51
|
Shentu Y, Tian Q, Yang J, Liu X, Han Y, Yang D, Zhang N, Fan X, Wang P, Ma J, Chen R, Li D, Liu S, Wang Y, Mao S, Gong Y, Du C, Fan J. Upregulation of KDM6B contributes to lipopolysaccharide-induced anxiety-like behavior via modulation of VGLL4 in mice. Behav Brain Res 2021; 408:113305. [PMID: 33865886 DOI: 10.1016/j.bbr.2021.113305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Histone H3K27me3 demethylase KDM6B (also known as Jumonji domain-containing protein D3, JMJD3) plays vital roles in the etiology of inflammatory responses; however, little is known about the role of KDM6B in neuroinflammation-induced anxiety-like behavior. The present study aimed to investigate the potential role of KDM6B in lipopolysaccharide (LPS)-induced anxiety-like behavior and to evaluate whether it is associated with the modulation of vestigial-like family member 4 (VGLL4). The elevated plus maze, light-dark box, and open-field test were performed to test the anxiety-like behavior induced by LPS in C57BL/6 J male mice. Levels of relative protein expression in the hippocampus were quantified by western blotting. KDM6B inhibitor GSK-J4 and microglia inhibitor minocycline as well as adeno-associated virus of Vgll4 shRNA were used to explore the underlying mechanisms. We found that KDM6B, VGLL4, interleukin-1β (IL-1β), and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) protein levels were increased in LPS-dose dependent manner in the hippocampus but not in prefrontal cortex. GSK-J4 treatment attenuated LPS-induced VGLL4, the signal transducer and activator of transcription 3 (STAT3), IL-1β and Iba-1 upregulation and anxiety-like behavior. Knockdown VGLL4 with Vgll4 shRNA prevented the increase of anxiety-like behavior and levels of STAT3, IL-1β, and Iba-1 expression in the hippocampus of LPS-treated mice. Moreover, minocycline, an inhibitor of microglia treatment blunted LPS-induced anxiety-like behavior. Collectively, these results demonstrate that the induction of neuroinflammation by LPS promotes KDM6B activation in the hippocampus, and LPS-induced anxiety-like behavior is associated with upregulation of VGLL4 by KDM6B in the hippocampus.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi, 334709, China
| | - Xiaoyuan Liu
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yujiao Han
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dichen Yang
- Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dantong Li
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shouting Liu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongyu Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sunzhong Mao
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
52
|
Kuehner JN, Chen J, Bruggeman EC, Wang F, Li Y, Xu C, McEachin ZT, Li Z, Chen L, Hales CM, Wen Z, Yang J, Yao B. 5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer's disease. Cell Rep 2021; 35:109042. [PMID: 33910000 PMCID: PMC8106871 DOI: 10.1016/j.celrep.2021.109042] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
5-hydroxymethylcytosine (5hmC) undergoes dynamic changes during mammalian brain development, and its dysregulation is associated with Alzheimer’s disease (AD). The dynamics of 5hmC during early human brain development and how they contribute to AD pathologies remain largely unexplored. We generate 5hmC and transcriptome profiles encompassing several developmental time points of healthy forebrain organoids and organoids derived from several familial AD patients. Stage-specific differentially hydroxymethylated regions demonstrate an acquisition or depletion of 5hmC modifications across developmental stages. Additionally, genes concomitantly increasing or decreasing in 5hmC and gene expression are enriched in neurobiological or early developmental processes, respectively. Importantly, our AD organoids corroborate cellular and molecular phenotypes previously observed in human AD brains. 5hmC is significantly altered in developmentally programmed 5hmC intragenic regions in defined fetal histone marks and enhancers in AD organoids. These data suggest a highly coordinated molecular system that may be dysregulated in these early developing AD organoids. Kuehner et al. use forebrain organoids derived from healthy controls to study the dynamics of 5hmC across early brain development. In addition, organoids derived from several AD patients reveal aberrant 5hmC patterns that could disrupt early neuronal networks and contribute to the onset of AD later in life.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Junyu Chen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Chongchong Xu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zachary T McEachin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jingjing Yang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
53
|
The "missing heritability"-Problem in psychiatry: Is the interaction of genetics, epigenetics and transposable elements a potential solution? Neurosci Biobehav Rev 2021; 126:23-42. [PMID: 33757815 DOI: 10.1016/j.neubiorev.2021.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Psychiatric disorders exhibit an enormous burden on the health care systems worldwide accounting for around one-third of years lost due to disability among adults. Their etiology is largely unknown and diagnostic classification is based on symptomatology and course of illness and not on objective biomarkers. Most psychiatric disorders are moderately to highly heritable. However, it is still unknown what mechanisms may explain the discrepancy between heritability estimates and the present data from genetic analysis. In addition to genetic differences also epigenetic modifications are considered as potentially relevant in the transfer of susceptibility to psychiatric diseases. Though, whether or not epigenetic alterations can be inherited for many generations is highly controversial. In the present article, we will critically summarize both the genetic findings and the results from epigenetic analyses, including also those of noncoding RNAs. We will argue that one possible solution to the "missing heritability" problem in psychiatry is a potential role of retrotransposons, the exploration of which is presently only in its beginnings.
