51
|
Faget J, Peters S, Quantin X, Meylan E, Bonnefoy N. Neutrophils in the era of immune checkpoint blockade. J Immunother Cancer 2021; 9:jitc-2020-002242. [PMID: 34301813 PMCID: PMC8728357 DOI: 10.1136/jitc-2020-002242] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
The immune checkpoint blockade-based immunotherapies are revolutionizing cancer management. Tumor-associated neutrophils (TANs) were recently highlighted to have a pivotal role in modulating the tumor microenvironment and the antitumor immune response. However, these cells were largely ignored during the development of therapies based on programmed cell death receptor or ligand-1 and cytotoxic T lymphocyte antigen-4 immune checkpoint inhibitors (ICIs). Latest evidences of neutrophil functional diversity in tumor raised many questions and suggest that targeting these cells can offer new treatment opportunities in the context of ICI development. Here, we summarized key information on TAN origin, function, and plasticity that should be considered when developing ICIs and provide a detailed review of the ongoing clinical trials that combine ICIs and a second compound that might affect or be affected by TANs. This review article synthetizes important notions from the literature demonstrating that: (1) Cancer development associates with a profound alteration of neutrophil biogenesis and function that can predict and interfere with the response to ICIs, (2) Neutrophil infiltration in tumor is associated with key features of resistance to ICIs, and (3) TANs play an important role in resistance to antiangiogenic drugs reducing their clinical benefit when used in combination with ICIs. Finally, exploring the clinical/translational aspects of neutrophil impact on the response to ICIs offers the opportunity to propose new translational research avenues to better understand TAN biology and treat patients.
Collapse
Affiliation(s)
- Julien Faget
- IRCM, Inserm, Univ Montpellier, ICM, Montpellier, France, INSERM U1194, Montpellier, France
| | - Solange Peters
- Department of Oncology CHUV-UNIL, University Hospital Lausanne, Lausanne, Switzerland
| | - Xavier Quantin
- Service d'Oncologie Médicale, Institut régional du Cancer de Montpellier, 34298, Montpellier, France
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, EPFL, Lausanne, Switzerland
| | - Nathalie Bonnefoy
- IRCM, Inserm, Univ Montpellier, ICM, Montpellier, France, INSERM U1194, Montpellier, France
| |
Collapse
|
52
|
Tulotta C, Lefley DV, Moore CK, Amariutei AE, Spicer-Hadlington AR, Quayle LA, Hughes RO, Ahmed K, Cookson V, Evans CA, Vadakekolathu J, Heath P, Francis S, Pinteaux E, Pockley AG, Ottewell PD. IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. NPJ Breast Cancer 2021; 7:95. [PMID: 34290237 PMCID: PMC8295314 DOI: 10.1038/s41523-021-00305-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer bone metastasis is currently incurable, ~75% of patients with late-stage breast cancer develop disease recurrence in bone and available treatments are only palliative. We have previously shown that production of the pro-inflammatory cytokine interleukin-1B (IL-1B) by breast cancer cells drives bone metastasis in patients and in preclinical in vivo models. In the current study, we have investigated how IL-1B from tumour cells and the microenvironment interact to affect primary tumour growth and bone metastasis through regulation of the immune system, and whether targeting IL-1 driven changes to the immune response improves standard of care therapy for breast cancer bone metastasis. Using syngeneic IL-1B/IL1R1 knock out mouse models in combination with genetic manipulation of tumour cells to overexpress IL-1B/IL1R1, we found that IL-1B signalling elicited an opposite response in primary tumours compared with bone metastases. In primary tumours, IL-1B inhibited growth, by impairing the infiltration of innate immune cell subsets with potential anti-cancer functions but promoted enhanced tumour cell migration. In bone, IL-1B stimulated the development of osteolytic metastases. In syngeneic models of breast cancer, combining standard of care treatments (Doxorubicin and Zoledronic acid) with the IL-1 receptor antagonist Anakinra inhibited both primary tumour growth and metastasis. Anakinra had opposite effects on the immune response compared to standard of care treatment, and its anti-inflammatory signature was maintained in the combination therapy. These data suggest that targeting IL-1B signalling may provide a useful therapeutic approach to inhibit bone metastasis and improve efficacy of current treatments for breast cancer patients.
