51
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
52
|
Dong B, Huang Y, Cai H, Chen Y, Li Y, Zou H, Lin W, Xue H, Feng A, Zhao H, Lu Y, Gao H, Mao X, Wu Z, Pan D, Sun P. Prevotella as the hub of the cervicovaginal microbiota affects the occurrence of persistent human papillomavirus infection and cervical lesions in women of childbearing age via host NF-κB/C-myc. J Med Virol 2022; 94:5519-5534. [PMID: 35835717 DOI: 10.1002/jmv.28001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
There is evidence that coinfection of cervicovaginal high-risk human papillomavirus (HR-HPV) and bacteria is common in women of childbearing age. However, the relationship between bacterial vaginosis (BV) and persistent HR-HPV infection in women of childbearing age and the underlying mechanisms remain unclear. In this study, we determined whether BV affects persistent HR-HPV infection in women aged 20-45 years and explored the possible mechanisms of their interactions. From January 1 to April 30, 2020, we recruited women aged 20-45 years with and without BV at a ratio of 1:2 from Fujian Maternity and Child Health Hospital. All women were followed up at 0, 12, and 24 months. A BV assay, HR-HPV genotyping and cervical cytology were performed at each follow-up. At 0 months, additional vaginal secretions and cervical exfoliated cells were collected for 16S ribosomal RNA sequencing, bacterial metabolite determination, and POU5F1B, C-myc, TLR4, NF-κB, and hTERT quantification. A total of 920 women were included. The abundance of Prevotella (p = 0.016) and Gardnerella (p = 0.027) were higher, whereas the abundance of Lactobacillus was lower (p = 0.001) in women with persistent HR-HPV infection and high-grade squamous intraepithelial lesions (HSIL). The abundance of Prevotella (p = 0.025) and Gardnerella (p = 0.018) increased in the vaginas of women with persistent HPV16 infection, whereas only the abundance of Prevotella (p = 0.026) was increased in women with persistent HPV18 infection. The abundance of Prevotella in the vagina was significantly positively correlated with the expression levels of TLR4, NF-κB, C-myc, and hTERT in host cervical cells (p < 0.05). Our findings suggest that overgrowth of Prevotella in the vagina may influence the occurrence of persistent HR-HPV infection-related cervical lesions through host NF-κB and C-myc signaling.
Collapse
Affiliation(s)
- Binhua Dong
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou, Fujian, People's Republic of China
| | - Yuxuan Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hongning Cai
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province (Women and Children's Hospital of Hubei Province), Wuhan, Hubei, People's Republic of China
| | - Yaojia Chen
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Ye Li
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Huachun Zou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China.,Kirby Institute, University of New South Wales, New South Wales, Sydney, Australia
| | - Wenyu Lin
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Huifeng Xue
- Fujian Provincial Cervical Disease Diagnosis and Treatment Health Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Anping Feng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Heping Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yanfang Lu
- Clinical Laboratory, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hangjing Gao
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou, Fujian, People's Republic of China
| | - Zhihui Wu
- Clinical Laboratory, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Diling Pan
- Department of Pathology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
53
|
Wylie TN, Schrimpf J, Gula H, Herter BN, Wylie KM. Comparison of Metagenomic Sequencing and the NanoString nCounter Analysis System for the Characterization of Bacterial and Viral Communities in Vaginal Samples. mSphere 2022; 7:e0019722. [PMID: 36000741 PMCID: PMC9599496 DOI: 10.1128/msphere.00197-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
DNA sequencing assays have been used to characterize the vaginal microbiome and to identify associations with clinical outcomes. The purpose of this study was to evaluate the utility of the NanoString nCounter platform, a more efficient assay compared to sequencing, for the characterization of vaginal microbial communities. A panel of NanoString nCounter probes was designed to detect common vaginal bacteria and viruses with relevance to reproductive health. A defined synthetic community of microbes and 43 clinical samples were interrogated with NanoString nCounter assays and compared to known compositions or metagenomic shotgun sequencing (MSS) results. The NanoString nCounter platform and MSS were able to distinguish closely related microbes. In clinical samples, the relative abundance of bacterial species was similar between the two assays. The assays sometimes disagreed when targets were present at low abundance. More viruses were detected by MSS than by nCounter. However, the nCounter assays are able to provide results in about 30 h with minimal hands-on time, whereas MSS requires at least 138 to 178 h with extensive hands-on time. The reagent cost for the two assays was similar, but the overall cost of the nCounter was lower due to the minimal hands-on time. MSS can be used to inform the design of a targeted multiplex panel for the assessment of vaginal microbial communities, thereby allowing for more cost-effective and rapid screening of patient samples for research studies. The sensitivity for low abundance microbes could be improved, possibly by adding additional target amplification cycles before nCounter assessment. This approach has potential as an assay with both research and clinical applications. IMPORTANCE Metagenomic shotgun sequencing can inform the design of a targeted multiplex panel by which the NanoString nCounter platform can assess vaginal microbial communities, thereby allowing for more cost-effective and rapid screening of patient samples.
Collapse
Affiliation(s)
- Todd N. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jane Schrimpf
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Haley Gula
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brandi N. Herter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristine M. Wylie
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
54
|
Swidsinski A, Loening-Baucke V, Swidsinski S, Sobel JD, Dörffel Y, Guschin A. Clue Cells and Pseudo Clue Cells in Different Morphotypes of Bacterial Vaginosis. Front Cell Infect Microbiol 2022; 12:905739. [PMID: 35719334 PMCID: PMC9198243 DOI: 10.3389/fcimb.2022.905739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionClue cells (epithelial cells heavily covered with adherent bacteria) are an accepted clue to the diagnosis of bacterial vaginosis. However, the exact morphologic criteria of clue cells and bacterial adherence were never elaborated.Materials and MethodsWe investigated adhesive and cohesive patterns of main microbiota groups in vaginal discharge using fluorescence in situ hybridization (FISH). Samples from 500 women diagnosed with bacterial vaginosis and positive for clue cells with classic microscopy were collected from 42 gynecologic practices in Berlin and reexamined in our FISH laboratory for the spatial distribution of Bifidobacteriaceae, Gardnerella, Fannyhessea vaginae (Atopobium); low G+C (guanine+cytosine) bacteria, lactobacilli, Lactobacillus iners; Lactobacillus crispatus, Gamma-Proteobacteria; and Enterobacteriaceae, Prevotella–Bacteroides, Veillonella, and Coriobacterium groups.ResultsBacterial taxa present in vaginal smears were not accidentally assembled according to their relative abundance but were built in group-specific distribution patterns, which can be well described by two features: cohesiveness to each other and adherence to epithelial cells. Accordingly, four patterns can be distinguished: dispersed (non-adherent bacteria), dispersed adherent bacteria, cohesive (non-adherent) bacteria, and cohesive adherent bacteria. Direct cohesive adherence to the epithelial cells representing true clue cells was unique for Gardnerella species and observed only in 56% of the investigated samples. In the remaining vaginal samples, the epithelial cells were mechanically entrapped in bacterial masses, and the composition was unrelated to the epithelial cell surface, building non-adherent pseudo clue cells. The proportion of women with true clue cells in their samples from different gynecologic practices varied from 19% to 80%.DiscussionTaxon indifferent imaging is inadequate for the exact analysis of the microbial layer adjacent to the vaginal epithelial cells. Morphologically seen bacterial vaginosis is a mix of at least two different conditions: biofilm vaginosis and bacterial excess vaginosis.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Medizinische Klinik, Charité Charite Campus Mitte (CCM), Universitätsmedizin, Berlin, Germany
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- *Correspondence: Alexander Swidsinski,
| | - Vera Loening-Baucke
- Medizinische Klinik, Charité Charite Campus Mitte (CCM), Universitätsmedizin, Berlin, Germany
| | | | - Jack D. Sobel
- Wayne State University School of Medicine, Detroit, MI, United States
| | - Yvonne Dörffel
- Outpatient Clinic, Charité Universitätsmedizin Berlin, Charite Campus Mitte (CCM), Berlin, Germany
| | - Alexander Guschin
- Moscow Scientific and Practical Center of Dermatovenerology and Cosmetology, Moscow, Russia
| |
Collapse
|
55
|
Kaul R, Liu CM, Park DE, Galiwango RM, Tobian AAR, Prodger JL. The Penis, the Vagina and HIV Risk: Key Differences (Aside from the Obvious). Viruses 2022; 14:v14061164. [PMID: 35746636 PMCID: PMC9227947 DOI: 10.3390/v14061164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/14/2022] Open
Abstract
Globally, most Human Immunodeficiency Virus type 1 (HIV) transmission occurs through vaginal–penile sex (heterosexual transmission). The local immune environment at the site of HIV exposure is an important determinant of whether exposure during sex will lead to productive infection, and the vaginal and penile immune milieus are each critically shaped by the local microbiome. However, there are key differences in the microbial drivers of inflammation and immune quiescence at these tissue sites. In both, a high abundance of anaerobic taxa (e.g., Prevotella) is associated with an increased local density of HIV target cells and an increased risk of acquiring HIV through sex. However, the taxa that have been associated to date with increased risk in the vagina and penis are not identical. Just as importantly, the microbiota associated with comparatively less inflammation and HIV risk—i.e., the optimal microbiota—are very different at the two sites. In the vagina, Lactobacillus spp. are immunoregulatory and may protect against HIV acquisition, whereas on the penis, “skin type” flora such as Corynebacterium are associated with reduced inflammation. Compared to its vaginal counterpart, much less is known about the dynamics of the penile microbiome, the ability of clinical interventions to alter the penile microbiome, or the impact of natural/induced microbiome alterations on penile immunology and HIV risk.
