51
|
Gowthaman U, Chen JS, Eisenbarth SC. Regulation of IgE by T follicular helper cells. J Leukoc Biol 2020; 107:409-418. [PMID: 31965637 DOI: 10.1002/jlb.3ri1219-425r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Allergies to food and environmental antigens have steeply grown to epidemic proportions. IgE antibodies are key mediators of allergic disease, including life-threatening anaphylaxis. There is now compelling evidence that one of the hallmarks of anaphylaxis-inducing IgE molecules is their high affinity for allergen, and the cellular pathway to high-affinity IgE is typically through sequential switching of IgG B cells. Further, in contrast to the previously held paradigm that a subset of CD4+ T cells called Th2 cells promotes IgE responses, recent studies suggest that T follicular helper cells are crucial for inducing anaphylactic IgE. Here we discuss recent studies that have enabled us to understand the nature, induction, and regulation of this enigmatic antibody isotype in allergic sensitization.
Collapse
Affiliation(s)
- Uthaman Gowthaman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jennifer S Chen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
52
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
53
|
Wong WK, Leem J, Deane CM. Comparative Analysis of the CDR Loops of Antigen Receptors. Front Immunol 2019; 10:2454. [PMID: 31681328 PMCID: PMC6803477 DOI: 10.3389/fimmu.2019.02454] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022] Open
Abstract
The adaptive immune system uses two main types of antigen receptors: T-cell receptors (TCRs) and antibodies. While both proteins share a globally similar β-sandwich architecture, TCRs are specialized to recognize peptide antigens in the binding groove of the major histocompatibility complex, while antibodies can bind an almost infinite range of molecules. For both proteins, the main determinants of target recognition are the complementarity-determining region (CDR) loops. Five of the six CDRs adopt a limited number of backbone conformations, known as the "canonical classes"; the remaining CDR (β3in TCRs and H3 in antibodies) is more structurally diverse. In this paper, we first update the definition of canonical forms in TCRs, build an auto-updating sequence-based prediction tool (available at http://opig.stats.ox.ac.uk/resources) and demonstrate its application on large scale sequencing studies. Given the global similarity of TCRs and antibodies, we then examine the structural similarity of their CDRs. We find that TCR and antibody CDRs tend to have different length distributions, and where they have similar lengths, they mostly occupy distinct structural spaces. In the rare cases where we found structural similarity, the underlying sequence patterns for the TCR and antibody version are different. Finally, where multiple structures have been solved for the same CDR sequence, the structural variability in TCR loops is higher than that in antibodies, suggesting TCR CDRs are more flexible. These structural differences between TCR and antibody CDRs may be important to their different biological functions.
Collapse
|
54
|
Differences in Antibodies Against Blood Group, HBV, and Salmonella Regarding Protein Content, Activity, and Affinity in Black and Yellow Healthy Individuals. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.94687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
55
|
Tabasinezhad M, Talebkhan Y, Wenzel W, Rahimi H, Omidinia E, Mahboudi F. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches. Immunol Lett 2019; 212:106-113. [PMID: 31247224 DOI: 10.1016/j.imlet.2019.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/08/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
Abstract
Current advances in antibody engineering driving the strongest growth area in biotherapeutic agents development. Affinity improvement that is mainly important for biological activity and clinical efficacy of therapeutic antibodies, has still remained a challenging task. In the human body, during a course of immune response affinity maturation increase antibody activity by several rounds of somatic hypermutation and clonal selection in the germinal center. The final outputs are antibodies representing higher affinity and specificity against a particular antigen. In the realm of biotechnology, exploring of mutations which improve antibody affinity while preserving its specificity and stability is an extremely time-consuming and laborious process. Recent advances in computational algorithms and DNA sequencing technologies help researchers to redesign antibody structure to achieve desired properties such as improved binding affinity. In this review, we briefly described the principle of affinity maturation and different corresponding in vitro techniques. Also, we recapitulated the most recent advancements in the field of antibody affinity maturation including computational approaches and next-generation sequencing (NGS).