Collapse
Affiliation(s)
- Claudia Tulotta
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Diane V Lefley
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Charlotte K Moore
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Ana E Amariutei
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Amy R Spicer-Hadlington
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Lewis A Quayle
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Russell O Hughes
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Khawla Ahmed
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Victoria Cookson
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Catherine A Evans
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sheila Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Penelope D Ottewell
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
53
|
Shi H, Li K, Ni Y, Liang X, Zhao X. Myeloid-Derived Suppressor Cells: Implications in the Resistance of Malignant Tumors to T Cell-Based Immunotherapy. Front Cell Dev Biol 2021; 9:707198. [PMID: 34336860 PMCID: PMC8317971 DOI: 10.3389/fcell.2021.707198] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
T lymphocytes function as major players in antigen-mediated cytotoxicity and have become powerful tools for exploiting the immune system in tumor elimination. Several types of T cell-based immunotherapies have been prescribed to cancer patients with durable immunological response. Such strategies include immune checkpoint inhibitors, adoptive T cell therapy, cancer vaccines, oncolytic virus, and modulatory cytokines. However, the majority of cancer patients still failed to take the advantage of these kinds of treatments. Currently, extensive attempts are being made to uncover the potential mechanism of immunotherapy resistance, and myeloid-derived suppressor cells (MDSCs) have been identified as one of vital interpretable factors. Here, we discuss the immunosuppressive mechanism of MDSCs and their contributions to failures of T cell-based immunotherapy. Additionally, we summarize combination therapies to ameliorate the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Houhui Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Kai Li
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
54
|
Hardisty GR, Llanwarne F, Minns D, Gillan JL, Davidson DJ, Gwyer Findlay E, Gray RD. High Purity Isolation of Low Density Neutrophils Casts Doubt on Their Exceptionality in Health and Disease. Front Immunol 2021; 12:625922. [PMID: 34168640 PMCID: PMC8217868 DOI: 10.3389/fimmu.2021.625922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Low density neutrophils (LDNs) are described in a number of inflammatory conditions, cancers and infections and associated with immunopathology, and a mechanistic role in disease. The role of LDNs at homeostasis in healthy individuals has not been investigated. We have developed an isolation protocol that generates high purity LDNs from healthy donors. Healthy LDNs were identical to healthy normal density neutrophils (NDNs), aside from reduced neutrophil extracellular trap formation. CD66b, CD16, CD15, CD10, CD54, CD62L, CXCR2, CD47 and CD11b were expressed at equivalent levels in healthy LDNs and NDNs and underwent apoptosis and ROS production interchangeably. Healthy LDNs had no differential effect on CD4+ or CD8+ T cell proliferation or IFNγ production compared with NDNs. LDNs were generated from healthy NDNs in vitro by activation with TNF, LPS or fMLF, suggesting a mechanism of LDN generation in disease however, we show neutrophilia in people with Cystic Fibrosis (CF) was not due to increased LDNs. LDNs are present in the neutrophil pool at homeostasis and have limited functional differences to NDNs. We conclude that increased LDN numbers in disease reflect the specific pathology or inflammatory environment and that neutrophil density alone is inadequate to classify discrete functional populations of neutrophils.
Collapse
Affiliation(s)
- Gareth R Hardisty
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Llanwarne
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle Minns
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan L Gillan
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Donald J Davidson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Gwyer Findlay
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert D Gray
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
55
|
Neutrophils and Influenza: A Thin Line between Helpful and Harmful. Vaccines (Basel) 2021; 9:vaccines9060597. [PMID: 34199803 PMCID: PMC8228962 DOI: 10.3390/vaccines9060597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023] Open
Abstract
Influenza viruses are one of the most prevalent respiratory pathogens known to humans and pose a significant threat to global public health each year. Annual influenza epidemics are responsible for 3-5 million infections worldwide and approximately 500,000 deaths. Presently, yearly vaccinations represent the most effective means of combating these viruses. In humans, influenza viruses infect respiratory epithelial cells and typically cause localized infections of mild to moderate severity. Neutrophils are the first innate cells to be recruited to the site of the infection and possess a wide range of effector functions to eliminate viruses. Some well-described effector functions include phagocytosis, degranulation, the production of reactive oxygen species (ROS), and the formation of neutrophil extracellular traps (NETs). However, while these mechanisms can promote infection resolution, they can also contribute to the pathology of severe disease. Thus, the role of neutrophils in influenza viral infection is nuanced, and the threshold at which protective functions give way to immunopathology is not well understood. Moreover, notable differences between human and murine neutrophils underscore the need to exercise caution when applying murine findings to human physiology. This review aims to provide an overview of neutrophil characteristics, their classic effector functions, as well as more recently described antibody-mediated effector functions. Finally, we discuss the controversial role these cells play in the context of influenza virus infections and how our knowledge of this cell type can be leveraged in the design of universal influenza virus vaccines.
Collapse
|
56
|
Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res 2021; 10:2806-2818. [PMID: 34295679 PMCID: PMC8264329 DOI: 10.21037/tlcr-20-760] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.
Collapse
Affiliation(s)
- Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
57
|
Mezquita L, Preeshagul I, Auclin E, Saravia D, Hendriks L, Rizvi H, Park W, Nadal E, Martin-Romano P, Ruffinelli JC, Ponce S, Audigier-Valette C, Carnio S, Blanc-Durand F, Bironzo P, Tabbò F, Reale ML, Novello S, Hellmann MD, Sawan P, Girshman J, Plodkowski AJ, Zalcman G, Majem M, Charrier M, Naigeon M, Rossoni C, Mariniello A, Paz-Ares L, Dingemans AM, Planchard D, Cozic N, Cassard L, Lopes G, Chaput N, Arbour K, Besse B. Predicting immunotherapy outcomes under therapy in patients with advanced NSCLC using dNLR and its early dynamics. Eur J Cancer 2021; 151:211-220. [PMID: 34022698 DOI: 10.1016/j.ejca.2021.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND dNLR at the baseline (B), defined by neutrophils/[leucocytes-neutrophils], correlates with immune-checkpoint inhibitor (ICI) outcomes in advanced non-small-cell lung cancer (aNSCLC). However, dNLR is dynamic under therapy and its longitudinal assessment may provide data predicting efficacy. We sought to examine the impact of dNLR dynamics on ICI efficacy and understand its biological significance. PATIENTS AND METHODS aNSCLC patients receiving ICI at 17 EU/US centres were included [Feb/13-Jun/18]. As chemotherapy-only group was evaluated (NCT02105168). dNLR was determined at (B) and at cycle2 (C2) [dNLR≤3 = low]. B+C2 dNLR were combined in one score: good = low (B+C2), poor = high (B+C2), intermediate = other situations. In 57 patients, we prospectively explored the immunophenotype of circulating neutrophils, particularly the CD15+CD244-CD16lowcells (immature) by flow cytometry. RESULTS About 1485 patients treatment with ICI were analysed. In ICI-treated patients, high dNLR (B) (~1/3rd) associated with worse progression-free (PFS)/overall survival (OS) (HR 1.56/HR 2.02, P < 0.0001) but not with chemotherapy alone (N = 173). High dNLR at C2 was associated with worse PFS/OS (HR 1.64/HR 2.15, P < 0.0001). When dNLR at both time points were considered together, those with persistently high dNLR (23%) had poor survival (mOS = 5 months (mo)), compared with high dNLR at one time point (22%; mOS = 9.2mo) and persistently low dNLR (55%; mOS = 18.6mo) (P < 0.0001). The dNLR impact remained significant after PD-L1 adjustment. By cytometry, high rate of immature neutrophils (B) (30/57) correlated with poor PFS/OS (P = 0.04; P = 0.0007), with a 12-week death rate of 49%. CONCLUSION The dNLR (B) and its dynamics (C2) under ICI associate with ICI outcomes in aNSCLC. Persistently high dNLR (B+C2) correlated with early ICI failure. Immature neutrophils may be a key subpopulation on ICI resistance.