Collapse
|
54
|
Balasubramanian N, Sagarkar S, Choudhary AG, Kokare DM, Sakharkar AJ. Epigenetic Blockade of Hippocampal SOD2 Via DNMT3b-Mediated DNA Methylation: Implications in Mild Traumatic Brain Injury-Induced Persistent Oxidative Damage. Mol Neurobiol 2021; 58:1162-1184. [PMID: 33099744 DOI: 10.1007/s12035-020-02166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022]
Abstract
The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
55
|
Zhang S, Zhang X, Purmann C, Ma S, Shrestha A, Davis KN, Ho M, Huang Y, Pattni R, Hung Wong W, Bernstein JA, Hallmayer J, Urban AE. Network Effects of the 15q13.3 Microdeletion on the Transcriptome and Epigenome in Human-Induced Neurons. Biol Psychiatry 2021; 89:497-509. [PMID: 32919612 PMCID: PMC9359316 DOI: 10.1016/j.biopsych.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The 15q13.3 microdeletion is associated with several neuropsychiatric disorders, including autism and schizophrenia. Previous association and functional studies have investigated the potential role of several genes within the deletion in neuronal dysfunction, but the molecular effects of the deletion as a whole remain largely unknown. METHODS Induced pluripotent stem cells, from 3 patients with the 15q13.3 microdeletion and 3 control subjects, were generated and converted into induced neurons. We analyzed the effects of the 15q13.3 microdeletion on genome-wide gene expression, DNA methylation, chromatin accessibility, and sensitivity to cisplatin-induced DNA damage. Furthermore, we measured gene expression changes in induced neurons with CRISPR (clustered regularly interspaced short palindromic repeats) knockouts of individual 15q13.3 microdeletion genes. RESULTS In both induced pluripotent stem cells and induced neurons, gene copy number change within the 15q13.3 microdeletion was accompanied by significantly decreased gene expression and no compensatory changes in DNA methylation or chromatin accessibility, supporting the model that haploinsufficiency of genes within the deleted region drives the disorder. Furthermore, we observed global effects of the microdeletion on the transcriptome and epigenome, with disruptions in several neuropsychiatric disorder-associated pathways and gene families, including Wnt signaling, ribosome function, DNA binding, and clustered protocadherins. Individual gene knockouts mirrored many of the observed changes in an overlapping fashion between knockouts. CONCLUSIONS Our multiomics analysis of the 15q13.3 microdeletion revealed downstream effects in pathways previously associated with neuropsychiatric disorders and indications of interactions between genes within the deletion. This molecular systems analysis can be applied to other chromosomal aberrations to further our etiological understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Siming Zhang
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Carolin Purmann
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Shining Ma
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Anima Shrestha
- School of Medicine, Stanford University, and Department of Statistics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Marcus Ho
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Yiling Huang
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Wing Hung Wong
- Department of Pediatrics, School of Humanities and Sciences, Stanford University, Stanford, California
| | - Jonathan A Bernstein
- Department of Human Biology, School of Humanities and Science, Stanford University, Stanford, California
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California
| | - Alexander E Urban
- Department of Genetics, School of Humanities and Science, Stanford University, Stanford, California; Department of Psychiatry and Behavioral Sciences, School of Humanities and Science, Stanford University, Stanford, California.
| |
Collapse
|
56
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
57
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
58
|
Funamoto M, Sunagawa Y, Katanasaka Y, Shimizu K, Miyazaki Y, Sari N, Shimizu S, Mori K, Wada H, Hasegawa K, Morimoto T. Histone Acetylation Domains Are Differentially Induced during Development of Heart Failure in Dahl Salt-Sensitive Rats. Int J Mol Sci 2021; 22:1771. [PMID: 33578969 PMCID: PMC7916721 DOI: 10.3390/ijms22041771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation by epigenetic regulators has been shown to activate the transcription of hypertrophic response genes, which subsequently leads to the development and progression of heart failure. However, nothing is known about the acetylation of the histone tail and globular domains in left ventricular hypertrophy or in heart failure. The acetylation of H3K9 on the promoter of the hypertrophic response gene was significantly increased in the left ventricular hypertrophy stage, whereas the acetylation of H3K122 did not increase in the left ventricular hypertrophy stage but did significantly increase in the heart failure stage. Interestingly, the interaction between the chromatin remodeling factor BRG1 and p300 was significantly increased in the heart failure stage, but not in the left ventricular hypertrophy stage. This study demonstrates that stage-specific acetylation of the histone tail and globular domains occurs during the development and progression of heart failure, providing novel insights into the epigenetic regulatory mechanism governing transcriptional activity in these processes.
Collapse
Affiliation(s)
- Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Nurmila Sari
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Kiyoshi Mori
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| | - Hiromichi Wada
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.F.); (Y.S.); (Y.K.); (K.S.); (Y.M.); (N.S.); (S.S.); (K.H.)
- Kyoto Medical Center, Clinical Research Institute, National Hospital Organization, 1-1 Fukakusa Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan;
- Shizuoka General Hospital, 4-27-1 Kitaando, Aoi-ku, Shizuoka 420-8527, Japan;
| |
Collapse
|
59
|
Matsuno H, Tsuchimine S, Fukuzato N, O'Hashi K, Kunugi H, Sohya K. Sirtuin 6 is a regulator of dendrite morphogenesis in rat hippocampal neurons. Neurochem Int 2021; 145:104959. [PMID: 33444676 DOI: 10.1016/j.neuint.2021.104959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 01/14/2023]
Abstract
Sirtuin 6 (SIRT6), a member of the Sirtuin family, acts as nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase, mono-adenosine diphosphate (ADP)-ribosyltransferase, and fatty acid deacylase, and plays critical roles in inflammation, aging, glycolysis, and DNA repair. Accumulating evidence has suggested that SIRT6 is involved in brain functions such as neuronal differentiation, neurogenesis, and learning and memory. However, the precise molecular roles of SIRT6 during neuronal circuit formation are not yet well understood. In this study, we tried to elucidate molecular roles of SIRT6 on neurite development by using primary-cultured hippocampal neurons. We observed that SIRT6 was abundantly localized in the nucleus, and its expression was markedly increased during neurite outgrowth and synaptogenesis. By using shRNA-mediated SIRT6-knockdown, we show that both dendritic length and the number of dendrite branches were significantly reduced in the SIRT6-knockdown neurons. Microarray and subsequent gene ontology analysis revealed that reducing SIRT6 caused the downregulation of immediate early genes (IEGs) and alteration of several biological processes including MAPK (ERK1/2) signaling. We found that nuclear accumulation of phosphorylated ERK1/2 was significantly reduced in SIRT6-knockdown neurons. Overexpression of SIRT6 promoted dendritic length and branching, but the mutants lacking deacetylase activity had no significant effect on the dendritic morphology. Collectively, the presented findings reveal a role of SIRT6 in dendrite morphogenesis, and suggest that SIRT6 may act as an important regulator of ERK1/2 signaling pathway that mediates IEG expression, which leads to dendritic development.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Noriko Fukuzato
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
60
|
Morris G, Walker AJ, Walder K, Berk M, Marx W, Carvalho AF, Maes M, Puri BK. Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry. Mol Neurobiol 2021; 58:2158-2182. [PMID: 33411248 DOI: 10.1007/s12035-020-02212-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q10 and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q10, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.
