51
|
Li H, Li J, Qu Z, Qian H, Zhang J, Wang H, Xu X, Liu S. Intrauterine exposure to low-dose DBP in the mice induces obesity in offspring via suppression of UCP1 mediated ER stress. Sci Rep 2020; 10:16360. [PMID: 33004990 PMCID: PMC7529907 DOI: 10.1038/s41598-020-73477-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Dibutyl phthalate (DBP) is recognized as an environmental endocrine disruptor that has been detected in fetal and postnatal samples. Recent evidence found that in utero DBP exposure was associated with an increase of adipose tissue weight and serum lipids in offspring, but the precise mechanism is unknown. Here we aimed to study the effects of in utero DBP exposure on obesity in offspring and examine possible mechanisms. SPF C57BL/6J pregnant mice were gavaged with either DBP (5 mg /kg/day) or corn oil, from gestational day 12 until postnatal day 7. After the offspring were weaned, the mice were fed a standard diet for 21 weeks, and in the last 2 weeks 20 mice were selected for TUDCA treatment. Intrauterine exposure to low-dose DBP promoted obesity in offspring, with evidence of glucose and lipid metabolic disorders and a decreased metabolic rate. Compared to controls, the DBP exposed mice had lower expression of UCP1 and significantly higher expression of Bip and Chop, known markers of endoplasmic reticulum (ER) stress. However, TUDCA treatment of DBP exposed mice returned these parameters nearly to the levels of the controls, with increased expression of UCP1, lower expression of Bip and Chop and ameliorated obesity. Intrauterine exposure of mice to low-dose DBP appears to promote obesity in offspring by inhibiting UCP1 via ER stress, a process that was largely reversed by treatment with TUDCA.
Collapse
Affiliation(s)
- Huan Li
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Jianqiao Li
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Zhenting Qu
- Jilin Combine Traditional Chinese and Western Hospital, Jilin, 132012, China
| | - Honghao Qian
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Jing Zhang
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Hongyan Wang
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Xiaolei Xu
- School of Public Health, Beihua University, Jilin, 132013, China
| | - Shengyuan Liu
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, 518054, China.
| |
Collapse
|
52
|
Rahmani S, Vakhshiteh F, Hodjat M, Sahranavardfard P, Hassani S, Ghafour Broujerdi E, Rahimifard M, Gholami M, Baeeri M, Abdollahi M. Gene-Environmental Interplay in Bisphenol A Subchronic Animal Exposure: New Insights into the Epigenetic Regulation of Pancreatic Islets. Chem Res Toxicol 2020; 33:2338-2350. [PMID: 32701268 DOI: 10.1021/acs.chemrestox.0c00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) such as bisphenol A (BPA), which is widely used in the plastic industry, have recently been considered to be involved in the pathogenesis of metabolic disorders, including obesity and diabetes. The present study aimed to examine the potentially detrimental effects of BPA on glucose and energy metabolism at the epigenetic level. The blood glucose profile of Wistar rats receiving different oral doses of BPA over 28 days was assessed. At the end of the treatment, the islets of Langerhans were isolated and purified, and their RNA content was extracted. MicroRNA (miRNA) profiling was evaluated using the next generation sequencing (NGS) method. After performing bioinformatic analysis of the NGS data, the gene ontology and data enrichment in terms of significantly disturbed miRNAs were evaluated through different databases, including Enrichr and DIANA tools. Additionally, the DNA methylation and the level of expression of two critical genes in glucose metabolism (PPARγ, Pdx1) were assessed. Subchronic BPA exposure (406 mg/kg/day) disturbed the blood glucose profile (fasting blood glucose and oral glucose tolerance) of Wistar rats and resulted in considerable cytotoxicity. NGS data analyses revealed that the expression of some crucial miRNAs involved in β-cell metabolism and diabetes occurrence and development, including miR-375, miR-676, miR-126-a, and miR-340-5p, was significantly disrupted. According to the DNA methylation evaluation, both PPARγ and Pdx1 genes underwent changes in the methylation level at particular loci on the gene's promoter. The expression levels of these genes were upregulated and downregulated, respectively. Overall, subchronic BPA exposure could cause epigenetic dysregulation at the gene level and interfere with the expression of key miRNAs and the methylation process of genes involved in glucose homeostasis. Understanding the exact underlying mechanisms by which BPA and other EDCs induce endocrine disturbance could be of great importance in the way of finding new preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Soheila Rahmani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Elmira Ghafour Broujerdi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS) and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