Collapse
Affiliation(s)
- Laura Mezquita
- Cancer Medicine Department, Gustave Roussy, Villejuif, France; Medical Oncology Department, Hospital Clínic, Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi I Sunyer Biomedical Research Institute, Barcelona, Spain. https://twitter.com/LauraMezquitaMD
| | - Isabel Preeshagul
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center NY, USA
| | - Edouard Auclin
- Medical and Gastrointestinal Oncology Department, Georges Pompidou Hospital, Paris, France
| | - Diana Saravia
- Medical Oncology Department Sylvester Comprehensive Cancer Center, University of Miami
| | - Lizza Hendriks
- Cancer Medicine Department, Gustave Roussy, Villejuif, France; Pulmonary Diseases GROW- School for Oncology and Biology, Maastricht UMC+, Maastricht, the Netherlands
| | - Hira Rizvi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center NY, USA
| | - Wungki Park
- Medical Oncology Department Sylvester Comprehensive Cancer Center, University of Miami
| | - Ernest Nadal
- Medical Oncology Department, Catalan Institute of Oncology, L'Hospitalet, Barcelona Spain
| | | | - Jose C Ruffinelli
- Medical Oncology Department, Catalan Institute of Oncology, L'Hospitalet, Barcelona Spain
| | - Santiago Ponce
- Medical Oncology Department, Hospital 12 Octubre, Madrid, Spain
| | | | - Simona Carnio
- Thoracic Oncology Unit, Department of Oncology, University of Turin, AOU San Luigi, Orbassano (TO) Italy
| | | | - Paolo Bironzo
- Thoracic Oncology Unit, Department of Oncology, University of Turin, AOU San Luigi, Orbassano (TO) Italy
| | - Fabrizio Tabbò
- Thoracic Oncology Unit, Department of Oncology, University of Turin, AOU San Luigi, Orbassano (TO) Italy
| | - Maria Lucia Reale
- Thoracic Oncology Unit, Department of Oncology, University of Turin, AOU San Luigi, Orbassano (TO) Italy
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology, University of Turin, AOU San Luigi, Orbassano (TO) Italy
| | - Matthew D Hellmann
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center NY, USA
| | - Peter Sawan
- Department of Radiology, Memorial Sloan Kettering Cancer Center NY, USA
| | - Jeffrey Girshman
- Department of Radiology, Memorial Sloan Kettering Cancer Center NY, USA
| | | | - Gerard Zalcman
- Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hôpital Bichat- Claude Bernard, Paris, France
| | - Margarita Majem
- Medical Oncology Department, Hospital San Pau, Barcelona, Spain
| | - Melinda Charrier
- Laboratory of Immunomonitoring in Oncology, UMS3655 CNRS US 23 INSERM, Gustave Roussy, Villejuif, France
| | - Marie Naigeon
- Laboratory of Immunomonitoring in Oncology, UMS3655 CNRS US 23 INSERM, Gustave Roussy, Villejuif, France
| | | | - AnnaPaola Mariniello
- Thoracic Oncology Unit, Department of Oncology, University of Turin, AOU San Luigi, Orbassano (TO) Italy
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital 12 Octubre, Madrid, Spain
| | | | - David Planchard
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | | | - Lydie Cassard
- Laboratory of Immunomonitoring in Oncology, UMS3655 CNRS US 23 INSERM, Gustave Roussy, Villejuif, France
| | - Gilberto Lopes
- Medical Oncology Department Sylvester Comprehensive Cancer Center, University of Miami
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS3655 CNRS US 23 INSERM, Gustave Roussy, Villejuif, France; University Paris-Saclay, School of Pharmacy, France
| | - Kathryn Arbour
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center NY, USA
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France; University Paris-Saclay, School of Medicine, France.
| |
Collapse
|
58
|
Cerezo-Wallis D, Ballesteros I. Neutrophils in cancer, a love-hate affair. FEBS J 2021; 289:3692-3703. [PMID: 33999496 DOI: 10.1111/febs.16022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Neutrophils dominate the immunological landscape of multiple types of solid tumours in mice and humans and exert different pro- or antitumoral activity. This functional heterogeneity has prompted a search for different subsets and classifications of tumour-infiltrating neutrophils with the idea of better delineating their specific roles in cancer. In this review, we describe current studies that highlight specific mechanisms by which neutrophils exert pro- or antitumoral function and focus on how distinct tumour types induce unique functional states in neutrophils, co-opt granulopoiesis, modulate neutrophil ageing and prolong the neutrophil life span. In addition, we discuss how the tissue-specific tumour stroma and the stage of the cancer influence the function and number of tumour-infiltrating neutrophils. Finally, we explore different approaches to enhance the therapeutic efficacy in cancer types dominated by neutrophils.