Collapse
Affiliation(s)
- G Morris
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - K Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - W Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - A F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - M Maes
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
61
|
Arranz MJ, Gallego-Fabrega C, Martín-Blanco A, Soler J, Elices M, Dominguez-Clavé E, Salazar J, Vega D, Briones-Buixassa L, Pascual JC. A genome-wide methylation study reveals X chromosome and childhood trauma methylation alterations associated with borderline personality disorder. Transl Psychiatry 2021; 11:5. [PMID: 33414392 PMCID: PMC7791113 DOI: 10.1038/s41398-020-01139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Borderline personality disorder (BPD) is a severe and highly prevalent psychiatric disorder, more common in females than in males and with notable differences in presentation between genders. Recent studies have shown that epigenetic modifications such as DNA methylation may modulate gene × environment interactions and impact on neurodevelopment. We conducted an epigenome wide study (Illumina Infinium HumanMethylation450k beadchip) in a group of BPD patients with (N = 49) and without (N = 47) childhood traumas and in a control group (N = 44). Results were confirmed in a replication cohort (N = 293 BPD patients and N = 114 controls) using EpiTYPER assays. Differentially methylated CpG sites were observed in several genes and intragenic regions in the X chromosome (PQBP1, ZNF41, RPL10, cg07810091 and cg24395855) and in chromosome 6 (TAP2). BPD patients showed significantly lower methylation levels in these CpG sites than healthy controls. These differences seemed to be increased by the existence of childhood trauma. Comparisons between BPD patients with childhood trauma and patients and controls without revealed significant differences in four genes (POU5F1, GGT6, TNFRSF13C and FAM113B), none of them in the X chromosome. Gene set enrichment analyses revealed that epigenetic alterations were more frequently found in genes controlling oestrogen regulation, neurogenesis and cell differentiation. These results suggest that epigenetic alterations in the X chromosome and oestrogen-regulation genes may contribute to the development of BPD and explain the differences in presentation between genders. Furthermore, childhood trauma events may modulate the magnitude of the epigenetic alterations contributing to BPD.
Collapse
Affiliation(s)
- María J. Arranz
- grid.414875.b0000 0004 1794 4956Fundació Docència i Recerca Mutua Terrassa, Terrassa, Spain ,grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- grid.414875.b0000 0004 1794 4956Fundació Docència i Recerca Mutua Terrassa, Terrassa, Spain ,grid.7722.00000 0001 1811 6966Stroke Pharmacogenomics and Genetics Group, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Ana Martín-Blanco
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joaquim Soler
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Matilde Elices
- grid.7722.00000 0001 1811 6966Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain ,grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Elisabet Dominguez-Clavé
- grid.413396.a0000 0004 1768 8905Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Juliana Salazar
- grid.7722.00000 0001 1811 6966Translational Medical Oncology Laboratory, Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Bellaterra, Spain
| | - Daniel Vega
- grid.7080.fDepartment of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain ,Psychiatry and Mental Health Department, Hospital of Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, Igualada, Spain
| | - Laia Briones-Buixassa
- Psychiatry and Mental Health Department, Hospital of Igualada, Consorci Sanitari de l’Anoia & Fundació Sanitària d’Igualada, Igualada, Spain
| | - Juan Carlos Pascual
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Institut de Recerca Biomèdica Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Department of Psychiatry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. .,Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
62
|
Carmel M, Michaelovsky E, Weinberger R, Frisch A, Mekori-Domachevsky E, Gothelf D, Weizman A. Differential methylation of imprinting genes and MHC locus in 22q11.2 deletion syndrome-related schizophrenia spectrum disorders. World J Biol Psychiatry 2021; 22:46-57. [PMID: 32212948 DOI: 10.1080/15622975.2020.1747113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES 22q11.2 deletion syndrome (DS) is the strongest known genetic risk for schizophrenia. Methylome screening was conducted to elucidate possible involvement of epigenetic alterations in the emergence of schizophrenia spectrum disorders (SZ-SD) in 22q11.2DS. METHODS Sixteen adult men with/without SZ-SD were recruited from a 22q11.2DS cohort and underwent genome-wide DNA methylation profile analysis. Differentially methylated probes (DMPs) and regions (DMRs) were analysed using the ChAMP software. RESULTS The DMPs (p-value <10-6) and DMRs (p-valueArea <0.01) were enriched in two gene sets, 'imprinting genes' and 'chr6p21', a region overlapping the MHC locus. Most of the identified imprinting genes are involved in neurodevelopment and located in clusters under imprinting control region (ICR) regulation, including PEG10, SGCE (7q21.3), GNAS, GNAS-AS1 (20q13.32) and SNHG14, SNURF-SNRPN, SNORD115 (15q11.2). The differentially methylated genes from the MHC locus included immune HLA-genes and non-immune genes, RNF39, PPP1R18 and NOTCH4, implicated in neurodevelopment and synaptic plasticity. The most significant DMR is located in MHC locus and covered the transcription regulator ZFP57 that is required for control and maintenance of gene imprinting at multiple ICRs. CONCLUSIONS The differential methylation in imprinting genes and in chr6p21-22 indicate the neurodevelopmental nature of 22q11.2DS-related SZ and the major role of MHC locus in the risk to develop SZ.