Collapse
Affiliation(s)
- Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Department of Medicine, University Health Network, Toronto, ON M5S 1A8, Canada
| | - Cindy M. Liu
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (C.M.L.); (D.E.P.)
| | - Daniel E. Park
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA; (C.M.L.); (D.E.P.)
| | | | - Aaron A. R. Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jessica L. Prodger
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Correspondence:
| |
Collapse
|
56
|
Comparison of two microscopic interpretation of vaginal microbiota with molecular profiling. Diagn Microbiol Infect Dis 2022; 104:115728. [DOI: 10.1016/j.diagmicrobio.2022.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/20/2022] [Indexed: 11/23/2022]
|
57
|
Sunkavalli A, McClure R, Genco C. Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms 2022; 10:922. [PMID: 35630366 PMCID: PMC9147433 DOI: 10.3390/microorganisms10050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhea, with an estimated 87 million annual cases worldwide. N. gonorrhoeae predominantly colonizes the male and female genital tract (FGT). In the FGT, N. gonorrhoeae confronts fluctuating levels of nutrients and oxidative and non-oxidative antimicrobial defenses of the immune system, as well as the resident microbiome. One mechanism utilized by N. gonorrhoeae to adapt to this dynamic FGT niche is to modulate gene expression primarily through DNA-binding transcriptional regulators. Here, we describe the major N. gonorrhoeae transcriptional regulators, genes under their control, and how these regulatory processes lead to pathogenic properties of N. gonorrhoeae during natural infection. We also discuss the current knowledge of the structure, function, and diversity of the FGT microbiome and its influence on gonococcal survival and transcriptional responses orchestrated by its DNA-binding regulators. We conclude with recent multi-omics data and modeling tools and their application to FGT microbiome dynamics. Understanding the strategies utilized by N. gonorrhoeae to regulate gene expression and their impact on the emergent characteristics of this pathogen during infection has the potential to identify new effective strategies to both treat and prevent gonorrhea.
Collapse
Affiliation(s)
- Ashwini Sunkavalli
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Caroline Genco
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|
58
|
Exploiting the Anti-Biofilm Effect of the Engineered Phage Endolysin PM-477 to Disrupt In Vitro Single- and Dual-Species Biofilms of Vaginal Pathogens Associated with Bacterial Vaginosis. Antibiotics (Basel) 2022; 11:antibiotics11050558. [PMID: 35625202 PMCID: PMC9137943 DOI: 10.3390/antibiotics11050558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial vaginosis (BV) is the most frequent vaginal infection in women of reproductive age. It is caused by the overgrowth of anaerobic vaginal pathogens, such as Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella bivia, which are vaginal pathogens detected during the early stages of incident BV and have been found to form multi-species biofilms. Treatment of biofilm-associated infections, such as BV, is challenging. In this study, we tested the role of an investigational engineered phage endolysin, PM-477, in the eradication of dual-species biofilms composed of G. vaginalis–F. vaginae or G. vaginalis–P. bivia. Single-species biofilms formed by these species were also analysed as controls. The effect of PM-477 on biomass and culturability of single- and dual-species biofilms was assessed in vitro using a microtiter plate assay, epifluorescence microscopy, confocal laser scanning microscopy, and quantitative PCR. The results showed that PM-477 was particularly effective in the disruption and reduction of culturability of G. vaginalis biofilms. In dual-species biofilms, PM-477 exhibited lower efficiency but was still able to selectively and significantly eliminate G. vaginalis. Since polymicrobial interactions have been shown to strongly affect the activity of various antibiotics, the activity of PM-477 in dual-species biofilms is a potentially promising result that should be further explored, aiming to completely eradicate multi-species biofilms associated with BV.
Collapse
|
59
|
Swidsinski A, Guschin A, Corsini L, Loening-Baucke V, Tisakova LP, Swidsinski S, Sobel JD, Dörffel Y. Antimicrobial Susceptibility of Microbiota in Bacterial Vaginosis Using Fluorescence In Situ Hybridization. Pathogens 2022; 11:pathogens11040456. [PMID: 35456131 PMCID: PMC9028502 DOI: 10.3390/pathogens11040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Testing of antibiotic resistance of intact vaginal microbiota in pure culture is not feasible. METHODS: Metronidazole, antiseptic octenisept®, antimycotic ciclopirox, bacterial probiotic Lactobacillus crispatus, yeast probiotic Saccharomyces boulardii, Gardnerella-phage-endolysin named phagolysin and phagolysin in combination with probiotics were tested for bacteriolytic activity. Included were vaginal swabs from 38 random women with Amsel-confirmed bacterial vaginosis (BV). Test aliquots were incubated by 37° for 2 and 24 h. Gardnerella, low G+C, Atopobium, lactobacilli, Lactobacillus iners and crispatus, Prevotella-Bacteroides, and Gammaproteobacteria microbial groups were quantified using fluorescence in situ hybridization (FISH). Results: The probiotic strain Lactobacillus crispatus demonstrated the weakest bacteriolytical effects, followed by metronidazole. Both had no impact on Gardnerella species, instead lysing Prevotella-Bacteroides, Enterobacteriaceae (by L.crispatus) or LGC, Atopobium and Prevotella-Bacteroides (by metronidazole) groups of the microbiota. Cytolytic activity on Gardnerella was highly pronounced and increased from octenisept to ciclopirox, phagolysin, phagolysin with L.crispatus, being best in the combination of phagolysin with S.boulardii. Universally active ciclopirox and octenisept® suppressed nearly all microbial groups including those which are regarded as beneficial. Phagolysin had no effect on naturally occurring Lactobacillus crispatus. Conclusions: FISH susceptibility testing allows unique efficacy evaluation of individually adjusted topical therapy without microbial isolation facilitating optimal therapy choice.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Molecular-Genetic Laboratory for Polymicrobial Infections and Biofilms, Charité CCM, Medizinische Klinik, Universitätsmedizin, 10117 Berlin, Germany;
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Correspondence:
| | - Alexander Guschin
- Moscow Scientific and Practical Center of Dermatovenerology and Cosmetology, 119071 Moscow, Russia;
| | - Lorenzo Corsini
- BioNTech R&D (Austria) GmbH, Vienna Biocenter, 1110 Vienna, Austria; (L.C.); (L.P.T.)
| | - Vera Loening-Baucke
- Molecular-Genetic Laboratory for Polymicrobial Infections and Biofilms, Charité CCM, Medizinische Klinik, Universitätsmedizin, 10117 Berlin, Germany;
| | | | | | - Jack D. Sobel
- School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Yvonne Dörffel
- Outpatient Clinic, Charité Universitätsmedizin Berlin, CCM, 10117 Berlin, Germany;
| |
Collapse
|
60
|
Xiao B, A D, Qin H, Mi L, Zhang D. Correlation Analysis of Vaginal Microbiome Changes and Bacterial Vaginosis Plus Vulvovaginal Candidiasis Mixed Vaginitis Prognosis. Front Cell Infect Microbiol 2022; 12:860589. [PMID: 35372135 PMCID: PMC8970117 DOI: 10.3389/fcimb.2022.860589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Mixed vaginitis is the result of the simultaneous presence of different pathogenic processes mediated by at least two types of vaginal pathogens. Among the various types of mixed vaginitis presentations, bacterial vaginosis (BV) plus vulvovaginal candidiasis (VVC) presents to be the most prevalent form. Mixed vaginitis affects the health of women of all ages worldwide. However, few studies have focused on clinical manifestations, pathogenesis, diagnostic criteria, or therapy of mixed vaginitis. We recruited 48 symptomatic patients with clinical diagnoses of VVC complicated with BV, they were treated with oral metronidazole combined with local clotrimazole and followed to assess the drug efficacy and vaginal microbiome alterations before and after treatment. The vaginal microbiome in BV+VVC mixed vaginitis patients was altered significantly after the combined drug treatment within a unique form different from a simple overlay mode of BV and VVC, the key bacteria including Gardnerella and Atopobium, Lactobacillus. The combined drug therapy for the mixed vaginitis in this study was effective and enhanced treatment for BV may be more favorable because of more difficulty in dealing with BV according to the treatment outcome. The abundance of Lactobacillus in patients with mixed vaginitis affects the recovery of the vaginal microbiome as well as the prognosis, and the abundance should be actively restored. This is the first study to investigate the composition, diversity, and other characteristics of the vaginal microbiome in patients with BV+VVC mixed vaginitis before and after drug treatment, our results provide clues to improving the cure rate and reducing recurrences.
Collapse
Affiliation(s)
- Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Disi A
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Hanyu Qin
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Lan Mi
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Dai Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
61
|
Vieira-Baptista P, Silva-Soares S, Lyra J, Falcão V, Póvoa AM, Calejo L, Sousa S. Wet Mount Microscopy of the Vaginal Milieu Does Not Predict the Outcome of Fertility Treatments: A Cross-sectional Study. J Low Genit Tract Dis 2022; 26:176-180. [PMID: 35067583 DOI: 10.1097/lgt.0000000000000655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate whether vaginal dysbiosis (bacterial vaginosis [BV] or moderate/severe aerobic vaginitis [AV]/desquamative inflammatory vaginitis) in women subjected to intrauterine insemination (IUI) or in vitro fertilization/intracytoplasmic sperm injection influences the rates of pregnancy. MATERIALS AND METHODS This is a cross-sectional study involving 392 women who underwent IUI or in vitro fertilization/intracytoplasmic sperm injection at a fertility clinic. All had a slide collected for phase contrast wet mount microscopy (WMM), which was classified according to the International Society for the Study of Vulvovaginal Disease recommendations. Correlation between flora patterns and the rate of pregnancy were evaluated. RESULTS There were no differences in any of the groups in terms of pregnancy rate (biochemical, clinical, at first trimester ultrasound, or live birth) after stratifying for the presence of BV, moderate or severe (ms) AV, BV and/or moderate or severe AV, cytolysis, or abnormal vaginal flora (lactobacillary grade ≥ IIb). The presence of Candida species, cocci, or bacilli morphotypes other than lactobacilli also showed no differences. CONCLUSIONS The vaginal flora assessment by WMM at the time of IUI or oocyte retrieval was not predictive of the success of fertility treatments.The absence of differences may be due to intrinsic limitations of WMM (i.e., identifying only bacterial morphotypes), a positive impact of the treatments in the vaginal flora or because the sperm and embryo transfer is made directly into the uterine cavity, thus overcoming any cervical or vaginal dysbiosis disadvantage. Future studies should focus on the endometrial milieu, rather than in the vaginal and/or cervical one.