Collapse
Affiliation(s)
- Maryam Tabasinezhad
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran; Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yeganeh Talebkhan
- Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hamzeh Rahimi
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Eskandar Omidinia
- Genetics & Metabolism Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
56
|
Henderson R, Watts BE, Ergin HN, Anasti K, Parks R, Xia SM, Trama A, Liao HX, Saunders KO, Bonsignori M, Wiehe K, Haynes BF, Alam SM. Selection of immunoglobulin elbow region mutations impacts interdomain conformational flexibility in HIV-1 broadly neutralizing antibodies. Nat Commun 2019; 10:654. [PMID: 30737386 PMCID: PMC6368608 DOI: 10.1038/s41467-019-08415-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
Somatic mutations within antibody variable and framework regions (FWR) can alter thermostability and structural flexibility, but their impact on functional potency is unclear. Here we study thermostability and use molecular dynamics (MD) simulations to assess the role of FWR mutations during maturation of HIV-1 broadly neutralizing antibodies (bnAbs). The tested bnAbs show lower thermostability than their unmutated ancestor antibodies. FWR mutations in the Fab elbow region are frequently observed in HIV-1 bnAbs and MD simulations show that such FWR mutations alter interdomain flexibility in two HIV-1 bnAbs. In a CD4-binding site lineage, reversion mutations result in a loss of neutralization potency in an early intermediate and affinity-matured bnAb against autologous and heterologous Tier-2 viruses, respectively. Elbow region reversion mutations in a glycan-V3 bnAb modestly reduces potency against an autologous virus isolate. Thus, selection of mutations in the Fab elbow region impacts interdomain conformational flexibility and paratope plasticity during bnAb development.
Collapse
Affiliation(s)
- Rory Henderson
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brian E Watts
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hieu N Ergin
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kara Anasti
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert Parks
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shi-Mao Xia
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ashley Trama
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hua-Xin Liao
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kevin O Saunders
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mattia Bonsignori
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - S Munir Alam
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
57
|
Deka RK, Liu WZ, Tso SC, Norgard MV, Brautigam CA. Biophysical insights into a highly selective l-arginine-binding lipoprotein of a pathogenic treponeme. Protein Sci 2018; 27:2037-2050. [PMID: 30242931 DOI: 10.1002/pro.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 11/11/2022]
Abstract
Biophysical and biochemical studies on the lipoproteins and other periplasmic proteins from the spirochetal species Treponema pallidum have yielded numerous insights into the functioning of the organism's peculiar membrane organization, its nutritional requirements, and intermediary metabolism. However, not all T. pallidum proteins have proven to be amenable to biophysical studies. One such recalcitrant protein is Tp0309, a putative polar-amino-acid-binding protein of an ABC transporter system. To gain further information on its possible function, a homolog of the protein from the related species T. vincentii was used as a surrogate. This protein, Tv2483, was crystallized, resulting in the determination of its crystal structure at a resolution of 1.75 Å. The protein has a typical fold for a ligand-binding protein, and a single molecule of l-arginine was bound between its two lobes. Differential scanning fluorimetry and isothermal titration calorimetry experiments confirmed that l-arginine bound to the protein with unusually high selectivity. However, further comparison to Tp0309 showed differences in key amino-acid-binding residues may impart an alternate specificity for the T. pallidum protein.
Collapse
Affiliation(s)
- Ranjit K Deka
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Wei Z Liu
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Shih-Chia Tso
- Departments of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Michael V Norgard
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| | - Chad A Brautigam
- Departments of Microbiology, 5323 Harry Hines Blvd., Dallas, Texas, 75390.,Departments of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, 75390
| |
Collapse
|
58
|
Landais E, Moore PL. Development of broadly neutralizing antibodies in HIV-1 infected elite neutralizers. Retrovirology 2018; 15:61. [PMID: 30185183 PMCID: PMC6125991 DOI: 10.1186/s12977-018-0443-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs), able to prevent viral entry by diverse global viruses, are a major focus of HIV vaccine design, with data from animal studies confirming their ability to prevent HIV infection. However, traditional vaccine approaches have failed to elicit these types of antibodies. During chronic HIV infection, a subset of individuals develops bNAbs, some of which are extremely broad and potent. This review describes the immunological and virological factors leading to the development of bNAbs in such "elite neutralizers". The features, targets and developmental pathways of bNAbs from their precursors have been defined through extraordinarily detailed within-donor studies. These have enabled the identification of epitope-specific commonalities in bNAb precursors, their intermediates and Env escape patterns, providing a template for vaccine discovery. The unusual features of bNAbs, such as high levels of somatic hypermutation, and precursors with unusually short or long antigen-binding loops, present significant challenges in vaccine design. However, the use of new technologies has led to the isolation of more than 200 bNAbs, including some with genetic profiles more representative of the normal immunoglobulin repertoire, suggesting alternate and shorter pathways to breadth. The insights from these studies have been harnessed for the development of optimized immunogens, novel vaccine regimens and improved delivery schedules, which are providing encouraging data that an HIV vaccine may soon be a realistic possibility.