Collapse
Affiliation(s)
- Miri Carmel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elena Michaelovsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ronnie Weinberger
- The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel
| | - Amos Frisch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ehud Mekori-Domachevsky
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel
| | - Doron Gothelf
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Behavioral Neurogenetics Center and Child Psychiatry Division, Sheba Medical Center, Ramat Gan, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Geha Mental Health Center, Petach Tikva, Israel
| |
Collapse
|
63
|
Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput Struct Biotechnol J 2020; 18:2535-2546. [PMID: 33033576 PMCID: PMC7522539 DOI: 10.1016/j.csbj.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric disorders (NPDs) such as bipolar disorder (BD), schizophrenia (SZ) and mood disorder (MD) are hard to manage due to overlapping symptoms and lack of biomarkers. Risk alleles of BD/SZ/MD are emerging, with evidence suggesting mitochondrial (mt) dysfunction as a critical factor for disease onset and progression. Mood stabilizing treatments for these disorders are scarce, revealing the need for biomarker discovery and artificial intelligence approaches to design synthetically accessible novel therapeutics. Here, we show mt involvement in NPDs by associating 245 mt proteins to BD/SZ/MD, with 7 common players in these disease categories. Analysis of over 650 publications suggests that 245 NPD-linked mt proteins are associated with 800 other mt proteins, with mt impairment likely to rewire these interactions. High dosage of mood stabilizers is known to alleviate manic episodes, but which compounds target mt pathways is another gap in the field that we address through mood stabilizer-gene interaction analysis of 37 prescriptions and over-the-counter psychotropic treatments, which we have refined to 15 mood-stabilizing agents. We show 26 of the 245 NPD-linked mt proteins are uniquely or commonly targeted by one or more of these mood stabilizers. Further, induced pluripotent stem cell-derived patient neurons and three-dimensional human brain organoids as reliable BD/SZ/MD models are outlined, along with multiomics methods and machine learning-based decision making tools for biomarker discovery, which remains a bottleneck for precision psychiatry medicine.
Collapse
|
64
|
|
65
|
Shepard RD, Nugent FS. Early Life Stress- and Drug-Induced Histone Modifications Within the Ventral Tegmental Area. Front Cell Dev Biol 2020; 8:588476. [PMID: 33102491 PMCID: PMC7554626 DOI: 10.3389/fcell.2020.588476] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Psychiatric illnesses are a major public health concern due to their prevalence and heterogeneity of symptom presentation resulting from a lack of efficacious treatments. Although dysregulated dopamine (DA) signaling has been observed in a myriad of psychiatric conditions, different pathophysiological mechanisms have been implicated which impede the development of adequate treatments that work across all patient populations. The ventral tegmental area (VTA), a major source of DA neurons in the brain reward pathway, has been shown to have altered activity that contributes to reward dysregulation in mental illnesses and drug addiction. It has now become better appreciated that epigenetic mechanisms contribute to VTA DA dysfunction, such as through histone modifications, which dynamically regulate transcription rates of critical genes important in synaptic plasticity underlying learning and memory. Here, we provide a focused review on differential histone modifications within the VTA observed in both humans and animal models, as well as their relevance to disease-based phenotypes, specifically focusing on epigenetic dysregulation of histones in the VTA associated with early life stress (ELS) and drugs of abuse. Locus- and cell-type-specific targeting of individual histone modifications at specific genes within the VTA presents novel therapeutic targets which can result in greater efficacy and better long-term health outcomes in susceptible individuals that are at increased risk for substance use and psychiatric disorders.
Collapse
Affiliation(s)
- Ryan D Shepard
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fereshteh S Nugent
- Department of Pharmacology, Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
66
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
67
|
Tomioka Y, Kinoshita M, Umehara H, Nakayama T, Watanabe SY, Nakataki M, Numata S, Ohmori T. Association between serum folate levels and schizophrenia based on sex. Psychiatry Clin Neurosci 2020; 74:466-471. [PMID: 32445495 DOI: 10.1111/pcn.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
AIM Sex differences in serum folate concentrations are well known, but no studies have investigated the association between serum folate levels and schizophrenia based on sex. With this study in a Japanese population, we examined the difference in serum folate levels between patients with schizophrenia and non-psychiatric controls stratified by sex. The relations among serum folate levels, plasma total homocysteine (tHcy), and serum vitamin B6 (pyridoxal) levels were also examined using data from our previous studies. METHODS The serum folate concentrations of 482 patients diagnosed with schizophrenia and 1350 non-psychiatric control subjects were measured. We conducted an analysis of covariance to examine the differences in serum folate levels between the two groups based on sex. Spearman's rank correlation was used to evaluate the relations among folate, tHcy, and vitamin B6 levels. RESULTS In the control group, serum folate concentrations were higher in women than in men. Lower levels of serum folate were observed in both male and female patients with schizophrenia. An inverse correlation between serum folate and plasma tHcy and a weak positive correlation between serum folate and vitamin B6 were observed in the combined cohort. CONCLUSION Our findings suggest that: (i) a low serum folate level may be associated with schizophrenia regardless of sex; and (ii) folate administration may be beneficial for the treatment of schizophrenia. In schizophrenic patients with low serum folate levels, folate administration might result in improvements in high tHcy and an increase in low vitamin B6 levels.