Collapse
Affiliation(s)
| | - Sandra Silva-Soares
- Unit of Reproductive Medicine, Department of Gynecology, Centro Hospitalar de São João, Porto, Portugal
| | - Joana Lyra
- Lower Genital Tract Unit, Gynecology Department, Centro Hospitalar de São João, Porto, Portugal
| | - Vera Falcão
- Lower Genital Tract Unit, Gynecology Department, Centro Hospitalar de São João, Porto, Portugal
| | | | - Lucinda Calejo
- Unit of Reproductive Medicine, Department of Gynecology, Centro Hospitalar de São João, Porto, Portugal
| | - Sónia Sousa
- Unit of Reproductive Medicine, Department of Gynecology, Centro Hospitalar de São João, Porto, Portugal
| |
Collapse
|
62
|
Prevalence of bacterial vaginosis and aerobic vaginitis and their associated risk factors among pregnant women from northern Ethiopia: A cross-sectional study. PLoS One 2022; 17:e0262692. [PMID: 35213556 PMCID: PMC8880645 DOI: 10.1371/journal.pone.0262692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
This study aimed to determine the prevalence of bacterial vaginosis (BV) and aerobic vaginitis (AV) and their associated risk factors among pregnant women from Ethiopia. Also, this study investigated the bacterial pathogens and their antibiotic resistance in AV cases. A total of 422 pregnant women from northern Ethiopia were participated in this study. Socio-demographic and clinical data were recorded. Vaginal swabs were collected and used for wet mount and Gram stain methods to evaluate the AV and BV scores according to the Nugent’s and Donder’s criteria, respectively. In AV cases the bacterial pathogens and their antibiotic resistance were determined using standard methods. The possible risk factors for AV and BV in pregnant women were investigated. The prevalence rates of BV and AV were 20.1% (85/422) and 8.1% (34/422), respectively. BV was more common in symptomatic vs. asymptomatic people (P < 0.001), and in second trimester vs. first trimester samples (P = 0.042). However, AV was more common in secondary school vs. primary and those who were unable to read and write (P = 0.021) and in housewife women vs. employee (P = 0.013). A total of 44 bacterial strains were isolated from AV cases, of which the coagulase-negative staphylococci (CoNS) (38.6%) and Staphylococcus aureus (29.5%) were the most predominant bacteria, respectively. The highest resistance rate was observed against penicillin (100.0%) in staphylococci, while 86.7% of them were sensitive to ciprofloxacin. The resistance rate of Enterobacteriaceae ranged from 0.0% for ciprofloxacin and chloramphenicol to 100.0% against amoxicillin/clavulanate. The prevalence of BV was higher than AV in pregnant women. This higher prevalence of BV suggests that measures should be taken to reduce the undesired consequences related to BV in the pregnancy. The circulation of drug-resistant bacteria in vaginal infections requires a global surveillance to reduce the risks to pregnant mothers and infants.
Collapse
|
63
|
Liu Z, Bian L, Yeoman CJ, Clifton GD, Ellington JE, Ellington-Lawrence RD, Borgogna JLC, Star A. Bacterial Vaginosis Monitoring with Carbon Nanotube Field-Effect Transistors. Anal Chem 2022; 94:3849-3857. [PMID: 35191682 DOI: 10.1021/acs.analchem.1c04755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to rapidly and reliably screen for bacterial vaginosis (BV) during pregnancy is of great significance for maternal health and pregnancy outcomes. In this proof-of-concept study, we demonstrated the potential of carbon nanotube field-effect transistors (NTFET) in the rapid diagnostics of BV with the sensing of BV-related factors such as pH and biogenic amines. The fabricated sensors showed good linearity to pH changes with a linear correlation coefficient of 0.99. The pH sensing performance was stable after more than one month of sensor storage. In addition, the sensor was able to classify BV-related biogenic amine-negative/positive samples with machine learning, utilizing different test strategies and algorithms, including linear discriminant analysis (LDA), support vector machine (SVM), and principal component analysis (PCA). The biogenic amine sample status could be well classified using a soft-margin SVM model with a validation accuracy of 87.5%. The accuracy could be further improved using a gold gate electrode for measurement, with accuracy higher than 90% in both LDA and SVM models. We also explored the sensing mechanisms and found that the change in NTFET off current was crucial for classification. The fabricated sensors successfully detect BV-related factors, demonstrating the competitive advantage of NTFET for point-of-care diagnostics of BV.
Collapse
Affiliation(s)
- Zhengru Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Long Bian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Carl J Yeoman
- Departments of Microbiology and Cell Biology, and Animal and Range Sciences, Montana State University, Bozeman, Montana 59718, United States
| | - G Dennis Clifton
- Glyciome, LLC, Valleyford, Washington 99036 and Post Falls, Idaho 83854, United States
| | - Joanna E Ellington
- Glyciome, LLC, Valleyford, Washington 99036 and Post Falls, Idaho 83854, United States
| | | | - Joanna-Lynn C Borgogna
- Departments of Microbiology and Cell Biology, and Animal and Range Sciences, Montana State University, Bozeman, Montana 59718, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
64
|
Choi SI, Won G, Kim Y, Kang CH, Kim GH. Lactobacilli Strain Mixture Alleviates Bacterial Vaginosis through Antibacterial and Antagonistic Activity in Gardnerella vaginalis-Infected C57BL/6 Mice. Microorganisms 2022; 10:471. [PMID: 35208925 PMCID: PMC8880492 DOI: 10.3390/microorganisms10020471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
The present study investigated the anti-bacterial vaginitis (BV) effects of a mixture of five lactobacilli strains (LM5), containing equal amounts of Ligilactobacillus salivarius MG242, Limosilactobacillus fermentum MG901, Lactiplantibacillus plantarum MG989, Lacticaseibacillus paracasei MG4272, and Lacticaseibacillus rhamnosus MG4288), in HeLa cells and Gardnerella vaginalis (GV)-infected BV mice. All strains produced lactic acid and hydrogen peroxide, and were resistant to nonoxynol-9. LM5 significantly inhibited GV growth by 80%, exhibited good adhesion to HeLa cells, and significantly inhibited GV adhesion to these cells. In GV-infected mice, LM5 administered orally at 5 × 109 CFU/mouse significantly inhibited GV proliferation in the vaginal tract and significantly reduced myeloperoxidase activity, pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) levels, and nitric oxide levels in vaginal tissue lysates. Histopathological analysis of vaginal tissues revealed that LM5 markedly suppressed the exfoliation of vaginal epithelial cells. Overall, these results suggest that LM5 might alleviate BV by direct antibacterial and antagonistic activity in vaginal tissues of GV-infected mice.
Collapse
Affiliation(s)
- Soo-Im Choi
- Department of Health Functional New Materials, Duksung Women’s University, Seoul 01369, Korea; (S.-I.C.); (G.W.)
| | - GaYeong Won
- Department of Health Functional New Materials, Duksung Women’s University, Seoul 01369, Korea; (S.-I.C.); (G.W.)
| | - YongGyeong Kim
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea; (Y.K.); (C.-H.K.)
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea; (Y.K.); (C.-H.K.)
| | - Gun-Hee Kim
- Department of Health Functional New Materials, Duksung Women’s University, Seoul 01369, Korea; (S.-I.C.); (G.W.)
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea
| |
Collapse
|
65
|
Mechanistic Insights into Immune Suppression and Evasion in Bacterial Vaginosis. Curr Microbiol 2022; 79:84. [PMID: 35128579 PMCID: PMC8818625 DOI: 10.1007/s00284-022-02771-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/18/2022] [Indexed: 12/25/2022]
Abstract
The immunological response to bacterial vaginosis (BV) remains poorly understood and recurrent BV is still a major public health burden especially in the pregnant population. This article reviews the potential mechanisms by which BV-associated bacteria suppress and circumvent the host and microbial defence responses, and propagate their survival/dominance without overt inflammation. We discuss the composition of cervicovaginal mucosal barrier and the mechanism by which BV circumvents host defence: the degradation of the mucosal barrier and immunoglobulin A (IgA); the BV-associated organism Gardnerella vaginalis haemolysin (vaginolysin); diminished IgA response against vaginolysin; mucosal sialic acid degradation, foraging and depletion; inhibition of IL-8-induced neutrophilic infiltration; and metabolite-induced incapacitation of neutrophil and monocyte chemotaxis. We also highlight the tolerance/resistance to both host and antimicrobial molecules mounted by BV-associated biofilms. A plausible role of sialic acid-binding immunoglobulin-like lectins (SIGLECS) was also suggested. Sialidase, which is often produced by G. vaginalis, is central to the immunosuppression, relapse and recurrence observed in BV, although it is supported by other hydrolytic enzymes, vaginolysin and immunomodulatory metabolites.