Collapse
Affiliation(s)
- Daniela Cerezo-Wallis
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
59
|
McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, Stevenson NJ, Little MA, Molloy EJ. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021; 12:602963. [PMID: 33936029 PMCID: PMC8081893 DOI: 10.3389/fimmu.2021.602963] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | | | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Zallaq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
60
|
McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021; 131:143759. [PMID: 33720040 PMCID: PMC7954585 DOI: 10.1172/jci143759] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.
Collapse
Affiliation(s)
| | - Frédéric Fercoq
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
61
|
Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 2021; 40:221-244. [PMID: 33438104 PMCID: PMC7802614 DOI: 10.1007/s10555-020-09951-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Saima Syeda
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Anju Shrivastava
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
62
|
Fraccarollo D, Neuser J, Möller J, Riehle C, Galuppo P, Bauersachs J. Expansion of CD10 neg neutrophils and CD14 +HLA-DR neg/low monocytes driving proinflammatory responses in patients with acute myocardial infarction. eLife 2021; 10:66808. [PMID: 34289931 PMCID: PMC8324297 DOI: 10.7554/elife.66808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Immature neutrophils and HLA-DRneg/low monocytes expand in cancer, autoimmune diseases and viral infections, but their appearance and immunoregulatory effects on T-cells after acute myocardial infarction (AMI) remain underexplored. We found an expansion of circulating immature CD16+CD66b+CD10neg neutrophils and CD14+HLA-DRneg/low monocytes in AMI patients, correlating with cardiac damage, function and levels of immune-inflammation markers. Immature CD10neg neutrophils expressed high amounts of MMP-9 and S100A9, and displayed resistance to apoptosis. Moreover, we found that increased frequency of CD10neg neutrophils and elevated circulating IFN-γ levels were linked, mainly in patients with expanded CD4+CD28null T-cells. Notably, the expansion of circulating CD4+CD28null T-cells was associated with cytomegalovirus (CMV) seropositivity. Using bioinformatic tools, we identified a tight relationship among the peripheral expansion of immature CD10neg neutrophils, CMV IgG titers, and circulating levels of IFN-γ and IL-12 in patients with AMI. At a mechanistic level, CD10neg neutrophils enhanced IFN-γ production by CD4+ T-cells through a contact-independent mechanism involving IL-12. In vitro experiments also highlighted that HLA-DRneg/low monocytes do not suppress T-cell proliferation but secrete high levels of pro-inflammatory cytokines after differentiation to macrophages and IFN-γ stimulation. Lastly, using a mouse model of AMI, we showed that immature neutrophils (CD11bposLy6GposCD101neg cells) are recruited to the injured myocardium and migrate to mediastinal lymph nodes shortly after reperfusion. In conclusion, immunoregulatory functions of CD10neg neutrophils play a dynamic role in mechanisms linking myeloid cell compartment dysregulation, Th1-type immune responses and inflammation after AMI.
Collapse
Affiliation(s)
- Daniela Fraccarollo
- Department of Cardiology and Angiology, Hannover Medical SchoolHannoverGermany
| | - Jonas Neuser
- Department of Cardiology and Angiology, Hannover Medical SchoolHannoverGermany
| | - Julian Möller
- Department of Cardiology and Angiology, Hannover Medical SchoolHannoverGermany
| | - Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical SchoolHannoverGermany
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Hannover Medical SchoolHannoverGermany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
63
|
Theron AJ, Steel HC, Rapoport BL, Anderson R. Contrasting Immunopathogenic and Therapeutic Roles of Granulocyte Colony-Stimulating Factor in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13110406. [PMID: 33233675 PMCID: PMC7699711 DOI: 10.3390/ph13110406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor cells are particularly adept at exploiting the immunosuppressive potential of neutrophils as a strategy to achieve uncontrolled proliferation and spread. Recruitment of neutrophils, particularly those of an immature phenotype, known as granulocytic myeloid-derived suppressor cells, is achieved via the production of tumor-derived granulocyte colony-stimulating factor (G-CSF) and neutrophil-selective chemokines. This is not the only mechanism by which G-CSF contributes to tumor-mediated immunosuppression. In this context, the G-CSF receptor is expressed on various cells of the adaptive and innate immune systems and is associated with induction of T cell polarization towards the Th2 and regulatory T cell (Treg) phenotypes. In contrast to the potentially adverse effects of sustained, endogenous production of G-CSF by tumor cells, stringently controlled prophylactic administration of recombinant (r) G-CSF is now a widely practiced strategy in medical oncology to prevent, and in some cases treat, chemotherapy-induced severe neutropenia. Following an overview of the synthesis, structure and function of G-CSF and its receptor, the remainder of this review is focused on: (i) effects of G-CSF on the cells of the adaptive and innate immune systems; (ii) mechanisms by which this cytokine promotes tumor progression and invasion; and (iii) current clinical applications and potential risks of the use of rG-CSF in medical oncology.