53
|
Giuliani A, Zuccarini M, Cichelli A, Khan H, Reale M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5655. [PMID: 32764471 PMCID: PMC7460375 DOI: 10.3390/ijerph17165655] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Phthalates are a huge class of chemicals with a wide spectrum of industrial uses, from the manufacture of plastics to food contact applications, children's toys, and medical devices. People and animals can be exposed through different routes (i.e., ingestion, inhalation, dermal, or iatrogenic exposure), as these compounds can be easily released from plastics to water, food, soil, air, making them ubiquitous environmental contaminants. In the last decades, phthalates and their metabolites have proven to be of concern, particularly in products for pregnant women or children. Moreover, many authors reported high concentrations of phthalates in soft drinks, mineral waters, wine, oil, ready-to-eat meals, and other products, as a possible consequence of their accumulation along the food production chain and their accidental release from packaging materials. However, due to their different physical and chemical properties, phthalates do not have the same human and environmental impacts and their association to several human diseases is still under debate. In this review we provide an overview of phthalate toxicity, pointing out the health and legal issues related to their occurrence in several types of food and beverage.
Collapse
Affiliation(s)
- Angela Giuliani
- "G.d'Annunzio" School of Advanced Studies, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Aging Research Center, Ce.S.I., "G. d'Annunzio" University Foundation, 66100 Chieti, Italy
| | - Angelo Cichelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Marcella Reale
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Interuniversity Center on Interactions between Electromagnetic Fields and Biosystems, National Research Council-Institute for Electromagnetic Detection of The Environment, (ICEMB-CNR-IREA), 80124 Naples, Italy
| |
Collapse
|
54
|
Xu Q, Qi W, Zhang Y, Wang Q, Ding S, Han X, Zhao Y, Song X, Zhao T, Zhou L, Ye L. DNA methylation of JAK3/STAT5/PPARγ regulated the changes of lipid levels induced by di (2-ethylhexyl) phthalate and high-fat diet in adolescent rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30232-30242. [PMID: 32451896 DOI: 10.1007/s11356-020-08976-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) and high-fat diet (HFD) could induce lipid metabolic disorder. This study was undertaken to identify the effect of DNA methylation of JAK3/STAT5/PPARγ on lipid metabolic disorder induced by DEHP and HFD. Wistar rats were divided into a normal diet (ND) group and HFD group. Each diet group treated with DEHP (0, 5, 50, 500 mg/kg/d) for 8 weeks' gavage. The DNA-methylated levels of PPARγ, JAK3, STAT5a, and STAT5b in rats' livers and adipose were analyzed with MethylTarget. The lipid levels of rats' livers and adipose were detected with ELISA. Results showed in ND group that the DNA methylation levels of PPARγ, JAK3 in livers, and STAT5b in adipose were lower in 500 mg/kg/d group than the control. And the level of total cholesterol (TC) in adipose was higher in 500 mg/kg/d group than the control. In HFD group, the DNA methylation level of JAK3 was the lowest in livers and the highest in adipose in 50 mg/kg/d group. And the level of TC in livers was the lowest in 50 mg/kg/d group. In the 500 mg/kg/d group, the DNA methylation level of STAT5b was lower in livers and higher in adipose in HFD group than that in ND group. And the levels of TC in livers were lower in HFD group than those in ND group. Therefore, DNA methylation of JAK3/STAT5/PPARγ regulated the changes in lipid levels induced by DEHP and HFD in adolescent rats.