Collapse
|
66
|
Hsieh K, Melendez JH, Gaydos CA, Wang TH. Bridging the gap between development of point-of-care nucleic acid testing and patient care for sexually transmitted infections. LAB ON A CHIP 2022; 22:476-511. [PMID: 35048928 PMCID: PMC9035340 DOI: 10.1039/d1lc00665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The incidence rates of sexually transmitted infections (STIs), including the four major curable STIs - chlamydia, gonorrhea, trichomoniasis and, syphilis - continue to increase globally, causing medical cost burden and morbidity especially in low and middle-income countries (LMIC). There have seen significant advances in diagnostic testing, but commercial antigen-based point-of-care tests (POCTs) are often insufficiently sensitive and specific, while near-point-of-care (POC) instruments that can perform sensitive and specific nucleic acid amplification tests (NAATs) are technically complex and expensive, especially for LMIC. Thus, there remains a critical need for NAAT-based STI POCTs that can improve diagnosis and curb the ongoing epidemic. Unfortunately, the development of such POCTs has been challenging due to the gap between researchers developing new technologies and healthcare providers using these technologies. This review aims to bridge this gap. We first present a short introduction of the four major STIs, followed by a discussion on the current landscape of commercial near-POC instruments for the detection of these STIs. We present relevant research toward addressing the gaps in developing NAAT-based STI POCT technologies and supplement this discussion with technologies for HIV and other infectious diseases, which may be adapted for STIs. Additionally, as case studies, we highlight the developmental trajectory of two different POCT technologies, including one approved by the United States Food and Drug Administration (FDA). Finally, we offer our perspectives on future development of NAAT-based STI POCT technologies.
Collapse
Affiliation(s)
- Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Johan H Melendez
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
67
|
De Novo Assembly and Annotation of the Vaginal Metatranscriptome Associated with Bacterial Vaginosis. Int J Mol Sci 2022; 23:ijms23031621. [PMID: 35163545 PMCID: PMC8835865 DOI: 10.3390/ijms23031621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
The vaginal microbiome plays an important role in women’s health and disease. Here we reanalyzed 40 vaginal transcriptomes from a previous study of de novo assembly (metaT-Assembly) followed by functional annotation. We identified 286,293 contigs and further assigned them to 25 phyla, 209 genera, and 339 species. Lactobacillus iners and Lactobacillus crispatus dominated the microbiome of non-bacterial vaginosis (BV) samples, while a complex of microbiota was identified from BV-associated samples. The metaT-Assembly identified a higher number of bacterial species than the 16S rRNA amplicon and metaT-Kraken methods. However, metaT-Assembly and metaT-Kraken exhibited similar major bacterial composition at the species level. Binning of metatranscriptome data resulted in 176 bins from major known bacteria and several unidentified bacteria in the vagina. Functional analyses based on Clusters of Orthologous Genes (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways suggested that a higher number of transcripts were expressed by the microbiome complex in the BV-associated samples than in non-BV-associated samples. The KEGG pathway analysis with an individual bacterial genome identified specific functions of the identified bacterial genome. Taken together, we demonstrated that the metaT-Assembly approach is an efficient tool to understand the dynamic microbial communities and their functional roles associated with the human vagina.
Collapse
|
68
|
Castro J, Lima Â, Sousa LGV, Rosca AS, Muzny CA, Cerca N. Crystal Violet Staining Alone Is Not Adequate to Assess Synergism or Antagonism in Multi-Species Biofilms of Bacteria Associated With Bacterial Vaginosis. Front Cell Infect Microbiol 2022; 11:795797. [PMID: 35071046 PMCID: PMC8766793 DOI: 10.3389/fcimb.2021.795797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial Vaginosis (BV) involves the presence of a multi-species biofilm adhered to vaginal epithelial cells, but its in-depth study has been limited due to the complexity of the bacterial community, which makes the design of in vitro models challenging. Perhaps the most common experimental technique to quantify biofilms is the crystal violet (CV) staining method. Despite its widespread utilization, the CV method is not without flaws. While biofilm CV quantification within the same strain in different conditions is normally accepted, assessing multi-species biofilms formation by CV staining might provide significant bias. For BV research, determining possible synergism or antagonism between species is a fundamental step for assessing the roles of individual species in BV development. Herein, we provide our perspective on how CV fails to properly quantify an in vitro triple-species biofilm composed of Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, and Prevotella bivia, three common BV-associated bacteria thought to play key roles in incident BV pathogenesis. We compared the CV method with total colony forming units (CFU) and fluorescence microscopy cell count methods. Not surprisingly, when comparing single-species biofilms, the relationship between biofilm biomass, total number of cells, and total cultivable cells was very different between each tested method, and also varied with the time of incubation. Thus, despite its wide utilization for single-species biofilm quantification, the CV method should not be considered for accurate quantification of multi-species biofilms in BV pathogenesis research.
Collapse
Affiliation(s)
- Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Ângela Lima
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Aliona S Rosca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
69
|
Martoni CJ, Frederiksen AKS, Damholt A, Leyer G. Effects of a 10-Strain Oral Probiotic on Parameters of Vaginal Health and Microbial Community: A Pilot Clinical Study. Int J Womens Health 2022; 14:29-39. [PMID: 35082535 PMCID: PMC8786346 DOI: 10.2147/ijwh.s341046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the clinical effects of a 10-strain probiotic on parameters of vaginal health in a pilot, open label study in women with intermediate Nugent score (NS) or vaginal pH >4.5. Methodology A total of 43 healthy premenopausal women, ages 18 to 50 years, with NS of 4–6 or vaginal pH >4.5 were enrolled. Participants consumed a probiotic formulation (Feminine Support™), containing 8 lactobacilli and 2 bifidobacteria strains, with a daily dose of 2.5×1010 CFU for 28 (subgroup 1) or 42 (subgroup 2) days. Investigational visits occurred at day 0, 14, 28 and 42 with assessment of vaginal pH, NS and vaginal microbiota, via next-generation sequencing. Results A total of 36 participants were included in the analysis set, with 24 and 12 participants included in subgroups 1 and 2, respectively. In the analysis set, there was a significant reduction in vaginal pH, from baseline, at day 28 (mean change=−0.19, P = 0.047). Participants in subgroup 1 achieved a significant reduction in vaginal pH from baseline, at day 28 (mean change=−0.23, P = 0.029) and day 42 (mean change=−0.29, P = 0.008), while participants in subgroup 2 achieved a significant and quantitatively greater reduction in vaginal pH from baseline to day 42 (mean change=−0.64, P = 0.008). No significant changes in NS were reported, due in part to highly diverse baseline levels. Vaginal microbial abundance exhibited a majority lactobacilli abundance at baseline, which was maintained over the study period. Vaginal pH was inversely associated with lactobacilli abundance throughout the study (P < 0.005). The product was well tolerated with high compliance. Two participants reported adverse events with suspected causality, which were mild and resolved during the study. Conclusion This 10-strain probiotic formulation was well tolerated and helped reduce vaginal pH in women with intermediate NS or elevated vaginal pH. The study product warrants a randomized controlled trial to further assess efficacy.
Collapse
Affiliation(s)
| | | | - Anders Damholt
- Chr. Hansen A/S, Human Health, Hoersholm, DK-2970, Denmark
| | - Gregory Leyer
- Chr. Hansen A/S, Human Health, Hoersholm, DK-2970, Denmark
| |
Collapse
|
70
|
Krakowsky Y, Potter E, Hallarn J, Monari B, Wilcox H, Bauer G, Ravel J, Prodger JL. The Effect of Gender-Affirming Medical Care on the Vaginal and Neovaginal Microbiomes of Transgender and Gender-Diverse People. Front Cell Infect Microbiol 2022; 11:769950. [PMID: 35127550 PMCID: PMC8814107 DOI: 10.3389/fcimb.2021.769950] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Transgender and gender diverse individuals may seek gender-affirming medical care, such as hormone therapy or surgery, to produce primary and/or secondary sex characteristics that are more congruent with their gender. Gender-affirming medical care for transmasculine individuals can include testosterone therapy, which suppresses circulating estrogen and can lead to changes in the vaginal epithelium that are reminiscent of the post-menopausal period in cisgender females. Among transfeminine individuals, gender-affirming medical care can include vaginoplasty, which is the surgical creation of a vulva and neovaginal canal, commonly using penile and scrotal skin. The effect of gender-affirming medical care on the vagina of transmasculine individuals and on the neovagina of transfeminine individuals is poorly characterized. This review summarizes what is known of the epithelium and local microbiota of the testosterone-exposed vagina and the neovagina. We focus on potential pathogens and determinants of gynecological health and identify key knowledge gaps for future research.
Collapse
Affiliation(s)
- Yonah Krakowsky
- Division of Urology, Department of Surgery, Women’s College Hospital and Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada,Transition Related Surgery, Department of Surgery, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Emery Potter
- Transition Related Surgery, Department of Surgery, Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Jason Hallarn
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Bern Monari
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hannah Wilcox
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Greta Bauer
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jessica L. Prodger
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada,Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada,*Correspondence: Jessica L. Prodger,
| |
Collapse
|
71
|
Junca H, Pieper DH, Medina E. The emerging potential of microbiome transplantation on human health interventions. Comput Struct Biotechnol J 2022; 20:615-627. [PMID: 35140882 PMCID: PMC8801967 DOI: 10.1016/j.csbj.2022.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 02/08/2023] Open
Abstract
The human microbiome has been the subject of intense research over the past few decades, in particular as a promising area for new clinical interventions. The microbiota colonizing the different body surfaces are of benefit for multiple physiological and metabolic processes of the human host and increasing evidence suggests an association between disturbances in the composition and functionality of the microbiota and several pathological conditions. This has provided a rationale for beneficial modulation of the microbiome. One approach being explored for modulating the microbiota in diseased individuals is transferring microbiota or microbiota constituents from healthy donors via microbiome transplantation. The great success of fecal microbiome transplantation for the treatment of Clostridioides difficile infections has encouraged the application of this procedure for the treatment of other diseases such as vaginal disorders via transplantation of vaginal microbiota, or of skin pathologies via the transplantation of skin microbiota. Microbiome modulation could even become a novel strategy for improving the efficacy of cancer therapies. This review discusses the principle, advantages and limitations of microbiome transplantation as well as different clinical contexts where microbiome transplantation has been applied.