Collapse
Affiliation(s)
- Yukiko Tomioka
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hidehiro Umehara
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tomohiko Nakayama
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Shin-Ya Watanabe
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Masahito Nakataki
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Ohmori
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
68
|
Tambalo M, Lodato S. Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Res 2020; 1746:147028. [PMID: 32717276 DOI: 10.1016/j.brainres.2020.147028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The human brain is characterized by an extraordinary complexity of neuronal and nonneuronal cell types, wired together into patterned neuronal circuits, which represent the anatomical substrates for the execution of high-order cognitive functions. Brain circuits' development and function is metabolically supported by an intricate network of selectively permeable blood vessels and finely tuned by short-range interactions with immune factors and immune cells. The coordinated cellular and molecular events governing the assembly of this unique and complex structure are at the core of intense investigation and pose legitimate questions about the best modeling strategies. Unceasing advancements in stem cell technologies coupled with recent demonstration of cell self-assembly capacity have enabled the exponential growth of brain organoid protocols in the past decade. This provides a compelling solution to investigate human brain development, a quest often halted by the inaccessibility of brain tissues and the lack of suitable models. We review the current state-of-the-art on the generation of brain organoids, describing the latest progresses in unguided, guided, and assembloids protocols, as well as organoid-on-a-chip strategies and xenograft approaches. High resolution genome wide sequencing technologies, both at the transcriptional and epigenomic level, enable the molecular comparative analysis of multiple brain organoid protocols, as well as to benchmark them against the human fetal brain. Coupling the molecular profiling with increasingly detailed analyses of the electrophysiological properties of several of these systems now allows a more accurate estimation of the protocol of choice for a given biological question. Thus, we summarize strengths and weaknesses of several brain organoid protocols and further speculate on some potential future endeavors to model human brain development, evolution and neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
- M Tambalo
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - S Lodato
- Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
69
|
Liu W, Fang Y, Shi Y, Cheng Y, Sun C, Cui D. The interaction of histone modification related H3F3B and NSD2 genes increases the susceptibility to schizophrenia in a Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109918. [PMID: 32169559 DOI: 10.1016/j.pnpbp.2020.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
The role of histone modifications in the pathogenesis of schizophrenia has been proposed previously. H3F3B is a member of the histone 3. NSD2 is a histone methyltransferase that mediates dimethylation of Histone 3 lysine 36 (H3K36me2). The aim of the current study was to explore the associations between SNPs within H3F3B gene (rs60700976, rs3214028) and NSD2 gene (rs13148597, rs75820801) and the susceptibility to schizophrenia in a Chinese population. A total of 810 patients and 490 healthy controls were recruited and genetic association analyses were performed. The H3F3B gene polymorphisms rs3214028 and rs60700976 were significantly associated with schizophrenia. Rs60700976 was also associated with psychotic symptoms in schizophrenia patients. Furthermore, we found the interaction between NSD2 gene and H3F3B gene was related to the susceptibility to schizophrenia. The corresponding best three-locus model was H3F3B (rs60700976) - NSD2 (rs75820801, rs13148597), and the high-risk genotype combination was rs13148597(CC)- rs60700976(GG)-rs75820801(TT) (OR = 1.388[1.091-1.766], P = .007). The low-risk genotype combination was rs13148597(CC)-rs60700976(GG)-rs75820801(CT) (OR = 0.57 [0.330-0.985], P = .042). Our findings provided the preliminary evidence that the histone modification related H3F3B and NSD2 genes may confer the susceptibility to schizophrenia in a Chinese population.
Collapse
Affiliation(s)
- Wenxin Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Fang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanwen Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, China.
| |
Collapse
|
70
|
Vissers LE, Kalvakuri S, de Boer E, Geuer S, Oud M, van Outersterp I, Kwint M, Witmond M, Kersten S, Polla DL, Weijers D, Begtrup A, McWalter K, Ruiz A, Gabau E, Morton JE, Griffith C, Weiss K, Gamble C, Bartley J, Vernon HJ, Brunet K, Ruivenkamp C, Kant SG, Kruszka P, Larson A, Afenjar A, Billette de Villemeur T, Nugent K, Raymond FL, Venselaar H, Demurger F, Soler-Alfonso C, Li D, Bhoj E, Hayes I, Hamilton NP, Ahmad A, Fisher R, van den Born M, Willems M, Sorlin A, Delanne J, Moutton S, Christophe P, Mau-Them FT, Vitobello A, Goel H, Massingham L, Phornphutkul C, Schwab J, Keren B, Charles P, Vreeburg M, De Simone L, Hoganson G, Iascone M, Milani D, Evenepoel L, Revencu N, Ward DI, Burns K, Krantz I, Raible SE, Murrell JR, Wood K, Cho MT, van Bokhoven H, Muenke M, Kleefstra T, Bodmer R, de Brouwer AP, de Brouwer APM. De Novo Variants in CNOT1, a Central Component of the CCR4-NOT Complex Involved in Gene Expression and RNA and Protein Stability, Cause Neurodevelopmental Delay. Am J Hum Genet 2020; 107:164-172. [PMID: 32553196 DOI: 10.1016/j.ajhg.2020.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022] Open
Abstract
CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
71
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
72
|
Aging increases vulnerability to stress-induced depression via upregulation of NADPH oxidase in mice. Commun Biol 2020; 3:292. [PMID: 32504071 PMCID: PMC7275057 DOI: 10.1038/s42003-020-1010-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Brain aging proceeds with cellular and molecular changes in the limbic system. Aging-dependent changes might affect emotion and stress coping, yet the underlying mechanisms remain unclear. Here, we show aged (18-month-old) mice exhibit upregulation of NADPH oxidase and oxidative stress in the hippocampus, which mirrors the changes in young (2-month-old) mice subjected to chronic stress. Aged mice that lack p47phox, a key subunit of NADPH oxidase, do not show increased oxidative stress. Aged mice exhibit depression-like behavior following weak stress that does not produce depressive behavior in young mice. Aged mice have reduced expression of the epigenetic factor SUV39H1 and its upstream regulator p-AMPK, and increased expression of Ppp2ca in the hippocampus-changes that occur in young mice exposed to chronic stress. SUV39H1 mediates stress- and aging-induced sustained upregulation of p47phox and oxidative stress. These results suggest that aging increases susceptibility to stress by upregulating NADPH oxidase in the hippocampus.
