51
|
Kuskovsky R, Buj R, Xu P, Hofbauer S, Doan MT, Jiang H, Bostwick A, Mesaros C, Aird KM, Snyder NW. Simultaneous isotope dilution quantification and metabolic tracing of deoxyribonucleotides by liquid chromatography high resolution mass spectrometry. Anal Biochem 2019; 568:65-72. [PMID: 30605633 PMCID: PMC7359880 DOI: 10.1016/j.ab.2018.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022]
Abstract
Quantification of cellular deoxyribonucleoside mono- (dNMP), di- (dNDP), triphosphates (dNTPs) and related nucleoside metabolites are difficult due to their physiochemical properties and widely varying abundance. Involvement of dNTP metabolism in cellular processes including senescence and pathophysiological processes including cancer and viral infection make dNTP metabolism an important bioanalytical target. We modified a previously developed ion pairing reversed phase chromatography-mass spectrometry method for the simultaneous quantification and 13C isotope tracing of dNTP metabolites. dNMPs, dNDPs, and dNTPs were chromatographically resolved to avoid mis-annotation of in-source fragmentation. We used commercially available 13C15N-stable isotope labeled analogs as internal standards and show that this isotope dilution approach improves analytical figures of merit. At sufficiently high mass resolution achievable on an Orbitrap mass analyzer, stable isotope resolved metabolomics allows simultaneous isotope dilution quantification and 13C isotope tracing from major substrates including 13C-glucose. As a proof of principle, we quantified dNMP, dNDP and dNTP pools from multiple cell lines. We also identified isotopologue enrichment from glucose corresponding to ribose from the pentose-phosphate pathway in dNTP metabolites.
Collapse
Affiliation(s)
- Rostislav Kuskovsky
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA, 19104, USA
| | - Raquel Buj
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Peining Xu
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA, 19104, USA
| | - Samuel Hofbauer
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary T Doan
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA, 19104, USA
| | - Helen Jiang
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA, 19104, USA
| | - Anna Bostwick
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA, 19104, USA
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine M Aird
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St Suite 560, Philadelphia, PA, 19104, USA.
| |
Collapse
|
52
|
Monti C, Lane L, Fasano M, Alberio T. Update of the Functional Mitochondrial Human Proteome Network. J Proteome Res 2018; 17:4297-4306. [PMID: 30230342 DOI: 10.1021/acs.jproteome.8b00447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the pivotal role of mitochondrial alterations in several diseases, the Human Proteome Organization (HUPO) has promoted in recent years an initiative to characterize the mitochondrial human proteome, the mitochondrial human proteome project (mt-HPP). Here we generated an updated version of the functional mitochondrial human proteome network, made by nodes (mitochondrial proteins) and edges (gold binary interactions), using data retrieved from neXtProt, the reference database for HPP metrics. The principal new concept suggested was the consideration of mitochondria-associated proteins (first interactors), which may influence mitochondrial functions. All of the proteins described as mitochondrial in the sublocation or the GO Cellular Component sections of neXtProt were considered. Their other subcellular and submitochondrial localizations have been analyzed. The network represents the effort to collect all of the high-quality binary interactions described so far for mitochondrial proteins and the possibility for the community to reuse the information collected. As a proof of principle, we mapped proteins with no function, to speculate on their role by the background knowledge of their interactors, and proteins described to be involved in Parkinson's Disease, a neurodegenerative disorder, where it is known that mitochondria play a central role.
Collapse
Affiliation(s)
- Chiara Monti
- Department of Science and High Technology and Center of Bioinformatics , University of Insubria , Busto Arsizio 21052 , Italy
| | - Lydie Lane
- Computer and Laboratory Investigation of Proteins of Human Origin (CALIPHO), SIB Swiss Institute of Bioinformatics, and Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, Centre Médical Universitaire (CMU) , 1211 Geneva 4 , Switzerland
| | - Mauro Fasano
- Department of Science and High Technology and Center of Bioinformatics , University of Insubria , Busto Arsizio 21052 , Italy
| | - Tiziana Alberio
- Department of Science and High Technology and Center of Bioinformatics , University of Insubria , Busto Arsizio 21052 , Italy
| |
Collapse
|