Collapse
Affiliation(s)
- Howard Junca
- Microbial Interactions and Processes Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz-Zentrum für Infektionsforschung, Braunschweig, Germany
| |
Collapse
|
72
|
Usyk M, Schlecht NF, Pickering S, Williams L, Sollecito CC, Gradissimo A, Porras C, Safaeian M, Pinto L, Herrero R, Strickler HD, Viswanathan S, Nucci-Sack A, Diaz A, Burk RD. molBV reveals immune landscape of bacterial vaginosis and predicts human papillomavirus infection natural history. Nat Commun 2022; 13:233. [PMID: 35017496 PMCID: PMC8752746 DOI: 10.1038/s41467-021-27628-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Bacterial vaginosis (BV) is a highly prevalent condition that is associated with adverse health outcomes. It has been proposed that BV's role as a pathogenic condition is mediated via bacteria-induced inflammation. However, the complex interplay between vaginal microbes and host immune factors has yet to be clearly elucidated. Here, we develop molBV, a 16 S rRNA gene amplicon-based classification pipeline that generates a molecular score and diagnoses BV with the same accuracy as the current gold standard method (i.e., Nugent score). Using 3 confirmatory cohorts we show that molBV is independent of the 16 S rRNA region and generalizable across populations. We use the score in a cohort without clinical BV states, but with measures of HPV infection history and immune markers, to reveal that BV-associated increases in the IL-1β/IP-10 cytokine ratio directly predicts clearance of incident high-risk HPV infection (HR = 1.86, 95% CI: 1.19-2.9). Furthermore, we identify an alternate inflammatory BV signature characterized by elevated TNF-α/MIP-1β ratio that is prospectively associated with progression of incident infections to CIN2 + (OR = 2.81, 95% CI: 1.62-5.42). Thus, BV is a heterogeneous condition that activates different arms of the immune response, which in turn are independent risk factors for HR-HPV clearance and progression. Clinical Trial registration number: The CVT trial has been registered under: NCT00128661.
Collapse
Affiliation(s)
- Mykhaylo Usyk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
- Department of Epidemiology and Population Health, NYU School of Medicine, New York, USA
| | - Nicolas F Schlecht
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
- Department of Cancer Prevention & Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sarah Pickering
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY, USA
| | - LaShanda Williams
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
| | - Christopher C Sollecito
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
| | - Ana Gradissimo
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA
| | - Carolina Porras
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, Costa Rica, USA
| | | | - Ligia Pinto
- HPV Serology Laboratory, Frederick National Laboratory for Cancer Research, Fredrick, MD, USA
| | - Rolando Herrero
- Agencia Costarricense de Investigaciones Biomédicas, Fundación INCIENSA, Costa Rica, USA
| | - Howard D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
| | - Shankar Viswanathan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA
| | - Anne Nucci-Sack
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY, USA
| | - Angela Diaz
- Department of Pediatrics, Mount Sinai Adolescent Health Center, Icahn School of Medicine at Mount Sinai, Manhattan, NY, USA
| | - Robert D Burk
- Department of Pediatrics (Genetic Medicine), Albert Einstein College of Medicine, Bronx, USA.
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, USA.
- Departments of Microbiology and Immunology, and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
73
|
Lev-Sagie A, De Seta F, Verstraelen H, Ventolini G, Lonnee-Hoffmann R, Vieira-Baptista P. The Vaginal Microbiome: II. Vaginal Dysbiotic Conditions. J Low Genit Tract Dis 2022; 26:79-84. [PMID: 34928257 PMCID: PMC8719518 DOI: 10.1097/lgt.0000000000000644] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This series of articles, titled The Vaginal Microbiome (VMB), written on behalf of the International Society for the Study of Vulvovaginal Disease, aims to summarize the recent findings and understanding of the vaginal bacterial microbiota, mainly regarding areas relevant to clinicians specializing in vulvovaginal disorders. MATERIALS AND METHODS A search of PubMed database was performed, using the search terms "vaginal microbiome" with "dysbiosis," "bacterial vaginosis," "cytolytic vaginosis," "desquamative inflammatory vaginitis," and "aerobic vaginitis." Full article texts were reviewed. Reference lists were screened for additional articles. RESULTS The second article in this series focuses on vaginal dysbiotic conditions. Dysbiosis is a term describing imbalances in bacterial communities. Given that lactobacillus-dominated microbiota are thought to be the most optimal, vaginal dysbiosis is usually considered as lactobacilli-depleted VMB. Bacterial vaginosis (BV), the most common vaginal dysbiotic condition, is a polymicrobial disorder, considered the leading cause for vaginal discharge in women worldwide. In addition, we review the VMB in other vaginal conditions associated with lactobacilli depletion: desquamative inflammatory vaginitis and aerobic vaginitis. We also discuss the controversial diagnosis of cytolytic vaginosis, related with lactobacilli overgrowth. CONCLUSIONS Bacterial vaginosis displays complex microbiology. The heterogeneity and diversity within the genus Gardnerella may impact the progression of BV. Bacterial biofilms may contribute to the etiology and persistence of BV, and various bacteria may affect its clinical presentation and pathogenicity. Lack of lactobacilli is not always accompanied by an overgrowth of anaerobes.
Collapse
Affiliation(s)
- Ahinoam Lev-Sagie
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Francesco De Seta
- Institute for Maternal and Child Health “IRCCS Burlo Garofolo,” Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Hans Verstraelen
- Department of Obstetrics and Gynaecology, Ghent University Hospital, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Gary Ventolini
- Professor of Obstetrics and Gynecology, Distinguish University Professor, School of Medicine, Texas Tech University Health Sciences Center, Permian Basin, Odessa, Texas
| | - Risa Lonnee-Hoffmann
- Department of Obstetrics and Gynecology, St Olavs University Hospital, Trondheim, Norway
- Institute for Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
| | - Pedro Vieira-Baptista
- Hospital Lusíadas Porto, Porto, Portugal
- Lower Genital Tract Unit, Centro Hospitalar de São João, Porto, Portugal
- LAP, a Unilabs Company, Porto, Portugal
| |
Collapse
|
74
|
Grebeniuk D, Nazarchuk O, Dzis N, Taran I, Slyvka E, Abdullaiev V, Bobyr V, Mashevska O. Dependence of the dynamics of changes in the quality of life of patients with bacterial vaginosis on local levels of TNF-α and IL-1β. ACTA BIO-MEDICA : ATENEI PARMENSIS 2022; 93:e2022275. [PMID: 36043975 PMCID: PMC9534238 DOI: 10.23750/abm.v93i4.12461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIM Bacterial vaginosis is among serious health problem for women of reproductive age which influences on their local changes in inflammatory mediators and quality of life. The aim was to assess the dependence of the dynamics of changes in the quality of life of patients with bacterial vaginosis on local levels of TNF-α and IL-1β. METHODS In the prospective study 37 women aged 19-40 years with bacterial vaginosis were treated according to the Centers for Disease Control and Prevention. Patients received vaginal suppositories of clindamycin phosphate (100 mg) once daily for 3 days before bedtime. TNF-α, IL-1β levels in vaginal secretions by means of ELISA test), as well as the quality of life according to the RAND 36-Item Health Survey 1.0 were studied as in control group (once - to determine the reference values) and in the dynamics (the 1st day - before treatment, on the 7th day - after treatment) in the main group. RESULTS After the treatment microscopy of smears-imprints of vaginal secretions showed the complete absence of pathological microflora. The treatment was well tolerated by all patients. In the result there was proved the role of bacterial vaginosis in a violation of the quality of life of patients mainly due to the mental component of health, even after clinical and laboratory recovery. CONCLUSIONS There was proved the relation of vaginal TNF-α and IL-1β with physical and mental health in patients with bacterial vaginosis which can have a prognostic significance of the disease.
Collapse
Affiliation(s)
- Dmytro Grebeniuk
- Department of Endoscopic and Cardiovascular Surgery, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| | - Oleksandr Nazarchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| | - Nataliia Dzis
- Department of Obstetrics and Gynecology №2, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| | - Illia Taran
- Department of Pharmacology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| | - Elina Slyvka
- Department of Obstetrics and Gynecology №2, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| | - Vahif Abdullaiev
- Department of Obstetrics and Gynecology №2, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| | - Vitalii Bobyr
- Department of Microbiology, Virology and Immunology, Bogomolets National Medical University Ministry of Public Health of Ukraine, Kyiv, Ukraine
| | - Oksana Mashevska
- Department of Oncology, X-ray diagnostics and Therapy, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia, Ukraine
| |
Collapse
|
75
|
Gu Y, Zhou G, Zhou F, Li Y, Wu Q, He H, Zhang Y, Ma C, Ding J, Hua K. Gut and Vaginal Microbiomes in PCOS: Implications for Women's Health. Front Endocrinol (Lausanne) 2022; 13:808508. [PMID: 35282446 PMCID: PMC8905243 DOI: 10.3389/fendo.2022.808508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
PCOS is defined as a kind of endocrine and metabolic disorder which affects females at reproductive ages, is becoming much more common, nowadays. Microbiomes are known as microorganisms that inhabit the body to play a vital role in human health. In recent years, several basic and clinical studies have tried to investigate the correlation between the reproductive health/disorder and microbiomes (gut microbiomes and vaginal microbiomes). However, the mechanism is still unclear. In this review, we reviewed the relationship between PCOS and microbiomes, including gut/vaginal microbiomes compositions in PCOS, mechanism of microbiomes and PCOS, and then collectively focused on the recent findings on the influence of microbiomes on the novel insight regarding the therapeutic strategies for PCOS in the future clinical practice.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fangyue Zhou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Urology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Qiongwei Wu
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Hongyu He
- Department of Intensive Care Unit, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Zhang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Chengbin Ma
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Chengbin Ma, ; Jingxin Ding, ; Keqin Hua,
| |
Collapse
|
76
|
Ahrodia T, Yodhaanjali J, Das B. Vaginal microbiome dysbiosis in preterm birth. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:309-329. [DOI: 10.1016/bs.pmbts.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
77
|
Association of bacterial vaginosis with the most common sexually transmitted infections. SRP ARK CELOK LEK 2022. [DOI: 10.2298/sarh211116018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction/Objective. Bacterial vaginosis (BV) is the most common vaginal
dysbiosis that enlarge a possibility of getting sexually transmitted
infections (STI). The aims of this research is to examine association
between BV and the nine most common causes of STIs (Chlamydia trachomatis,
Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma spp, Trichomonas
vaginalis, Neisseria gonorrhoeae, high-risk Human papilloma viruses and
Herpes simplex virus type 1 and 2) and to determine if the presence of BV
increase the probability of coinfection with any of the STIs microorganisms.
