51
|
Scarpa M, Hesse S, Bradley SJ. M1 muscarinic acetylcholine receptors: A therapeutic strategy for symptomatic and disease-modifying effects in Alzheimer's disease? ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:277-310. [PMID: 32416870 DOI: 10.1016/bs.apha.2019.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The M1 muscarinic acetylcholine receptor (mAChR) plays a crucial role in learning and memory processes and has long been identified as a promising therapeutic target for the improvement of cognitive decline in Alzheimer's disease (AD). As such, clinical trials with xanomeline, a mAChR orthosteric agonist, showed an improvement in cognitive and behavioral symptoms associated with AD. Despite this, the clinical utility of xanomeline was hampered by a lack of M1 receptor selectivity and adverse cholinergic responses attributed to activation of peripheral M2 and M3 mAChRs. More recently, efforts have focused on developing more selective M1 compounds via targeting the less-conserved allosteric binding pockets. As such, positive allosteric modulators (PAMs) have emerged as an exciting strategy to achieve exquisite selectivity for the M1 mAChR in order to deliver improvements in cognitive function in AD. Furthermore, over recent years it has become increasingly apparent that M1 therapeutics may also offer disease-modifying effects in AD, due to the modulation of pathogenic amyloid processing. This article will review the progress made in the development of M1 selective ligands for the treatment of cognitive decline in AD, and will discuss the current evidence that selective targeting of the M1 mAChR could also have the potential to modify AD progression.
Collapse
Affiliation(s)
- Miriam Scarpa
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Hesse
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
52
|
Longitudinal Basal Forebrain Degeneration Interacts with TREM2/C3 Biomarkers of Inflammation in Presymptomatic Alzheimer's Disease. J Neurosci 2020; 40:1931-1942. [PMID: 31915256 DOI: 10.1523/jneurosci.1184-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Cholinergic inputs originating from the peripheral nervous system regulate the inflammatory immune responses of macrophages during clearance of blood-based pathogens. Because microglia are involved in clearing amyloid and tau pathology from the central nervous system, we hypothesized that cholinergic input originating from the basal forebrain might similarly regulate inflammatory immune responses to these pathologies in the aging brain. To explore this hypothesis, we leveraged the Alzheimer's Disease Neuroimaging Initiative dataset. Cognitively normal older male and female human adults were differentiated according to the relative concentration of phosphorylated tau and amyloid in their cerebrospinal fluid, yielding neurotypical and preclinical, cognitively healthy, subgroups. We then tracked these two groups longitudinally with structural MRI and biomarkers of inflammation, including soluble sTREM2 levels in the CSF and complement C3 expression in the blood transcriptome. Longitudinal loss of basal forebrain volume was larger in the preclinical compared with the neurotypical subgroup. Across preclinical adults, loss of basal forebrain volume was associated with greater longitudinal accumulation of sTREM2 and higher peripheral blood C3 expression. None of these relationships were attributable to degeneration in the whole-brain gray matter volume. Preclinical APOE e4 carriers exhibited the largest loss of basal forebrain volume and highest C3 expression. Consistent with the known anti-inflammatory influence of the peripheral cholinergic pathways on macrophages, our findings indicate that a loss of central cholinergic input originating from the basal forebrain might remove a key check on microglial inflammation induced by amyloid and tau accumulation.SIGNIFICANCE STATEMENT In the peripheral nervous system, cholinergic modulation holds the reactivity of macrophages to blood-based pathogens in check, promoting clearance while preventing runaway inflammation and immune-triggered cell death. Microglia are the brain's resident macrophages and play an important role in clearing accumulated amyloid and tau from neurons. Here, we demonstrate that a loss of cholinergic integrity in the CNS, indexed by longitudinal decreases of basal forebrain volume, interacts with multiple biomarkers of inflammation in cognitively normal older adults with abnormal amyloid and tau pathology. These interactions were not detected in cognitively normal older adults with "neurotypical" levels of amyloid and tau. An age-related loss of cholinergic neuromodulation may remove key checks on microglial reactivity to amyloid and tau.