Collapse
Affiliation(s)
- Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Qi Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Shuang Ding
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xu Han
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Yaming Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Xinyue Song
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, 130021, China.
| |
Collapse
|
55
|
Martínez R, Navarro-Martín L, van Antro M, Fuertes I, Casado M, Barata C, Piña B. Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during the yolk sac absorption stage. CHEMOSPHERE 2020; 246:125704. [PMID: 31887487 DOI: 10.1016/j.chemosphere.2019.125704] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA; 4,4'-(propane-2,2-diyl)diphenol) has been shown to act as an obesogen and to disrupt lipid metabolism in zebrafish eleutheroembryos (ZE). To characterize the consequences of this disruption, we performed a detailed lipidomic study using ZE exposed to different BPA concentrations (0, 4, 6 and 8 mg/L of BPA) from day 2 to up to day 6 post fertilization (dpf). Total lipids at 4, 5 and 6 dpf were extracted by Folch method and analyzed by high-performance thin layer chromatography (HPTLC) as wide-range preliminary screening. Selected conditions (0 and 6 mg/L of BPA) were used to obtain a high-quality lipid profile using ultra high-performance liquid chromatography/time-of-flight mass spectrometry (UHPLC-TOFMS). BPA exposed ZE exhibited increased amounts of triglycerides (TG), diglycerides (DG), phosphatidylcholines (PC) and phosphatidylinositols (PI), regarding the control group. Analysis of time- and BPA exposure-related patterns of specific lipid species showed a clear influence of unsaturation degree (mostly in DG and PC) and/or fatty acid chain length (mostly in TG and PC derivatives) on their response to the presence of BPA. A decreased yolk-sac and energy consumption in exposed individuals appeared as the main reason for the observed BPA-driven effects. Integration of these results with previous morphological, biochemical, transcriptomic, metabolomic and behavioral data suggests a disruption of different signalling pathways by BPA that starts at very low BPA concentrations, whose effects propagate across different organization levels, and that cannot be only explained by the relatively weak estrogenic effect of BPA.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya, 08007, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Morgane van Antro
- Laboratory of Evolutionary and Adaptive Physiology, University of Namur, Namur, B5000, Belgium.
| | - Inmaculada Fuertes
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Marta Casado
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
56
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
57
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
58
|
Zhao C, Tang Z, Xie P, Lin K, Chung ACK, Cai Z. Immunotoxic Potential of Bisphenol F Mediated through Lipid Signaling Pathways on Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11420-11428. [PMID: 31453682 DOI: 10.1021/acs.est.8b07314] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a bisphenol A (BPA) alternative, bisphenol F (BPF) has been detected in various products, such as paper products, personal care products, and food. More importantly, the toxicity of BPF remains underexplored. We reported an integrated method to study the immunotoxic potentials and the underlying mechanisms of BPF on cell apoptosis, macrophage polarization, reactive oxygen species generation, expression and secretion of immune-related cytokines, and reprogramming of lipid signaling. More serious to BPA, BPF induced apoptosis in macrophages. The apoptosis was induced by activating both sphingomyelin-ceramide signaling pathway and oxidative stress, which included intrinsic (bax and caspase-9) and extrinsic apoptotic pathways (tumor necrosis factor receptor 1, caspase-8, and caspase-3). BPF exposure also induced the proinflammatory phenotype of the macrophage. This alternation was shown to be closely correlated with the modulation of biosynthesis and degradation of glycerophospholipids. This study demonstrated novel evidence that BPF as a substituent of BPA induced immunotoxic effects at environmentally relevant concentrations. We also showed that the reprogramming of lipidome plays a key role in the regulation of macrophage polarization and the induction of immunotoxicity of the BPA analogue.