Methods. This study involved 235 patients of reproductive age. One sample
swab was collected each for vaginal and cervical testing. The vaginal swabs
were used for detection of BV by RT-PCR test. The cervical swabs were used
for the detection of the most common STIs which were tested by four
different multiplex RT-PCR tests. Pearson?s ?2 test and Fisher?s probability
test were used for statistical analysis of the results. Results. Comparison
of the total number of STIs and the condition of the vaginal flora has shown
that STIs are the most common in patients with BV 80 (89.9%). Women with BV
have a higher frequency of infections with Ureaplasma spp. and M. Hominis,
71 (78.9%) and 50 (44.4%), respectively. The presence of detected STI
pathogens and relation with the state of vaginal flora indicate that mono
infections are present most often in patients with normal flora 51 (42.1%),
while coinfections are mostly present in BV patients 50 (55.6%).
Conclusion. This study has confirmed the association of M. hominis and
Ureaplasma spp with BV as well as an association of coinfections with this
dysbiosis. Better understanding of the association between various STIs and
the status of vaginal flora is necessary to enable better diagnosis,
prevention of diseases and women?s health protection.
Collapse
|
78
|
Toboso Silgo L, Cruz-Melguizo S, de la Cruz Conty ML, Encinas Pardilla MB, Muñoz Algarra M, Nieto Jiménez Y, Arranz Friediger A, Martínez-Pérez Ó. Screening for Vaginal and Endocervical Infections in the First Trimester of Pregnancy? A Study That Ignites an Old Debate. Pathogens 2021; 10:pathogens10121610. [PMID: 34959565 PMCID: PMC8707201 DOI: 10.3390/pathogens10121610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Vaginal and endocervical infections are considered a global health problem, especially after recent evidence of their association with preterm delivery and other adverse obstetric outcomes. Still, there is no consensus on the efficacy of a screening strategy for these infections in the first trimester of pregnancy. This study evaluated their prevalence and whether screening and treatment resulted as effective in reducing pregnancy and perinatal complications. Methods: A single-center prospective observational study was designed; a sample size of 400 first-trimester pregnant women was established and they were recruited between March 2016–October 2019 at the Puerta de Hierro University Hospital (Spain). They were screened for vaginal and endocervical infections and treated in case of abnormal flora. Pregnancy and delivery outcomes were compared between abnormal and normal flora groups by univariate analysis. Results: 109 patients had an abnormal flora result (27.2%). The most frequently detected infection was Ureaplasma urealyticum (12.3%), followed by Candida spp. (11.8%), bacterial vaginosis (5%), Mycoplasma hominis (1.2%) and Trichomonas vaginalis (0.8%). Patients with abnormal flora had a 5-fold increased risk of preterm premature rupture of membranes (5.3% vs. 1.1% of patients with normal flora, Odds Ratio 5.11, 95% Confidence Interval 1.20–21.71, p = 0.028). No significant differences were observed regarding preterm delivery or neonatal morbidity. Conclusions: Considering the morbimortality related to prematurity and that the results of our study suggest that the early treatment of abnormal flora could improve perinatal outcomes, the implementation of a screening program during the first trimester should be considered.
Collapse
Affiliation(s)
- Leonie Toboso Silgo
- Department of Obstetrics and Gynecology, University Hospital of Getafe, 28905 Madrid, Spain
- Correspondence:
| | - Sara Cruz-Melguizo
- Department of Obstetrics and Gynecology, Puerta de Hierro University Hospital of Majadahonda, 28222 Madrid, Spain; (S.C.-M.); (M.B.E.P.); (Y.N.J.); (A.A.F.); (Ó.M.-P.)
| | | | - María Begoña Encinas Pardilla
- Department of Obstetrics and Gynecology, Puerta de Hierro University Hospital of Majadahonda, 28222 Madrid, Spain; (S.C.-M.); (M.B.E.P.); (Y.N.J.); (A.A.F.); (Ó.M.-P.)
| | - María Muñoz Algarra
- Department of Microbiology, Puerta de Hierro University Hospital of Majadahonda, 28222 Madrid, Spain;
- Department of Obstetrics and Gynecology, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Yolanda Nieto Jiménez
- Department of Obstetrics and Gynecology, Puerta de Hierro University Hospital of Majadahonda, 28222 Madrid, Spain; (S.C.-M.); (M.B.E.P.); (Y.N.J.); (A.A.F.); (Ó.M.-P.)
| | - Alexandra Arranz Friediger
- Department of Obstetrics and Gynecology, Puerta de Hierro University Hospital of Majadahonda, 28222 Madrid, Spain; (S.C.-M.); (M.B.E.P.); (Y.N.J.); (A.A.F.); (Ó.M.-P.)
| | - Óscar Martínez-Pérez
- Department of Obstetrics and Gynecology, Puerta de Hierro University Hospital of Majadahonda, 28222 Madrid, Spain; (S.C.-M.); (M.B.E.P.); (Y.N.J.); (A.A.F.); (Ó.M.-P.)
- Department of Obstetrics and Gynecology, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
79
|
Sousa LGV, Castro J, França A, Almeida C, Muzny CA, Cerca N. A New PNA-FISH Probe Targeting Fannyhessea vaginae. Front Cell Infect Microbiol 2021; 11:779376. [PMID: 34869078 PMCID: PMC8637528 DOI: 10.3389/fcimb.2021.779376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection in women of reproductive age and has been associated with serious health complications, mainly in pregnant women. It is characterized by a decrease in the number of Lactobacillus species in the healthy vaginal microbiota and an overgrowth of strict and facultative anaerobic bacteria that develop a polymicrobial biofilm. Despite over 60 years of research investigating BV, its etiology is not fully understood. Gardnerella spp. is a crucial microorganism that contributes to the formation of the biofilm and the development of BV, but the role of other BV-associated bacteria is not clear. Nevertheless, Fannyhessea vaginae (previously known as Atopobium vaginae) is a highly specific species for BV, and co-colonization with Gardnerella is thought to be a very specific diagnostic marker. The diagnosis of BV still presents some limitations, since currently used methods often fail to accurately detect BV. This work aims to develop a novel peptide nucleic acid (PNA) probe targeting F. vaginae. This probe was further validated in a multiplex assay, which included a Gardnerella-specific PNA probe, as a possible method for diagnosis of BV, and was compared with quantification by qPCR. The new PNA probe showed excellent sensitivity and specificity and could discriminate F. vaginae-Gardnerella biofilms, confirming the potential to be used for the detection of BV-associated pathogens.
Collapse
Affiliation(s)
- Lúcia G V Sousa
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| | - Joana Castro
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| | - Carina Almeida
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal.,INIAV, IP- National Institute for Agrarian and Veterinary Research, Vila do Conde, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
80
|
Lu C, Wang H, Yang J, Zhang X, Chen Y, Feng R, Qian Y. Changes in Vaginal Microbiome Diversity in Women With Polycystic Ovary Syndrome. Front Cell Infect Microbiol 2021; 11:755741. [PMID: 34804995 PMCID: PMC8596286 DOI: 10.3389/fcimb.2021.755741] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 01/14/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects women. It can be accompanied by many clinical manifestations that can vary between individuals. Previous studies have found that there are specific changes in the intestinal flora of PCOS patients, and interventions to modify the intestinal flora can significantly improve the symptoms of PCOS. Women with PCOS have a higher incidence of vaginitis compared to healthy women. Few studies to-date have focused on investigating vaginal flora. Here, we aimed to explore distribution changes of the vaginal microbiome in PCOS patients. We recruited 42 PCOS patients (T-PCOS) and 24 healthy controls (T-control). 16s rRNA gene sequencing was used to sequence their vaginal microbiome. Normally, Lactobacillus was dominated in vaginal. Lactobacillus-dominated-type vaginal microbiome in T-PCOS and T-control (L-PCOS and L-control) and non-Lactobacillus-dominated-type vaginal microbiome in T-PCOS and T-control (N-PCOS and N-control) were analyzed separately. A total of 655 operational taxonomic units were detected in this sequencing, including 306 unique to T-PCOS, 202 unique to T-control, and 147 common between the two groups. At the genus level, Lactobacillus accounted for more than 70% of the total microbiome. Observed species (P = 0.021), Chao1 index (P = 0.020), and ACE index (P = 0.023) decreased significantly in L-PCOS. Principal component analysis showed no statistically significant differences among the subgroups. There were significant statistical differences in principal coordinate analysis in the Jaccard distance between the T-PCOS and T-control groups and between the L-PCOS and L-control groups. Linear discriminant analysis effect size found that Enterococcus and Actinomycetes were significantly different in the T-PCOS group. Atopobium and Actinomyces were statistically significantly different in patients with L-PCOS and N-PCOS group, respectively. Environmental factor analysis found that Ezakiella was significantly negatively correlated with age, while Streptococcus was significantly negatively correlated with follicle stimulating hormone. There were statistically significant differences between PCOS patients and healthy women in the vaginal microbiome, regardless of the abundance of Lactobacillus. Alpha diversity of vaginal microbiome decreased markedly in PCOS patients when it was dominated by Lactobacillus spp. Actinomyces could be a potential biomarker to identify PCOS. Streptococcus may have an impact on the pathological changes in PCOS by affecting the female reproductive endocrine environment.