Collapse
Affiliation(s)
- Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- Correspondence: ; Tel.: +27-12-319-2355
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| | - Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (B.L.R.); (R.A.)
| |
Collapse
|
64
|
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 2020; 20:662-680. [PMID: 32753728 DOI: 10.1038/s41568-020-0285-7] [Citation(s) in RCA: 1001] [Impact Index Per Article: 200.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The international American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) tumour-node-metastasis (TNM) staging system provides the current guidelines for the classification of cancer. However, among patients within the same stage, the clinical outcome can be very different. More recently, a novel definition of cancer has emerged, implicating at all stages a complex and dynamic interaction between tumour cells and the immune system. This has enabled the definition of the immune contexture, representing the pre-existing immune parameters associated with patient survival. Even so, the role of distinct immune cell types in modulating cancer progression is increasingly emerging. An immune-based assay named the 'Immunoscore' was defined to quantify the in situ T cell infiltrate and was demonstrated to be superior to the AJCC/UICC TNM classification for patients with colorectal cancer. This Review provides a broad overview of the main immune parameters positively or negatively shaping cancer development, including the Immunoscore, and their prognostic and predictive value. The importance of the immune system in cancer control is demonstrated by the requirement for a pre-existing intratumour adaptive immune response for effective immunotherapies, such as checkpoint inhibitors. Finally, we discuss how the combination of multiple immune parameters, rather than individual ones, might increase prognostic and/or predictive power.
Collapse
Affiliation(s)
- Daniela Bruni
- INSERM, Laboratory of Integrative Cancer Immunology; Équipe Labellisée Ligue Contre le Cancer; Sorbonne Université; Sorbonne Paris Cité; Université de Paris; Centre de Recherche des Cordeliers, Paris, France
| | - Helen K Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology; Équipe Labellisée Ligue Contre le Cancer; Sorbonne Université; Sorbonne Paris Cité; Université de Paris; Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
65
|
Rubio-Ponce A, Hidalgo A, Ballesteros I. How to bridle a neutrophil. Curr Opin Immunol 2020; 68:41-47. [PMID: 33038850 DOI: 10.1016/j.coi.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Recent high-dimensional technologies have enabled the characterization of heterogeneity in the neutrophil compartment at an unprecedented resolution. In this review, we discuss the emerging notion of heterogeneity within the neutrophil pool, and provide a detailed account of evolving concepts in the field. We place special focus on neutrophil differentiation in the bone marrow and plasticity in tissues, describe the limitations that arise when exploring neutrophil heterogeneity using single-cell analyses, and suggest state-of-the-art alternatives to improve their characterization. Finally, we propose strategies arising from these new concepts that may allow us to bridle neutrophil plasticity towards therapeutic benefit.
Collapse
Affiliation(s)
- Andrea Rubio-Ponce
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| |
Collapse
|
66
|
van Elsas M, Kleinovink JW, Moerland M, Feiss G, Beyrend G, Arens R, Mei H, Nibbering PH, Jirka SM, van Hall T, van der Burg SH. Host genetics and tumor environment determine the functional impact of neutrophils in mouse tumor models. J Immunother Cancer 2020; 8:jitc-2020-000877. [PMID: 32998952 PMCID: PMC7528431 DOI: 10.1136/jitc-2020-000877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 01/06/2023] Open
Abstract
Background Neutrophils have been reported to have protumor, antitumor or neutral effects in cancer progression. The underlying causes for this functional variability are not clear. Methods We studied the role of neutrophils in six different mouse tumor models by intratumoral injection of antimicrobial peptides or vaccination. Changes in systemic and intratumoral immune cells were analyzed by flow-cytometry and mass-cytometry. The role of neutrophils was studied by antibody-mediated neutrophil depletion. Neutrophils from different mouse strains were compared by RNA sequencing. Results The antimicrobial peptide Omiganan reduced the growth of TC-1 tumors in BL/6 mice and CT26 tumors in BALB/c mice. No significant effects were observed in B16F10, MC38 and 4T1 tumors. Growth delay was associated with increased abundance of neutrophils in TC-1 but not CT26 tumors. Systemic neutrophil depletion abrogated Omiganan efficacy in TC-1 but further reduced growth of CT26, indicating that neutrophils were required for the antitumor effect in TC-1 but suppressed tumor control in CT26. Neutrophils were also required for a therapeutic vaccine-induced T-cell mediated control of RMA tumors in BL/6 mice. Clearly, the circulating and intratumoral neutrophils differed in the expression of Ly6G and CD62L, between TC-1 and CT26 and between blood neutrophils of tumor-naïve BL/6 and BALB/c mice. RNA-sequencing revealed that neutrophils from BL/6 mice but not BALB/c mice displayed a robust profile of immune activation, matching their opposing roles in TC-1 and RMA versus CT26. Conclusions Neutrophil functionality differs strongly between mouse strains and tumor types, with consequences for tumor progression and therapy.