Collapse
Affiliation(s)
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention , Shenzhen 518055 , China
| | | | | | | | | |
Collapse
|
59
|
Greco EA, Lenzi A, Migliaccio S, Gessani S. Epigenetic Modifications Induced by Nutrients in Early Life Phases: Gender Differences in Metabolic Alteration in Adulthood. Front Genet 2019; 10:795. [PMID: 31572434 PMCID: PMC6749846 DOI: 10.3389/fgene.2019.00795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic chronic diseases, also named noncommunicable diseases (NCDs), are considered multifactorial pathologies, which are dramatically increased during the last decades. Noncommunicable diseases such as cardiovascular diseases, obesity, diabetes mellitus, cancers, and chronic respiratory diseases markedly increase morbidity, mortality, and socioeconomic costs. Moreover, NCDs induce several and complex clinical manifestations that lead to a gradual deterioration of health status and quality of life of affected individuals. Multiple factors are involved in the development and progression of these diseases such as sedentary behavior, smoking, pollution, and unhealthy diet. Indeed, nutrition has a pivotal role in maintaining health, and dietary imbalances represent major determinants favoring chronic diseases through metabolic homeostasis alterations. In particular, it appears that specific nutrients and adequate nutrition are important in all periods of life, but they are essential during specific times in early life such as prenatal and postnatal phases. Indeed, epidemiologic and experimental studies report the deleterious effects of an incorrect nutrition on health status several decades later in life. During the last decade, a growing interest on the possible role of epigenetic mechanisms as link between nutritional imbalances and NCDs development has been observed. Finally, because of the pivotal role of the hormones in fat, carbohydrate, and protein metabolism regulation throughout life, it is expected that any hormonal modification of these processes can imbalance metabolism and fat storage. Therefore, a particular interest to several chemicals able to act as endocrine disruptors has been recently developed. In this review, we will provide an overview and discuss the epigenetic role of some specific nutrients and chemicals in the modulation of physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Emanuela A Greco
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
60
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
61
|
Carnevali O, Giorgini E, Canuti D, Mylonas CC, Forner-Piquer I, Maradonna F. Diets contaminated with Bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: A new target for environmental pollutant action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:250-259. [PMID: 30577020 DOI: 10.1016/j.scitotenv.2018.12.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In the last years, an increasing number of studies reported that food pollution represents a significant route of exposure to environmental toxicants, able to cause mild to severe food illnesses and health problems, including hormonal and metabolic diseases. Pollutants can accumulate in organisms and biomagnify along the food web, finally targeting top consumers causing health and economic problems. In this study, adults of gilthead sea bream, Sparus aurata, were fed with diets contaminated with Bisphenol A (BPA) (4 and 4000 μg BPA kg-1 bw day-1) and Di-isononyl phthalate (DiNP) (15 and 1500 μg DiNP kg-1 bw day-1), to evaluate the effects of the contamination on the muscle macromolecular composition and alterations of its texture. The analysis conducted in the muscle using infrared microspectroscopy, molecular biology and biochemical assays, showed, in fish fed BPA contaminated diets, a decrease of unsaturated lipids and an increase of triglycerides and saturated alkyl chains. Conversely, in fish fed DiNP, a decrease of lipid content, caused by a reduction of both saturated and unsaturated chains and triglycerides was measured. Protein content was decreased by both xenobiotics evidencing a novel macromolecular target affected by these environmental contaminants. In addition, in all treated groups, proteins resulted more phosphorylated than in controls. Calpain and cathepsin levels, orchestrating protein turnover, were deregulated by both xenobiotics, evidencing alterations of muscle composition and texture. In conclusion, the results obtained suggest the ability of BPA and DiNP to modify the muscle macromolecular building, advising this tissue as a target of Endocrine-Disrupting Chemicals (EDCs) and providing a set of biomarkers as possible monitoring endpoints to develop novel OEDC test guidelines.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Debora Canuti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy.
| |
Collapse
|