Collapse
Affiliation(s)
- Chaoyi Lu
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jihong Yang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Zhang
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Chen
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine, Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yun Qian
- Reproductive Medical Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
81
|
Zheng N, Guo R, Wang J, Zhou W, Ling Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol 2021; 11:792787. [PMID: 34881196 PMCID: PMC8645935 DOI: 10.3389/fcimb.2021.792787] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus iners, first described in 1999, is a prevalent bacterial species of the vaginal microbiome. As L. iners does not easily grow on de Man-Rogosa-Sharpe agar, but can grow anaerobically on blood agar, it has been initially overlooked by traditional culture methods. It was not until the wide application of molecular biology techniques that the function of L. iners in the vaginal microbiome was carefully explored. L. iners has the smallest genome among known Lactobacilli and it has many probiotic characteristics, but is partly different from other major vaginal Lactobacillus species, such as L. crispatus, in contributing to the maintenance of a healthy vaginal microbiome. It is not only commonly present in the healthy vagina but quite often recovered in high numbers in bacterial vaginosis (BV). Increasing evidence suggests that L. iners is a transitional species that colonizes after the vaginal environment is disturbed and offers overall less protection against vaginal dysbiosis and, subsequently, leads to BV, sexually transmitted infections, and adverse pregnancy outcomes. Accordingly, under certain conditions, L. iners is a genuine vaginal symbiont, but it also seems to be an opportunistic pathogen. Further studies are necessary to identify the exact role of this intriguing species in vaginal health and diseases.
Collapse
Affiliation(s)
- Nengneng Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Renyong Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
| | - Jinxi Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
82
|
Next generation strategies for preventing preterm birth. Adv Drug Deliv Rev 2021; 174:190-209. [PMID: 33895215 DOI: 10.1016/j.addr.2021.04.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth (PTB) is defined as delivery before 37 weeks of gestation. Globally, 15 million infants are born prematurely, putting these children at an increased risk of mortality and lifelong health challenges. Currently in the U.S., there is only one FDA approved therapy for the prevention of preterm birth. Makena is an intramuscular progestin injection given to women who have experienced a premature delivery in the past. Recently, however, Makena failed a confirmatory trial, resulting the Center for Drug Evaluation and Research's (CDER) recommendation for the FDA to withdrawal Makena's approval. This recommendation would leave clinicians with no therapeutic options for preventing PTB. Here, we outline recent interdisciplinary efforts involving physicians, pharmacologists, biologists, chemists, and engineers to understand risk factors associated with PTB, to define mechanisms that contribute to PTB, and to develop next generation therapies for preventing PTB. These advances have the potential to better identify women at risk for PTB, prevent the onset of premature labor, and, ultimately, save infant lives.
Collapse
|
83
|
Effect of probiotics on vaginal Ureaplasma parvum in women suffering from unexplained infertility. Reprod Biomed Online 2021; 43:503-514. [PMID: 34315695 DOI: 10.1016/j.rbmo.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
RESEARCH QUESTION Does oral probiotic supplementation influence the relative abundance of different vaginal microbiota in women experiencing infertility? DESIGN A prospective, monocentric randomized controlled trial. To study the influence of probiotics on infertility, 80 patients with primary or secondary infertility were included. Patients were assigned to either a probiotic treatment or a control group. Participants in the treatment group (n = 40) took one sachet (2 g) a day of a defined probiotic supplement limiting Lactobacillus strains. Patients in the control group did not receive any additional probiotic supplements. Vaginal samples were taken on day 20 of the menstrual cycle and 4 weeks later, on day 20, of the consecutive cycle. Subsequently, 16s rRNA gene analysis of the vaginal samples was conducted. RESULTS After the intervention phase, no effects on alpha diversity resulting from treatment could be observed. The between sample diversity of different women (beta diversity) at baseline had no effects of age, treatment group or body mass index. Primary or secondary sterility, however, had a significant effect on community. Three clusters (Lactobacillus crispatus, Lactobacillus iners and Lactobacillus gasseri) were identified as the leading representatives. Furthermore, patients treated with probiotics showed limited growth of Ureaplasma parvum compared with the control group (P = 0.021). CONCLUSIONS This study points to a possible protective effect of probiotic supplements on the vaginal microbiota. It is tempting to speculate that this effect assists in containing the growth of non-beneficial bacteria and helps to prevent or cure a dysbiotic vaginal flora.
Collapse
|
84
|
Ren Z, Liu Q, Li W, Wu X, Dong Y, Huang Y. Profiling of Diagnostic Information of and Latent Susceptibility to Bacterial Keratitis From the Perspective of Ocular Bacterial Microbiota. Front Cell Infect Microbiol 2021; 11:645907. [PMID: 34055665 PMCID: PMC8155582 DOI: 10.3389/fcimb.2021.645907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
The ocular surface possesses its own bacterial microbiota. Once given a chance, opportunistic pathogens within ocular microbiota may lead to corneal infection like bacterial keratitis (BK). To reveal the possible factor that makes people vulnerable to BK from the perspective of ocular bacterial microbiota, as well as to compare diagnostic information provided by high-throughput 16S rDNA sequencing and bacterial culture, 20 patients with BK and 42 healthy volunteers were included. Conjunctival swabs and corneal scrapings collected from the diseased eyes of BK patients were subjected for both high-throughput 16S rDNA sequencing and bacterial culture. Conjunctival swabs collected from the normal eyes of BK patients and healthy volunteers were sent only for sequencing. For identifying the pathogens causing BK, high-throughput 16S rDNA sequencing presented a higher positive rate than bacterial culture (98.04% vs. 17.50%), with 92.11% reaching the genus level (including 10.53% down to the species level). However, none of the sequencing results was consistent with the cultural results. The sequencing technique appears to challenge culture, and could be a complement for pathogen identification. Moreover, compared to the eyes of healthy subjects, the ocular microbiota of three sample groups from BK patients contained significantly less Actinobacteria and Corynebacteria (determinate beneficial symbiotic bacteria), but significantly more Gammaproteobacteria, Pseudomonas, Bacteroides, and Escherichia-Shigella (common ocular pathogenic bacteria). Therefore, it is speculated that the imbalance of protective and aggressive bacteria in the ocular microbiota of healthy people may trigger susceptibility to BK. Based on this speculation, it seems promising to prevent and treat infectious oculopathy through regulating ocular microbiota.
Collapse
Affiliation(s)
- Zhichao Ren
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao University Medical College, Qingdao, China
| | - Qing Liu
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Wenfeng Li
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian Wu
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yanling Dong
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Yusen Huang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
85
|
Fudaba M, Kamiya T, Tachibana D, Koyama M, Ohtani N. Bioinformatics Analysis of Oral, Vaginal, and Rectal Microbial Profiles during Pregnancy: A Pilot Study on the Bacterial Co-Residence in Pregnant Women. Microorganisms 2021; 9:microorganisms9051027. [PMID: 34064634 PMCID: PMC8151423 DOI: 10.3390/microorganisms9051027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Preterm birth (PTB) and threatened preterm labor (TPL), an important pre-PTB state, are major obstetric complications during pregnancy. However, their triggers have not been fully elucidated. The vagina is dominated by Lactobacillus species (categorized as community state types; CSTs I, II, III, and V) or by mixed anaerobes (CST IV). An abundance of the latter is associated with bacterial vaginosis (BV) and BV-triggered PTB/TPL. To identify factors that influence the diversity of vaginal microbiota associated with BV and CST IV (BV-type) bacterial profile, we performed a bioinformatic analysis of the microbial taxa using 16S rRNA amplicon sequencing data of bacterial genome in oral, vaginal, and rectal samples collected from 58 pregnant Japanese women. Interestingly, common residence of BV-associated bacteria in the vagina and rectum was individually detected in the CST IV (non-Lactobacillus dominated) group by species-level Spearman correlation coefficient analysis, suggesting that the rectum acts as a reservoir of BV-associated bacterial species in the CST IV group. The current study provides evidence of bacterial co-residence in vagina and rectum in the non-Lactobacillus dominated group, which could be targeted to reduce the risk of preterm incidence in pregnancy.
Collapse
Affiliation(s)
- Megumi Fudaba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (M.F.); (D.T.); (M.K.)
| | - Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Daisuke Tachibana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (M.F.); (D.T.); (M.K.)
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (M.F.); (D.T.); (M.K.)
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
- Correspondence:
| |
Collapse
|
86
|
Bruins MJ, Dos Santos CO, Damoiseaux RAMJ, Ruijs GJHM. Bacterial agents in vulvovaginitis and vaginal discharge: a 10-year retrospective study in the Netherlands. Eur J Clin Microbiol Infect Dis 2021; 40:2123-2128. [PMID: 33942163 DOI: 10.1007/s10096-021-04265-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022]
Abstract
Vulvovaginitis is a common problem in the GP's practice. Causes are bacterial vaginosis (BV), Candida infection and sexually transmitted infections (STIs). Only if empirical treatment fails, a vaginal swab is sent in for culture and BV detection. However, without culture essential, bacterial pathogens may escape diagnosis. Many molecular BV assays have recently appeared on the marketplace, all quite differing in price and targets. However, for years, the Nugent score has been the gold standard for BV detection. We analysed retrospectively 10 years of microbiology results of vulvovaginal swabs, focusing on less frequently reported bacterial pathogens, and assessed the characteristics of BV diagnostics. Vulvovaginal swabs sent in between 2010 and 2020 from > 11,000 GP patients with vulvovaginitis associated symptoms, but negative STI tests, were analysed. First cultures and repeat cultures after at least 6 months were included in four age groups: < 12, 12-17, 18-51 and > 51 years. Candida species and BV were most frequently found, with the highest prevalence in premenopausal women. Haemophilus influenzae, beta-haemolytic streptococci, Streptococcus pneumoniae and Staphylococcus aureus were isolated in 5.6% of all cultures, with the highest percentages in children and postmenopausal women. If empirical treatment of vulvovaginitis fails, bacterial culture should be performed to detect all potentially pathogenic microorganisms to obtain a higher rate of successful diagnosis and treatment, avoiding unnecessary antimicrobial use and costs. For BV detection, molecular testing may seem attractive, but Nugent scoring still remains the low-cost gold standard. We recommend incorporating the above in the appropriate guidelines.