Collapse
|
73
|
Stathopoulos S, Gaujoux R, Lindeque Z, Mahony C, Van Der Colff R, Van Der Westhuizen F, O'Ryan C. DNA Methylation Associated with Mitochondrial Dysfunction in a South African Autism Spectrum Disorder Cohort. Autism Res 2020; 13:1079-1093. [PMID: 32490597 PMCID: PMC7496548 DOI: 10.1002/aur.2310] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/24/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by phenotypic heterogeneity and a complex genetic architecture which includes distinctive epigenetic patterns. We report differential DNA methylation patterns associated with ASD in South African children. An exploratory whole‐epigenome methylation screen using the Illumina 450 K MethylationArray identified differentially methylated CpG sites between ASD and controls that mapped to 898 genes (P ≤ 0.05) which were enriched for nine canonical pathways converging on mitochondrial metabolism and protein ubiquitination. Targeted Next Generation Bisulfite Sequencing of 27 genes confirmed differential methylation between ASD and control in our cohort. DNA pyrosequencing of two of these genes, the mitochondrial enzyme Propionyl‐CoA Carboxylase subunit Beta (PCCB) and Protocadherin Alpha 12 (PCDHA12), revealed a wide range of methylation levels (9–49% and 0–54%, respectively) in both ASD and controls. Three CpG loci were differentially methylated in PCCB (P ≤ 0.05), while PCDHA12, previously linked to ASD, had two significantly different CpG sites (P ≤ 0.001) between ASD and control. Differentially methylated CpGs were hypomethylated in ASD. Metabolomic analysis of urinary organic acids revealed that three metabolites, 3‐hydroxy‐3‐methylglutaric acid (P = 0.008), 3‐methyglutaconic acid (P = 0.018), and ethylmalonic acid (P = 0.043) were significantly elevated in individuals with ASD. These metabolites are directly linked to mitochondrial respiratory chain disorders, with a putative link to PCCB, consistent with impaired mitochondrial function. Our data support an association between DNA methylation and mitochondrial dysfunction in the etiology of ASD. Autism Res 2020, 13: 1079‐1093. © 2020 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals, Inc. Lay Summary Epigenetic changes are chemical modifications of DNA which can change gene function. DNA methylation, a type of epigenetic modification, is linked to autism. We examined DNA methylation in South African children with autism and identified mitochondrial genes associated with autism. Mitochondria are power‐suppliers in cells and mitochondrial genes are essential to metabolism and energy production, which are important for brain cells during development. Our findings suggest that some individuals with ASD also have mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sofia Stathopoulos
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | | | - Zander Lindeque
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Caitlyn Mahony
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rachelle Van Der Colff
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | | | - Colleen O'Ryan
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
74
|
Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y. Exploiting Circulating MicroRNAs as Biomarkers in Psychiatric Disorders. Mol Diagn Ther 2020; 24:279-298. [PMID: 32304043 PMCID: PMC7269874 DOI: 10.1007/s40291-020-00464-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-invasive peripheral biomarkers play a significant role in both disease diagnosis and progression. In the past few years, microRNA (miRNA) expression changes in circulating peripheral tissues have been found to be correlative with changes in neuronal tissues from patients with neuropsychiatric disorders. This is a notable quality of a biomolecule to be considered as a biomarker for both prognosis and diagnosis of disease. miRNAs, members of the small non-coding RNA family, have recently gained significant attention due to their ability to epigenetically influence almost every aspect of brain functioning. Empirical evidence suggests that miRNA-associated changes in the brain are often translated into behavioral changes. Current clinical understanding further implicates their role in the management of major psychiatric conditions, including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). This review aims to critically evaluate the potential advantages and disadvantages of miRNAs as diagnostic/prognostic biomarkers in psychiatric disorders as well as in treatment response.
Collapse
Affiliation(s)
- Bhaskar Roy
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yuta Yoshino
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lauren Allen
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kevin Prall
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Grant Schell
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Yogesh Dwivedi
- Translational Research, UAB Mood Disorders Program, UAB Depression and Suicide Center, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
75
|
The clues in solving the mystery of major psychosis: The epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2020; 113:51-61. [DOI: 10.1016/j.neubiorev.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
76
|
Symmank J, Bayer C, Reichard J, Pensold D, Zimmer-Bensch G. Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics 2020; 15:1259-1274. [PMID: 32441560 PMCID: PMC7595593 DOI: 10.1080/15592294.2020.1767372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apart from the conventional view of repressive promoter methylation, the DNA methyltransferase 1 (DNMT1) was recently described to modulate gene expression through a variety of interactions with diverse epigenetic key players. We here investigated the DNMT1-dependent transcriptional control of the homeobox transcription factor LHX1, which we previously identified as an important regulator in cortical interneuron development. We found that LHX1 expression in embryonic interneurons originating in the embryonic pre-optic area (POA) is regulated by non-canonic DNMT1 function. Analysis of histone methylation and acetylation revealed that both epigenetic modifications seem to be implicated in the control of Lhx1 gene activity and that DNMT1 contributes to their proper establishment. This study sheds further light on the regulatory network of cortical interneuron development including the complex interplay of epigenetic mechanisms.
Collapse
Affiliation(s)
- Judit Symmank
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Polyclinic for Orthodontics, Leutragraben 3, University Hospital Jena , Jena, Germany
| | - Cathrin Bayer
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany
| | - Julia Reichard
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany.,Research Training Group 2416 MultiSenses, MultiScales, RWTH Aachen University , Aachen, Germany
| | - Daniel Pensold
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Institute for Human Genetics, Am Klinikum 1, University Hospital Jena , Jena, Germany.,Polyclinic for Orthodontics, Leutragraben 3, University Hospital Jena , Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute for Biology II, Worringerweg 3, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
77
|
Chang CH, Kuek EJW, Su CL, Gean PW. MicroRNA-206 Regulates Stress-Provoked Aggressive Behaviors in Post-weaning Social Isolation Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:812-822. [PMID: 32464545 PMCID: PMC7256446 DOI: 10.1016/j.omtn.2020.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
When facing stressful conditions, some people tend to be impulsively aggressive whereas others are not. However, the causes and underlying mechanisms remain elusive. It has been reported that acute stress induces outbursts of aggression in post-weaning social isolation (SI) mice but not in group housing (GH) mice. Here we report epigenetic regulation of impulsive aggression in SI mice. At post-natal day 21, mice were randomly assigned to GH or SI groups. We found that SI mice exhibited a higher level of microRNA 206 (miR-206) compared with GH mice. Intra-hippocampal injection of AM206, an antagomir of miR-206, decreased stress-induced attack behavior in SI mice and increased BDNF expression. Moreover, BDNF expression was required for AM206 effects on the reduction of aggression. On the other hand, miR-206 overexpression in GH mice induced attack behavior. Intranasal administration of AM206 rather than a scramble control significantly reduced attack behavior and depression-like behavior in SI mice. Our results suggest that miR-206 mediates development of maladaptive impulsive aggression in early life adversity and that its antagomir could potentially be a therapeutic target against stress-exacerbated aggressive behavior.