Collapse
|
53
|
Mostel Z, Perl A, Marck M, Mehdi SF, Lowell B, Bathija S, Santosh R, Pavlov VA, Chavan SS, Roth J. Post-sepsis syndrome - an evolving entity that afflicts survivors of sepsis. Mol Med 2019; 26:6. [PMID: 31892321 PMCID: PMC6938630 DOI: 10.1186/s10020-019-0132-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The sequelae of sepsis were once thought to be independent of sepsis itself and assumed to be either comorbid to sick patients or complications of critical illness. Recent studies have reported consistent patterns of functional disabilities in sepsis survivors that can last from months to years after symptoms of active sepsis had resolved. BODY: Post-sepsis syndrome is an emerging pathological entity that has garnered significant interest amongst clinicians and researchers over the last two decades. It is marked by a significantly increased risk of death and a poor health-related quality of life associated with a constellation of long-term effects that persist following the patient's bout with sepsis. These include neurocognitive impairment, functional disability, psychological deficits, and worsening medical conditions. CONCLUSION This "post-sepsis syndrome" has been the subject of active preclinical and clinical research providing new mechanistic insights and approaches linked to survivor well-being. Here we review important aspects of these research efforts and goals of care for patients who survive sepsis.
Collapse
Affiliation(s)
- Zachary Mostel
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Abraham Perl
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Marck
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Syed F Mehdi
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Barbara Lowell
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sagar Bathija
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ramchandani Santosh
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Valentin A Pavlov
- Center for Bioelectronic Medicine and Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Sangeeta S Chavan
- Center for Bioelectronic Medicine and Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Jesse Roth
- Laboratory of Diabetes and Diabetes-Related Research, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Center for Bioelectronic Medicine and Biomedical Science, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
54
|
Ilesanmi OB, Akinmoladun AC, Josiah SS, Olaleye MT, Akindahunsi AA. Modulation of key enzymes linked to Parkinsonism and neurologic disorders by Antiaris africana in rotenone-toxified rats. J Basic Clin Physiol Pharmacol 2019; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0014/jbcpp-2019-0014.xml. [PMID: 31800394 DOI: 10.1515/jbcpp-2019-0014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023]
Abstract
Background The physiopathologies of many neurologic diseases are characterized by related biochemical dysfunctions that could be explored as drug targets. This study evaluated the effect of a methanol leaf extract of Antiaris africana (MEA) on critical bioindices of Parkinsonism and related neurologic dysfunctions in rats with rotenone-induced neurotoxicity. Methods Animals were administered 50 or 100 mg/kg MEA for 14 consecutive days. Rotenone (1.5 mg/kg) was administered three times per day on days 13 and 14. Coenzyme Q10 (5 mg/kg) was the reference drug. Complex I activity, dopamine level, activities of acetylcholinesterase, myeloperoxidase, Na+/K+ ATPase and glutamine synthetase, as well as oxidative stress indices were evaluated at the end of the period of treatment. Results Rotenone-intoxicated group showed disruption of complex 1 activity, dopamine level, and glutamine synthetase activity with negative alterations to activities of acetylcholinesterase, myeloperoxidase, and Na+/K+ ATPase as well as heightened cerebral oxidative stress. MEA restored brain mitochondria functionality, mitigated altered neurochemical integrity, and ameliorated cerebral oxidative stress occasioned by rotenone neurotoxicity. The activity of A. Africana was comparable with that of 5 mg/kg coenzyme Q10. Conclusions These results indicated that A. africana displayed therapeutic potential against Parkinsonism and related neurologic dysfunctions and support its ethnobotanical use for the treatment of neurologic disorders.
Collapse
Affiliation(s)
- Omotayo B Ilesanmi
- Phytomedicine, Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Sciences, The Federal University of Technology Akure, Akure, Nigeria.,Department of Biochemistry, Faculty of Science, Federal University Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria
| | - Afolabi C Akinmoladun
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria, Phone: +2348034445893
| | - Sunday S Josiah
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria
| | - Afolabi A Akindahunsi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, P.M.B. 126, Yenagoa, Bayelsa State, Nigeria
| |
Collapse
|
55
|
Affiliation(s)
- P S Olofsson
- Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden.,Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - C Bouton
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| |
Collapse
|
56
|
Pavlov VA. Collateral benefits of studying the vagus nerve in bioelectronic medicine. Bioelectron Med 2019; 5:5. [PMID: 32232096 PMCID: PMC7098239 DOI: 10.1186/s42234-019-0021-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Studies on the role of the vagus nerve in the regulation of immunity and inflammation have contributed to current preclinical and clinical efforts in bioelectronic medicine. In parallel, this research has generated new insights into the cellular and molecular mechanisms underlying the immunoregulatory functions of the vagus nerve within the inflammatory reflex. The vagus nerve and other cellular components of the inflammatory reflex are implicated in the regulation of bleeding, cancer, obesity, blood pressure, viral infections and other conditions. This collateral benefit broadens scientific horizons and provides new rationale for technological advances and therapeutic implications.
Collapse
Affiliation(s)
- Valentin A. Pavlov
- Center for Biomedical Science and Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY 11030 USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550 USA
| |
Collapse
|