Collapse
Affiliation(s)
- Marit van Elsas
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Willem Kleinovink
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gary Feiss
- Cutanea Life Sciences, Wayne, Pennsylvania, USA
| | - Guillaume Beyrend
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter H Nibbering
- Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Thorbald van Hall
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
67
|
Pfirschke C, Engblom C, Gungabeesoon J, Lin Y, Rickelt S, Zilionis R, Messemaker M, Siwicki M, Gerhard GM, Kohl A, Meylan E, Weissleder R, Klein AM, Pittet MJ. Tumor-Promoting Ly-6G + SiglecF high Cells Are Mature and Long-Lived Neutrophils. Cell Rep 2020; 32:108164. [PMID: 32966785 PMCID: PMC7508173 DOI: 10.1016/j.celrep.2020.108164] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Myeloid cells co-expressing the markers CD11b, Ly-6G, and SiglecF can be found in large numbers in murine lung adenocarcinomas and accelerate cancer growth by fostering tumor cell invasion, angiogenesis, and immunosuppression; however, some of these cells' fundamental features remain unexplored. Here, we show that tumor-infiltrating CD11b+ Ly-6G+ SiglecFhigh cells are bona fide mature neutrophils and therefore differ from other myeloid cells, including SiglecFhigh eosinophils, SiglecFhigh macrophages, and CD11b+ Ly-6G+ myeloid-derived suppressor cells. We further show that SiglecFhigh neutrophils gradually accumulate in growing tumors, where they can live for several days; this lifespan is in marked contrast to that of their SiglecFlow counterparts and neutrophils in general, which live for several hours only. Together, these findings reveal distinct attributes for tumor-promoting SiglecFhigh neutrophils and help explain their deleterious accumulation in the tumor bed.
Collapse
Affiliation(s)
- Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Jeremy Gungabeesoon
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Yunkang Lin
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rapolas Zilionis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Marius Messemaker
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Genevieve M Gerhard
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Anna Kohl
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Department of Oncology, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
68
|
Mehmeti-Ajradini M, Bergenfelz C, Larsson AM, Carlsson R, Riesbeck K, Ahl J, Janols H, Wullt M, Bredberg A, Källberg E, Björk Gunnarsdottir F, Rydberg Millrud C, Rydén L, Paul G, Loman N, Adolfsson J, Carneiro A, Jirström K, Killander F, Bexell D, Leandersson K. Human G-MDSCs are neutrophils at distinct maturation stages promoting tumor growth in breast cancer. Life Sci Alliance 2020; 3:3/11/e202000893. [PMID: 32958605 PMCID: PMC7536824 DOI: 10.26508/lsa.202000893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
This study shows that immunosuppressive primary breast cancer patient–derived G-MDSCs (PMN-MDSCs) are neutrophils at a range of maturations stages, and provides in vivo evidence for that human G-MDSCs also promote tumor growth and myeloid immune cell exclusion. Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients co-transplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.
Collapse
Affiliation(s)
| | - Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna-Maria Larsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Jonas Ahl
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Helena Janols
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marlene Wullt
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anders Bredberg
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Eva Källberg
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| | | | | | - Lisa Rydén
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Surgery and Gastroenterology, Skåne University Hospital, Lund, Sweden
| | - Gesine Paul
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jörgen Adolfsson
- Science for Life Laboratory Node at Linköping's University, Linköping, Sweden
| | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Fredrika Killander
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| |
Collapse
|
69
|
Characterization of the Impact of Oncolytic Vesicular Stomatitis Virus on the Trafficking, Phenotype, and Antigen Presentation Potential of Neutrophils and Their Ability to Acquire a Non-Structural Viral Protein. Int J Mol Sci 2020; 21:ijms21176347. [PMID: 32882969 PMCID: PMC7570176 DOI: 10.3390/ijms21176347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Neutrophils are innate leukocytes that mount a rapid response to invading pathogens and sites of inflammation. Although neutrophils were traditionally considered responders to bacterial infections, recent advances have demonstrated that they are interconnected with both viral infections and cancers. One promising treatment strategy for cancers is to administer an oncolytic virus to activate the immune system and directly lyse cancerous cells. A detailed characterization of how the innate immune system responds to a viral-based therapy is paramount in identifying its systemic effects. This study analyzed how administering the rhabdovirus vesicular stomatitis virus (VSV) intravenously at 1 × 109 PFU acutely influenced neutrophil populations. Bone marrow, blood, lungs, and spleen were acquired three- and 24-h after administration of VSV for analysis of neutrophils by flow cytometry. Infection with VSV caused neutrophils to rapidly egress from the bone marrow and accumulate in the lungs. A dramatic increase in immature neutrophils was observed in the lungs, as was an increase in the antigen presentation potential of these cells within the spleen. Furthermore, the potential for neutrophils to acquire viral transgene-encoded proteins was monitored using a variant of VSV that expressed enhanced green fluorescent protein (GFP). If an in vitro population of splenocytes were exposed to αCD3 and αCD28, a substantial proportion of the neutrophils would become GFP-positive. This suggested that the neutrophils could either acquire more virus-encoded antigens from infected splenocytes or were being directly infected. Five different dosing regimens were tested in mice, and it was determined that a single dose of VSV or two doses of VSV administered at a 24-h interval, resulted in a substantial proportion of neutrophils in the bone marrow becoming GFP-positive. This correlated with a decrease in the number of splenic neutrophils. Two doses administered at intervals longer than 24-h did not have these effects, suggesting that neutrophils became resistant to antigen uptake or direct infection with VSV beyond 24-h of activation. These findings implicated neutrophils as major contributors to oncolytic rhabdoviral therapies. They also provide several clear future directions for research and suggest that neutrophils should be carefully monitored during the development of all oncolytic virus-based treatment regimens.