Collapse
Affiliation(s)
- Chih-Hua Chang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan 701, Taiwan
| | - Elizabeth Joo Wen Kuek
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | - Chun-Lin Su
- Division of Natural Sciences, Center for General Education, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng-Kung University, Tainan 701, Taiwan.
| |
Collapse
|
78
|
Karthikeyan R, Cardinali DP, Shakunthala V, Spence DW, Brown GM, Pandi-Perumal SR. Understanding the role of sleep and its disturbances in Autism spectrum disorder. Int J Neurosci 2020; 130:1033-1046. [PMID: 31903819 DOI: 10.1080/00207454.2019.1711377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several studies have established a positive relationship between sleep difficulties and symptomatology in ASD children. The rationale for this review is to describe and discuss the sleep difficulties, which are one of the significant complications associated with autism spectrum disorder (ASD). PURPOSE Many types of sleep disorders have been reported in ASD individuals, but still lack a comprehensive study and in-depth analysis. Despite the contribution of sleep problems to the overall symptoms of ASD, the symptoms of disturbed sleep experienced by many affected patients have only recently started to receive attention from clinicians and family members. MATERIALS AND METHODS This narrative overview has been prepared based on searching standard research databases with specific keywords; b. Additional search was made using the bibliographies of the retrieved articles; and c. author's collection of relevant peer-reviewed articles. Once selected, manuscripts are then compared and summarized based on the author's perspective. Results are based on a qualitative rather than a quantitative level. RESULTS This article highlights the role of sleep in the brain and neural development of children and emphasizes that the intensity of sleep problems is associated with an increased occurrence of ASD symptoms. It also suggests the significance of treating sleep problems in ASD individuals. CONCLUSIONS The review provides broader perspectives and a better understanding of sleep problems in pathophysiology, mechanism, and management with respect to ASD individuals. Finally, the implications for clinical practice and future agendas have also been discussed.
Collapse
Affiliation(s)
- Ramanujam Karthikeyan
- Department of Animal Behavior & Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Venkat Shakunthala
- Department of Zoology, University of Mysuru, Manasagangotri, Karnataka, India
| | - David Warren Spence
- Independent Researcher, Department of Sleep Medicine, Toronto, Ontario, Canada
| | - Gregory M Brown
- Molecular Brain Science, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
79
|
Abstract
Depression is one of the most common psychiatric disorders affecting public health. Studies over the past years suggest that the methylations of some specific genes such as BDNF, SLC6A4, and NR3C1 play an important role in the development of depression. Recently, epigenetic evidences suggest that the expression levels of DNA methyltransferases differ in several brain areas including the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens in depression patients and animal models, but the potential link between the expression levels of DNA methylatransferases and the methylations of specific genes needs further investigation to clarify the pathogenesis of depression.
Collapse
Affiliation(s)
- Zhenghao Duan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
80
|
Epigenetic Mechanisms in the Neurodevelopmental Theory of Depression. DEPRESSION RESEARCH AND TREATMENT 2020; 2020:6357873. [PMID: 32373361 PMCID: PMC7196148 DOI: 10.1155/2020/6357873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022]
Abstract
The genome (genes), epigenome, and environment work together from the earliest stages of human life to produce a phenotype of human health or disease. Epigenetic modifications, including among other things: DNA methylation, modifications of histones and chromatin structure, as well as functions of noncoding RNA, are coresponsible for specific patterns of gene expression. This refers also to mental disorders, including depressive disorders. Early childhood experiences accompanied by severe stressors (considered a risk factor for depression in adult life) are linked with changes in gene expression. They include genes involved in a response to stress (hypothalamic-pituitary-adrenal axis, HPA), associated with autonomic nervous system hyperactivity and with cortical, and subcortical processes of neuroplasticity and neurodegeneration. These are, among others: gene encoding glucocorticoid receptor, FK506 binding protein 5 gene (FKBP5), gene encoding arginine vasopressin and oestrogen receptor alpha, 5-hydroxy-tryptamine transporter gene (SLC6A4), and gene encoding brain-derived neurotrophic factor. How about personality? Can the experiences unique to every human being, the history of his or her development and gene-environment interactions, through epigenetic mechanisms, shape the features of our personality? Can we pass on these features to future generations? Hence, is the risk of depression inherent in our biological nature? Can we change our destiny?
Collapse
|
81
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
82
|
Zeng K, Xie A, Dong X, Jiang J, Hao W, Jiang M, Liu X. GABA-Aα5 Might Be Involved in Learning-Memory Dysfunction in the Offsprings of Chronic Ethanol-Treated Rats via GABA-Aα5 Histone H3K9 Acetylation. Front Neurosci 2019; 13:1076. [PMID: 31680816 PMCID: PMC6813853 DOI: 10.3389/fnins.2019.01076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, numerous studies have been focused on the relationship between GABA-A receptors and alcohol-induced spatial learning and memory deficits. GABA-Aα5, a subunit of GABA-A receptors, is considered to play an important role in alcohol-induced cognitive impairment, however, the mechanism remains obscure. In this study, we found that the expression of GABA-Aα5 increased in rats treated with chronic ethanol via histone H3K9 acetylation. Furthermore, this epigenetic modification could be inherited by the next generations, which eventually exhibit similar spatial learning and memory deficits in the offsprings. In summary, our results suggested that GABA-Aα5 might be involved in chronic ethanol treatment-induced learning-memory dysfunction and for the first time proved that learning-memory dysfunction could be inherited by the offsprings via histone H3K9 acetylation. Hopefully, in the near future, GABA-Aα5 inhibitors would be an effective way to treat alcohol-induced cognition impairment.
