provide transient relief, but all evidence points to recombinant FVIIa as the first choice for GT patients either to stop bleeding or as prophylaxis. Promoting thrombin generation by rFVIIa favors GT platelet interaction with fibrin, and the risk of deep vein thrombosis also associated with prolonged immobilization and catheter use requires surveillance. Although having a high risk, allogeneic bone marrow transplantation associated with different stem cell sources and conditioning regimens has proved successful in many cases of severe GT with antibodies, and often, the associated conditioning and immunosuppressive therapy leads to loss of isoantibody production. Animal models of gene therapy for GT show promising results, but isoantibody production can be stimulated and CRISPR/Cas9 technology has yet to be applied. Up-to-date consensus protocols for dealing with isoantibodies in GT are urgently required, and networks providing patient care should be expanded.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
86
|
Gresele P, Falcinelli E, Bury L. Laboratory diagnosis of clinically relevant platelet function disorders. Int J Lab Hematol 2018; 40 Suppl 1:34-45. [DOI: 10.1111/ijlh.12814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 10/25/2022]
Affiliation(s)
- P. Gresele
- Section of Internal and Cardiovascular Medicine; Department of Medicine; University of Perugia; Perugia Italy
| | - E. Falcinelli
- Section of Internal and Cardiovascular Medicine; Department of Medicine; University of Perugia; Perugia Italy
| | - L. Bury
- Section of Internal and Cardiovascular Medicine; Department of Medicine; University of Perugia; Perugia Italy
| |
Collapse
|
87
|
Perioperative management of a patient with Glanzmann thrombasthenia undergoing a coronary artery bypass graft surgery: a case report. Blood Coagul Fibrinolysis 2018; 29:327-329. [PMID: 29474205 DOI: 10.1097/mbc.0000000000000719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: We report herein the successful perioperative management of a 57-year-old man with a type I Glanzmann thrombasthenia undergoing coronary artery bypass graft surgery and right carotid endarterectomy. The patient suffered from several lesions in the three major coronary arteries and in the right carotid necessitating surgery. Prophylactic human leukocyte antigen (HLA)-matched platelets transfusions were continuous administrated before, and through the immediate perioperative period. Posttransfusion platelet recovery was monitored using flow cytometry to determine the percentage of circulating platelet expressing CD61 (β3). No bleeding complications occurred during and following the procedure. The patient did not develop HLA antibodies or αIIbβ3 antibodies. Thrombophilia screening revealed a heterozygous G20210A prothrombin gene mutation. The patient also suffered from an atrial fibrillation, necessitating anticoagulation therapy. During the hospital stay, a treatment with vitamin K antagonists for stroke prevention was initiated. The patient was discharged 8 days following surgery, and no further complications occurred during the 6 months follow-up.
Collapse
|
88
|
Noris P, Pecci A. Hereditary thrombocytopenias: a growing list of disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:385-399. [PMID: 29222283 PMCID: PMC6142591 DOI: 10.1182/asheducation-2017.1.385] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The introduction of high throughput sequencing (HTS) techniques greatly improved the knowledge of inherited thrombocytopenias (ITs) over the last few years. A total of 33 different forms caused by molecular defects affecting at least 32 genes have been identified; along with the discovery of new disease-causing genes, pathogenetic mechanisms of thrombocytopenia have been better elucidated. Although the clinical picture of ITs is heterogeneous, bleeding has been long considered the major clinical problem for patients with IT. Conversely, the current scenario indicates that patients with some of the most common ITs are at risk of developing additional disorders more dangerous than thrombocytopenia itself during life. In particular, MYH9 mutations result in congenital macrothrombocytopenia and predispose to kidney failure, hearing loss, and cataracts, MPL and MECOM mutations cause congenital thrombocytopenia evolving into bone marrow failure, whereas thrombocytopenias caused by RUNX1, ANKRD26, and ETV6 mutations are characterized by predisposition to hematological malignancies. Making a definite diagnosis of these forms is crucial to provide patients with the most appropriate treatment, follow-up, and counseling. In this review, the ITs known to date are discussed, with specific attention focused on clinical presentations and diagnostic criteria for ITs predisposing to additional illnesses. The currently available therapeutic options for the different forms of IT are illustrated.
Collapse
Affiliation(s)
- Patrizia Noris
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Pavia, Italy
| |
Collapse
|
89
|
Moenen FCJI, Vries MJA, Nelemans PJ, van Rooy KJM, Vranken JRRA, Verhezen PWM, Wetzels RJH, Ten Cate H, Schouten HC, Beckers EAM, Henskens YMC. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2017; 30:81-87. [PMID: 29135309 DOI: 10.1080/09537104.2017.1371290] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Light transmission aggregation (LTA) is the gold standard for the diagnosis of platelet function disorders (PFDs), but it is time-consuming and limited to specialized laboratories. Whole-blood impedance aggregometry (Multiplate) and platelet function analyzer (PFA) may be used as rapid screening tools to exclude PFDs. The aim of this study is to assess the diagnostic performance of Multiplate and PFA for PFDs, as detected by LTA.Data from preoperative patients, patients referred to the hematologist for bleeding evaluation, and patients with a diagnosed bleeding disorder were used. PFDs were defined as ≥2 abnormal LTA curves. Diagnostic performance of Multiplate and PFA for detecting PFDs was expressed as sensitivity and specificity. The ability of Multiplate agonists and PFA kits to detect corresponding LTA curve abnormalities was expressed as area under the receiver operating characteristic curve. Prevalence of PFDs was 16/335 (4.8%) in preoperative patients, 10/54 (18.5%) in referred patients, and 3/25 (12%) in patients with a diagnosed bleeding disorder. In preoperative and referred patients, the sensitivity of Multiplate and PFA for detecting mild PFDs varied between 0% and 40% and AUCs for detecting corresponding LTA curve abnormalities were close to 0.50. In patients with a diagnosed bleeding disorder, both assays could detect Glanzmann thrombasthenia (GT) with sensitivity of 100% and AUCs of 0.70-1.00. Multiplate and PFA cannot discriminate between preoperative and referred patients with and without mild PFDs, meaning that they cannot be used as screening tests to rule out mild PFDs in these populations. Both Multiplate and PFA can detect GT in previously diagnosed patients.
Collapse
Affiliation(s)
- Floor C J I Moenen
- a Division of Haematology, Department of Internal Medicine , GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre +, Maastricht , The Netherlands
| | - Minka J A Vries
- b Department of Biochemistry , Maastricht University , Maastricht , The Netherlands
| | - Patricia J Nelemans
- c Department of Epidemiology , Maastricht University , Maastricht , The Netherlands
| | - Katrien J M van Rooy
- a Division of Haematology, Department of Internal Medicine , GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre +, Maastricht , The Netherlands
| | - Jeannique R R A Vranken
- d Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+ , Maastricht , The Netherlands
| | - Paul W M Verhezen
- d Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+ , Maastricht , The Netherlands
| | - Rick J H Wetzels
- d Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+ , Maastricht , The Netherlands
| | - Hugo Ten Cate
- b Department of Biochemistry , Maastricht University , Maastricht , The Netherlands
| | - Harry C Schouten
- a Division of Haematology, Department of Internal Medicine , GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre +, Maastricht , The Netherlands
| | - Erik A M Beckers
- a Division of Haematology, Department of Internal Medicine , GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre +, Maastricht , The Netherlands
| | - Yvonne M C Henskens
- d Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre+ , Maastricht , The Netherlands
| |
Collapse
|