Collapse
Affiliation(s)
- Marjan J Bruins
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Dr. van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
| | - Claudy Oliveira Dos Santos
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Dr. van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - Roger A M J Damoiseaux
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs J H M Ruijs
- Laboratory of Clinical Microbiology and Infectious Diseases, Isala Hospital, Dr. van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| |
Collapse
|
87
|
Zhao H, Zhao L, Wu F, Shen L. Clinical research on traditional Chinese medicine treatment for bacterial vaginosis. Phytother Res 2021; 35:4943-4956. [PMID: 33860974 DOI: 10.1002/ptr.7123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/01/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023]
Abstract
Bacterial vaginosis (BV) is a common disease among women of reproductive age, with a serious impact on their daily life and health. At present, the most common treatment for BV is to take antibiotics, which results in good short-term treatment effects, but poor long-term effects. Traditional Chinese medicine (TCM) has been used to treat BV for over a millennium, with little risk of triggering drug resistance and adverse effects. Based on syndrome differentiation, there are three oral TCM treatment strategies for BV, including invigorating spleen, clearing dampness and heat, and nourishing kidney. The oral TCM prescriptions, such as Yi Huang decoction, Longdan Xiegan decoction, Zhibai Dihaung decoction, and so on are commonly used. Topical TCM treatment is also popular in China. According to the research results of pharmacological effects of active TCM ingredients, the most potential mechanisms of TCM for BV treatment are immune-enhancement effects, antibacterial activity, and estrogen-liked effects. Nonetheless, the multi-constituent of herbs may result in possible disadvantages to BV treatment, and the pharmacological mechanisms of TCM need further study. Here, we provide an overview of TCM compounds and their preparations used for BV, based on the pathogenesis and the potential therapeutic mechanisms, therefore providing a reference for further studies.
Collapse
Affiliation(s)
- Haiyue Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
88
|
Mott PD, Taylor CM, Lillis RA, Ardizzone CM, Albritton HL, Luo M, Calabresi KG, Martin DH, Myers L, Quayle AJ. Differences in the Genital Microbiota in Women Who Naturally Clear Chlamydia trachomatis Infection Compared to Women Who Do Not Clear; A Pilot Study. Front Cell Infect Microbiol 2021; 11:615770. [PMID: 33912473 PMCID: PMC8072278 DOI: 10.3389/fcimb.2021.615770] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
In vitro studies indicate IFNγ is central to Chlamydia trachomatis (Ct) eradication, but its function may be compromised by anaerobes typically associated with bacterial vaginosis (BV), a frequent co-morbidity in women with Ct. Here we investigated the associations between natural clearance of cervical Ct infection, the vaginal microbiome, and the requirements for IFNγ by evaluating the vaginal microbial and cytokine composition of Ct treatment visit samples from women who cleared Ct infection in the interim between their Ct screening and Ct treatment visit. The pilot cohort was young, predominantly African American, and characterized by a high rate of BV that was treated with metronidazole at the Ct screening visit. The rate of natural Ct clearance was 23.6% by the Ct treatment visit (median 9 days). 16S rRNA gene sequencing revealed that metronidazole-treated women who had a Lactobacillus spp.-dominant vaginal microbiota (CST 2 or 3) at the Ct treatment visit, were more prevalent in the Ct clearing population than the non-clearing population (86% v. 50%). L. iners (CST2) was the major Lactobacillus spp. present in Ct clearers, and 33% still remained anaerobe-dominant (CST1). Vaginal IFNγ levels were not significantly different in Ct clearers and non-clearers and were several logs lower than that required for killing Ct in vitro. An expanded panel of IFNγ-induced and proinflammatory cytokines and chemokines also did not reveal differences between Ct clearers and non-clearers, but, rather, suggested signatures better associated with specific CSTs. Taken together, these findings suggest that BV-associated bacteria may impede Ct clearance, but a Lactobacillus spp.-dominant microbiome is not an absolute requirement to clear. Further, IFNγ may be required at lower concentrations than in vitro modeling indicates, suggesting it may act together with other factors in vivo. Data also revealed that the vaginal bacteria-driven inflammation add complexity to the genital cytokine milieu, but changes in this microbiota may contribute to, or provide cytokine biomarkers, for a shift to Ct clearance.
Collapse
Affiliation(s)
- Patricia Dehon Mott
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Christopher M. Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca A. Lillis
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Caleb M. Ardizzone
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Hannah L. Albritton
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Kaitlyn G. Calabresi
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David H. Martin
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Leann Myers
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Alison J. Quayle
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
89
|
Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol 2021; 11:631972. [PMID: 33898328 PMCID: PMC8058480 DOI: 10.3389/fcimb.2021.631972] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The vaginal microbiome is an intricate and dynamic microecosystem that constantly undergoes fluctuations during the female menstrual cycle and the woman's entire life. A healthy vaginal microbiome is dominated by Lactobacillus which produce various antimicrobial compounds. Bacterial vaginosis (BV) is characterized by the loss or sharp decline in the total number of Lactobacillus and a corresponding marked increase in the concentration of anaerobic microbes. BV is a highly prevalent disorder of the vaginal microbiota among women of reproductive age globally. BV is confirmed to be associated with adverse gynecologic and obstetric outcomes, such as sexually transmitted infections, pelvic inflammatory disease, and preterm birth. Gardnerella vaginalis is the most common microorganism identified from BV. It is the predominant microbe in polymicrobial biofilms that could shelter G. vaginalis and other BV-associated microbes from adverse host environments. Many efforts have been made to increase our understanding of the vaginal microbiome in health and BV. Thus, improved novel and accurate diagnosis and therapeutic strategies for BV have been developed. This review covers the features of vaginal microbiome, BV, BV-associated diseases, and various strategies of diagnosis and treatment of BV, with an emphasis on recent research progresses.
Collapse
Affiliation(s)
| | | | | | - Rongguo Li
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
90
|
Mwenda N, Nduati R, Kosgey M, Kerich G. Effect of Bacterial Vaginosis (BV)-HIV-1 Co-existence on Maternal and Infant Health: A Secondary Data Analysis. Front Pediatr 2021; 9:544192. [PMID: 33816393 PMCID: PMC8012544 DOI: 10.3389/fped.2021.544192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The lactobacillus-rich microbiome forms a defense system against infections. Babies are born sterile and acquire their microbiome from exposure to the mothers' vaginal and rectal microbiota. Bacterial vaginosis (BV), which is characterized by a deficit of the Lactobacilli genera, may predispose women and their babies to an increased frequency of illness. Objective: To determine the effect of BV on HIV-infected women's post-delivery health as well as the morbidity and mortality of the exposed infant at birth, 6 months, and at 12 months of life. Study Design: A retrospective cohort study was conducted using previously collected data to investigate whether there was an association between BV-HIV-1 infected mothers and subsequent infant morbidity and mortality over a 12-month period. Methods: Data for this analysis were extracted from the original data set. Women were categorized into two groups according to whether they had a positive or negative laboratory-based diagnosis of BV using the Nugent method. The two groups were compared for socio-demographic characteristics, prior to the pregnancy experience in their current pregnancy outcome and at post-delivery morbidity, and for the duration of hospital stay. BV-exposed and unexposed infants were compared in terms of morbidity and mortality at birth, and in the periods between birth and 6 months, and between 6 and 12 months, respectively, based on prospectively collected data of the mother's past and present illness, and clinical examination at scheduled and unscheduled visits during the follow-up period of the original study. The generalized estimating equation (GEE) was used to analyze the longitudinally collected data. We used the Kaplan-Meier (KM) method to generate the cumulative hazard curve and compared the mortality in the first year of life between the two groups. Results: In total, 365 patients were included in the study. Exposure to BV was associated with an adverse maternal condition (Relative Risk [RR], 2.45; 95% confidence interval [CI], 1.04-5.81, P = 0.04) and maternal hospital admission (RR, 1.99; 95% CI, 1.14-3.48, P = 0.02) but was not linked to any neonatal morbidity at birth. There was a higher frequency of gastro-intestinal morbidity among BV-exposed infants. At 6 months, infants of BV-exposed mothers had higher odds of bloody stool (Odds Ratio [OR], 3.08; 95% CI, 1.11-10.00, P = 0.04), dehydration (OR, 2.94; 95% CI, 1.44-6.37, P = 0.01), vomiting (OR, 1.64; 95% CI, 1.06-2.56, P = 0.03), and mouth ulcers (OR, 12.8; 95% CI, 2.27-241.21, P = 0.02). At 12 months, exposure to BV was associated with dehydration (OR, 1.81; 95% CI, 1.05-3.19, P = 0.03) and vomiting (OR, 1.39; 95% CI, 1.01-1.92, P = 0.04). KM survival analysis showed non-significant higher trends of deaths among BV-exposed infants (P = 0.65). Conclusion: This study demonstrates differences in maternal and infant morbidity outcomes associated with exposure to BV. Further research is required to determine whether treatment for maternal BV mitigates maternal and infant morbidity.
Collapse
Affiliation(s)
- Ngugi Mwenda
- Department of Mathematics, Physics and Computing, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya
| | - Ruth Nduati
- Department of Paediatrics, University of Nairobi, Nairobi, Kenya
| | - Mathew Kosgey
- Department of Mathematics, Physics and Computing, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya
| | - Gregory Kerich
- Department of Mathematics, Physics and Computing, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya
| |
Collapse
|