Collapse
Affiliation(s)
- Kuan Zeng
- Wuhan Mental Health Center, Wuhan, China.,Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| | - Aimin Xie
- Wuhan Mental Health Center, Wuhan, China.,Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| | | | - Jia Jiang
- Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| | - Wei Hao
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Clinical Research Center for Mental Disorders, Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Central South University, Changsha, China
| | - Min Jiang
- Wuhan Mental Health Center, Wuhan, China
| | - Xuebing Liu
- Wuhan Mental Health Center, Wuhan, China.,Applied Psychology, Marx College, China University of Geosciences, Wuhan, China
| |
Collapse
|
83
|
Cunningham AM, Walker DM, Nestler EJ. Paternal transgenerational epigenetic mechanisms mediating stress phenotypes of offspring. Eur J Neurosci 2019; 53:271-280. [PMID: 31549423 DOI: 10.1111/ejn.14582] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/29/2022]
Abstract
Depression and anxiety risk are highly influenced by both genetic and environmental factors. Recently, it has been proposed that epigenetic mechanisms may also contribute to the transmission of both depression- and anxiety-related behaviors across multiple generations. This review highlights long-lasting epigenetic alterations observed in offspring of fathers, including some distinct effects on male and female offspring, in animal models. Available evidence emphasizes how both the developmental time point and the type of paternal stress (social vs. asocial) influence the complex transmission patterns of these phenotypes to future generations. This research is critical in understanding the factors that influence risk for depression and anxiety disorders and has the potential to contribute to the development of innovative treatments that can more precisely target vulnerable populations.
Collapse
Affiliation(s)
- Ashley M Cunningham
- Nash Family Department of Neuroscience, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deena M Walker
- Nash Family Department of Neuroscience, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
84
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
85
|
Khandelwal N, Dey SK, Chakravarty S, Kumar A. miR-30 Family miRNAs Mediate the Effect of Chronic Social Defeat Stress on Hippocampal Neurogenesis in Mouse Depression Model. Front Mol Neurosci 2019; 12:188. [PMID: 31440139 PMCID: PMC6694739 DOI: 10.3389/fnmol.2019.00188] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022] Open
Abstract
Depression is a debilitating psychiatric disorder with a high rate of relapse and a low rate of response to antidepressant treatment. There is a dearth of new antidepressants due to an incomplete understanding of the molecular mechanisms involved in its etiopathology. Chronic stress appears to be one of the foremost underlying causes of depression. Studies in animal models in the past decade have implicated epigenetic mechanisms in mediating the negative effects of chronic stressful events on the progression/manifestation of depression and other co-morbid neuropsychiatric disorders. However, non-coding RNAs, another layer of epigenetic regulation is relatively less studied in depression. Here, using the chronic social defeat stress (CSDS)-induced depression model, we hypothesized dysregulation in miRNA-mRNA networks in the neurogenic dentate gyrus (DG) region of male C57BL/6 mice. Among several dysregulated miRNAs identified via miRNA arrays, the most striking finding was the downregulation of miRNAs of the miR-30 family in stressed/defeated mice. To investigate miRNAs in the DG-resident neural stem/progenitor cells (NSCs/NPCs), we used the in vitro neurosphere culture, where proliferating NSCs/NPCs were subjected to differentiation. Among several differentially expressed miRNAs, we observed an upregulation of miR-30 family miRNAs upon differentiation. To search for the gene targets of these miRNAs, we performed gene arrays followed by bioinformatics analysis, miRNA manipulations and luciferase assays. Our results suggest that miR-30 family miRNAs mediate chronic stress-induced depression-like phenotype by altering hippocampal neurogenesis and neuroplasticity via controlling the epigenetic and transcription regulators such as Mll3 and Runx1; and cell signaling regulators like Socs3, Ppp3r1, Gpr125, and Nrp1.
Collapse
Affiliation(s)
- Nitin Khandelwal
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sandeep Kumar Dey
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Department of Cell Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Division of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.,Division of Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
86
|
Reece AS, Hulse GK. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et. al. 'cannabinoid exposure and altered DNA methylation in rat and human sperm' epigenetics 2018; 13: 1208-1221. Epigenetics 2019; 14:1041-1056. [PMID: 31293213 PMCID: PMC6773386 DOI: 10.1080/15592294.2019.1633868] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent data from the Kollins lab (‘Cannabinoid exposure and altered DNA methylation in rat and human sperm’ Epigenetics 2018; 13: 1208–1221) indicated epigenetic effects of cannabis use on sperm in man parallel those in rats and showed substantial shifts in both hypo- and hyper-DNA methylation with the latter predominating. This provides one likely mechanism for the transgenerational transmission of epigenomic instability with sperm as the vector. It therefore contributes important pathophysiological insights into the probable mechanisms underlying the epidemiology of prenatal cannabis exposure potentially explaining diverse features of cannabis-related teratology including effects on the neuraxis, cardiovasculature, immune stimulation, secondary genomic instability and carcinogenesis related to both adult and pediatric cancers. The potentially inheritable and therefore multigenerational nature of these defects needs to be carefully considered in the light of recent teratological and neurobehavioural trends in diverse jurisdictions such as the USA nationally, Hawaii, Colorado, Canada, France and Australia, particularly relating to mental retardation, age-related morbidity and oncogenesis including inheritable cancerogenesis. Increasing demonstrations that the epigenome can respond directly and in real time and retain memories of environmental exposures of many kinds implies that the genome-epigenome is much more sensitive to environmental toxicants than has been generally realized. Issues of long-term multigenerational inheritance amplify these concerns. Further research particularly on the epigenomic toxicology of many cannabinoids is also required.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia , Crawley , Western Australia Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup , Western Australia , Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia , Crawley , Western Australia Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup , Western Australia , Australia
| |
Collapse
|
87
|
Novel targets for parkinsonism-depression comorbidity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:1-24. [DOI: 10.1016/bs.pmbts.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|