Collapse
Affiliation(s)
- Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,International AIDS Vaccine Initiative, New York, NY, 10004, USA
| | - Penny L Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. .,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
59
|
Structural Comparison of Human Anti-HIV-1 gp120 V3 Monoclonal Antibodies of the Same Gene Usage Induced by Vaccination and Chronic Infection. J Virol 2018; 92:JVI.00641-18. [PMID: 29997214 DOI: 10.1128/jvi.00641-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023] Open
Abstract
Elucidating the structural basis of antibody (Ab) gene usage and affinity maturation of vaccine-induced Abs can inform the design of immunogens for inducing desired Ab responses in HIV vaccine development. Analyses of monoclonal Abs (MAbs) encoded by the same immunoglobulin genes at different stages of maturation can help to elucidate the maturation process. We have analyzed four human anti-V3 MAbs with the same VH1-3*01 and VL3-10*01 gene usage. Two MAbs, TA6 and TA7, were developed from a vaccinee in the HIV vaccine phase I trial DP6-001 with a polyvalent DNA prime/protein boost regimen, and two others, 311-11D and 1334, were developed from HIV-infected patients. The somatic hypermutation (SHM) rates in VH of vaccine-induced MAbs are lower than in chronic HIV infection-induced MAbs, while those in VL are comparable. Crystal structures of the antigen-binding fragments (Fabs) in complex with V3 peptides show that these MAbs bind the V3 epitope with a new cradle-binding mode and that the V3 β-hairpin lies along the antigen-binding groove, which consists of residues from both heavy and light chains. Residues conserved from the germ line sequences form specific binding pockets accommodating conserved structural elements of the V3 crown hairpin, predetermining the Ab gene selection, while somatically mutated residues create additional hydrogen bonds, electrostatic interactions, and van der Waals contacts, correlating with an increased binding affinity. Our data provide a unique example of germ line sequences determining the primordial antigen-binding sites and SHMs correlating with affinity maturation of Abs induced by vaccine and natural HIV infection.IMPORTANCE Understanding the structural basis of gene usage and affinity maturation for anti-HIV-1 antibodies may help vaccine design and development. Antibodies targeting the highly immunogenic third variable loop (V3) of HIV-1 gp120 provide a unique opportunity for detailed structural investigations. By comparing the sequences and structures of four anti-V3 MAbs at different stages of affinity maturation but of the same V gene usage, two induced by vaccination and another two by chronic infection, we provide a fine example of how germ line sequence determines the essential elements for epitope recognition and how affinity maturation improves the antibody's recognition of its epitope.
Collapse
|
60
|
Dunn‐Walters D, Townsend C, Sinclair E, Stewart A. Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunol Rev 2018; 284:132-147. [PMID: 29944755 PMCID: PMC6033188 DOI: 10.1111/imr.12659] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human immunoglobulin repertoire is a hugely diverse set of sequences that are formed by processes of gene rearrangement, heavy and light chain gene assortment, class switching and somatic hypermutation. Early B cell development produces diverse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that can bind many foreign antigens but which has had self-reactive B cells removed. Later antigen-dependent development processes adjust the antigen affinity of the receptor by somatic hypermutation. The effector mechanism of the antibody is also adjusted, by switching the class of the antibody from IgM to one of seven other classes depending on the required function. There are many instances in human biology where positive and negative selection forces can act to shape the immunoglobulin repertoire and therefore repertoire analysis can provide useful information on infection control, vaccination efficacy, autoimmune diseases, and cancer. It can also be used to identify antigen-specific sequences that may be of use in therapeutics. The juxtaposition of lymphocyte development and numerical evaluation of immune repertoires has resulted in the growth of a new sub-speciality in immunology where immunologists and computer scientists/physicists collaborate to assess immune repertoires and develop models of immune action.
Collapse
Affiliation(s)
| | | | - Emma Sinclair
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Alex Stewart
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
61
|
Jeliazkov JR, Sljoka A, Kuroda D, Tsuchimura N, Katoh N, Tsumoto K, Gray JJ. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification. Front Immunol 2018; 9:413. [PMID: 29545810 PMCID: PMC5840193 DOI: 10.3389/fimmu.2018.00413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/14/2018] [Indexed: 12/18/2022] Open
Abstract
Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody's antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR) loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity.
Collapse
Affiliation(s)
- Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Adnan Sljoka
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Nobuyuki Tsuchimura
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Naoki Katoh
- Department of Informatics, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Laboratory of Medical Proteomics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|