Collapse
|
70
|
Kramer ED, Abrams SI. Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Front Immunol 2020; 11:1963. [PMID: 32983128 PMCID: PMC7481329 DOI: 10.3389/fimmu.2020.01963] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
The immune system plays a critical role in cancer progression and response to therapy. However, the immune system can be compromised during the neoplastic process. Notably, the myeloid lineage, which gives rise to granulocytic cells, including neutrophils, is a well-recognized target of tumor-mediated immune suppression. Ordinarily, granulocytic cells are integral for host defense, but in neoplasia the normal process of granulocyte differentiation (i.e., granulopoiesis) can be impaired leading instead to the formation of granulocytic (or PMN)-myeloid-derived suppressor cells (MDSCs). Such cells comprise various stages of myeloid differentiation and are defined functionally by their highly pro-tumorigenic and immune suppressive activities. Thus, considerable interest has been devoted to impeding the negative contributions of PMN-MDSCs to the antitumor response. Understanding their biology has the potential to unveil novel therapeutic opportunities to hamper PMN-MDSC production in the bone marrow, their mobilization, or their effector functions within the tumor microenvironment and, therefore, bolster anticancer therapies that require a competent myeloid compartment. In this review, we will highlight mechanisms by which the neoplastic process skews granulopoiesis to produce PMN-MDSCs, summarize mechanisms by which they execute their pro-tumorigenic activities and, lastly, underscore strategies to obstruct their role as negative regulators of antitumor immunity.
Collapse
Affiliation(s)
- Elliot D Kramer
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
71
|
Costanzo-Garvey DL, Keeley T, Case AJ, Watson GF, Alsamraae M, Yu Y, Su K, Heim CE, Kielian T, Morrissey C, Frieling JS, Cook LM. Neutrophils are mediators of metastatic prostate cancer progression in bone. Cancer Immunol Immunother 2020; 69:1113-1130. [PMID: 32114681 PMCID: PMC7230043 DOI: 10.1007/s00262-020-02527-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Bone metastatic prostate cancer (BM-PCa) significantly reduces overall patient survival and is currently incurable. Current standard immunotherapy showed promising results for PCa patients with metastatic, but less advanced, disease (i.e., fewer than 20 bone lesions) suggesting that PCa growth in bone contributes to response to immunotherapy. We found that: (1) PCa stimulates recruitment of neutrophils, the most abundant immune cell in bone, and (2) that neutrophils heavily infiltrate regions of prostate tumor in bone of BM-PCa patients. Based on these findings, we examined the impact of direct neutrophil-prostate cancer interactions on prostate cancer growth. Bone marrow neutrophils directly induced apoptosis of PCa in vitro and in vivo, such that neutrophil depletion in bone metastasis models enhanced BM-PCa growth. Neutrophil-mediated PCa killing was found to be mediated by suppression of STAT5, a transcription factor shown to promote PCa progression. However, as the tumor progressed in bone over time, neutrophils from late-stage bone tumors failed to elicit cytotoxic effector responses to PCa. These findings are the first to demonstrate that bone-resident neutrophils inhibit PCa and that BM-PCa are able to progress via evasion of neutrophil-mediated killing. Enhancing neutrophil cytotoxicity in bone may present a novel therapeutic option for bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Diane L Costanzo-Garvey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Tyler Keeley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Adam J Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gabrielle F Watson
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Massar Alsamraae
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
- Department of Medical Education, California University of Science and Medicine, San Bernadino, CA, USA
| | - Cortney E Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jeremy S Frieling
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Med Center, Omaha, NE, 68192, USA.
| |
Collapse
|
72
|
Maréchal P, Tridetti J, Nguyen ML, Wéra O, Jiang Z, Gustin M, Donneau AF, Oury C, Lancellotti P. Neutrophil Phenotypes in Coronary Artery Disease. J Clin Med 2020; 9:jcm9051602. [PMID: 32466264 PMCID: PMC7290445 DOI: 10.3390/jcm9051602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical evidence indicates that innate immune cells may contribute to acute coronary syndrome (ACS). Our prospective study aimed at investigating the association of neutrophil phenotypes with ACS. 108 patients were categorized into chronic stable coronary artery disease (n = 37), unstable angina (UA) (n = 19), Non-ST-Elevation Myocardial Infarction (NSTEMI) (n = 25), and ST-Elevation Myocardial Infarction (STEMI) (n = 27). At the time of inclusion, blood neutrophil subpopulations were analysed by flow cytometry. Differential blood cell count and plasma levels of neutrophilic soluble markers were recorded at admission and, for half of patients, at six-month follow-up. STEMI and NSTEMI patients displayed higher neutrophil count and neutrophil-to-lymphocyte ratio than stable and UA patients (p < 0.0001), which normalized at six-month post-MI. Atypical low-density neutrophils were detected in the blood of the four patient groups. STEMI patients were characterized by elevated percentages of band cells compared to the other patients (p = 0.019). Multivariable logistic regression analysis revealed that plasma levels of total myeloperoxidase was associated with STEMI compared to stable (OR: 1.434; 95% CI: 1.119–1.837; P < 0.0001), UA (1.47; 1.146–1.886; p = 0.002), and NSTEMI (1.213; 1.1–1.134; p = 0.0001) patients, while increased neutrophil side scatter (SSC) signal intensity was associated with NSTEMI compared to stable patients (3.828; 1.033–14.184; p = 0.045). Hence, changes in neutrophil phenotype are concomitant to ACS.
Collapse
Affiliation(s)
- Patrick Maréchal
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
| | - Julien Tridetti
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
| | - Mai-Linh Nguyen
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
| | - Odile Wéra
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
| | - Zheshen Jiang
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
| | - Maxime Gustin
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
| | - Anne-Françoise Donneau
- Biostatistics Unit, Department of Public Health, University of Liège, 4000 Liège, Belgium;
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
- Correspondence: (C.O.); (P.L.)
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
- Gruppo Villa Maria Care and Research, Anthea Hospital, 70123 Bari, Italy
- Correspondence: (C.O.); (P.L.)
| |
Collapse
|
73
|
Hassan G, Seno M. Blood and Cancer: Cancer Stem Cells as Origin of Hematopoietic Cells in Solid Tumor Microenvironments. Cells 2020; 9:cells9051293. [PMID: 32455995 PMCID: PMC7290570 DOI: 10.3390/cells9051293] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
The concepts of hematopoiesis and the generation of blood and immune cells from hematopoietic stem cells are some steady concepts in the field of hematology. However, the knowledge of hematopoietic cells arising from solid tumor cancer stem cells is novel. In the solid tumor microenvironment, hematopoietic cells play pivotal roles in tumor growth and progression. Recent studies have reported that solid tumor cancer cells or cancer stem cells could differentiate into hematopoietic cells. Here, we discuss efforts and research that focused on the presence of hematopoietic cells in tumor microenvironments. We also discuss hematopoiesis from solid tumor cancer stem cells and clarify the notion of differentiation of solid tumor cancer stem cells into non-cancer hematopoietic stem cells.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus 10769, Syria
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan;
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
74
|
The complexity of neutrophils in health and disease: Focus on cancer. Semin Immunol 2020; 48:101409. [PMID: 32958359 PMCID: PMC7500440 DOI: 10.1016/j.smim.2020.101409] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Neutrophils are essential soldiers of the immune response and their role have long been restricted to their activities in defence against microbial infections and during the acute phase of the inflammatory response. However, increasing number of investigations showed that neutrophils are endowed with plasticity and can participate in the orchestration of both innate and adaptive immune responses. Neutrophils have an impact on a broad range of disorders, including infections, chronic inflammations, and cancer. Neutrophils are present in the tumour microenvironment and have been reported to mediate both pro-tumour and anti-tumour responses. Neutrophils can contribute to genetic instability, tumour cell proliferation, angiogenesis and suppression of the anti-tumour immune response. In contrast, neutrophils are reported to mediate anti-tumour resistance by direct killing of tumour cells or by engaging cooperative interactions with other immune cells. Here we discuss the current understandings of neutrophils biology and functions in health and diseases, with a specific focus on their role in cancer biology and their prognostic significance in human cancer.
Collapse
|
75
|
Bergenfelz C, Leandersson K. The Generation and Identity of Human Myeloid-Derived Suppressor Cells. Front Oncol 2020; 10:109. [PMID: 32117758 PMCID: PMC7025543 DOI: 10.3389/fonc.2020.00109] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells of myeloid lineage with a potent immunosuppressive capacity. They are present in cancer patients as well as in patients with severe inflammatory conditions and infections. MDSCs exist as two main subtypes, the granulocytic (G-MDSCs) and the monocytic (Mo-MDSCs) type, as defined by their surface phenotype and functions. While the functions of MDSCs have been investigated in depth, the origin of human MDSCs is less characterized and even controversial. In this review, we recapitulate theories on how MDSCs are generated in mice, and whether this knowledge is translatable into human MDSC biology, as well as on problems of defining MDSCs by their immature cell surface phenotype in relation to the plasticity of myeloid cells. Finally, the challenge of pharmacological targeting of MDSCs in the future is envisioned.
Collapse
Affiliation(s)
- Caroline Bergenfelz
- Department of Translational Medicine, Division of Experimental Infection Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
76
|
Snoderly HT, Boone BA, Bennewitz MF. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res 2019; 21:145. [PMID: 31852512 PMCID: PMC6921561 DOI: 10.1186/s13058-019-1237-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The formation of neutrophil extracellular traps (NETs), known as NETosis, was first observed as a novel immune response to bacterial infection, but has since been found to occur abnormally in a variety of other inflammatory disease states including cancer. Breast cancer is the most commonly diagnosed malignancy in women. In breast cancer, NETosis has been linked to increased disease progression, metastasis, and complications such as venous thromboembolism. NET-targeted therapies have shown success in preclinical cancer models and may prove valuable clinical targets in slowing or halting tumor progression in breast cancer patients. We will briefly outline the mechanisms by which NETs may form in the tumor microenvironment and circulation, including the crosstalk between neutrophils, tumor cells, endothelial cells, and platelets as well as the role of cancer-associated extracellular vesicles in modulating neutrophil behavior and NET extrusion. The prognostic implications of cancer-associated NETosis will be explored in addition to development of novel therapeutics aimed at targeting NET interactions to improve outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Hunter T Snoderly
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Drive, ESB 521, Morgantown, WV, 26506, USA
| | - Brian A Boone
- Department of Surgery, West Virginia University, Morgantown, WV, 26506, USA
| | - Margaret F Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Drive, ESB 521, Morgantown, WV, 26506, USA.
| |
Collapse
|