51
|
Cheng J, Zhou M, Nobrega DB, Cao Z, Yang J, Zhu C, Han B, Gao J. Virulence profiles of Klebsiella pneumoniae isolated from 2 large dairy farms in China. J Dairy Sci 2021; 104:9027-9036. [PMID: 33985773 DOI: 10.3168/jds.2020-20042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
We recently reported on the diversity of Klebsiella pneumoniae isolated from dairy herds in China. In our previous work, isolates from subclinical mastitis (SCM) had lower indices of diversity when compared with bacteria from other sources, possibly due to a contagious-like spread of udder adapted strains. Here we explored the virulence profile and capsular types of K. pneumoniae isolated from different sources on 2 dairy farms in China. Our overarching goal was to gain insights on the role of virulence genes toward the severity of mastitis caused by K. pneumoniae. A total of 1,484 samples were collected from clinical mastitis (CM; n = 355), SCM (n = 561), bulk tank milk (BTM; n = 130), and environmental and extramammary (EE) sites (n = 438). From those, 431 K. pneumoniae isolates were obtained, including 129, 77, 66, and 159 isolates from CM, SCM, BTM, and EE samples, respectively. Polymerase chain reactions were used to determine the capsular types and to detect potential virulence genes in all isolates. No significant farm effects were observed when comparing the distribution of most virulence genes in K. pneumoniae isolated from each source. K57 was the most prevalent capsular type in K. pneumoniae from all sources, but with increased detection rate in isolates from CM. entB, kfu, fimH1, mrkD, and β-d-lacZ were frequently detected in K. pneumoniae from all sources. β-d-lacZ, entB, and ituA were more prevalent in isolates from CM, whereas kfu, allS, and nif were more frequently detected in isolates from SCM. ybtS, aerobactin, and rpmA had increased prevalence in K. pneumoniae from BTM when compared with bacteria from other sources. No association was detected between virulence genes and the severity of CM. K57 and the nif gene had the highest discriminatory power to classify isolates from CM and SCM, respectively. Based on our findings, it is likely that K57 is the dominant capsular type in K. pneumoniae causing CM in large Chinese dairy herds. Likewise, we demonstrated that β-d-lacZ is disseminated in K. pneumoniae isolated from large Chinese dairy farms, irrespectively of the source of bacteria. Our results also suggest a low contribution of the virulence profile of K. pneumoniae toward CM severity. Finally, the role of nif in increasing the adaptability to the udder and promoting a contagious-like spread of K. pneumoniae warrants further investigation.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Diego B Nobrega
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Chunyan Zhu
- Agri-Products Quality and Safety Testing Center of Shanghai, No. 28, Ln 1528, Xinfu Zhonglu Rd, Huaxin Town, Qinpu District, Shanghai, China 201708
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
52
|
Klaper K, Hammerl JA, Rau J, Pfeifer Y, Werner G. Genome-Based Analysis of Klebsiella spp. Isolates from Animals and Food Products in Germany, 2013-2017. Pathogens 2021; 10:pathogens10050573. [PMID: 34066734 PMCID: PMC8170897 DOI: 10.3390/pathogens10050573] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in infections with multidrug-resistant and virulent Klebsiella pneumoniae (K. pneumoniae) strains poses a serious threat to public health. However, environmental reservoirs and routes of transmission for Klebsiella spp. that cause infections in humans and in livestock animals are not well understood. In this study, we aimed to analyze the distribution of antibiotic resistance genes and important virulence determinants (ybt, clb, iro, iuc, rmpA/A2) among 94 Klebsiella spp. isolates from different animal and food sources isolated between 2013 and 2017 in Germany. Antibiotic susceptibility testing was performed, and the genomes were sequenced by Illumina and Nanopore technology. Genetic relationships were assessed by conducting core genome multilocus sequence typing (cgMLST). Kleborate was used to predict resistance and virulence genes; Kaptive was used to derive the capsule types. The results revealed that 72 isolates (76.6%) belonged to the K. pneumoniae sensu lato complex. Within this complex, 44 known sequence types (STs), 18 new STs, and 38 capsule types were identified. Extended-spectrum beta-lactamase (ESBL) genes were detected in 16 isolates (17.0%) and colistin resistance in one (1.1%) K. pneumoniae isolate. Virulence genes were found in 22 K. pneumoniae isolates. Overall, nine (9.6%) and 18 (19.1%) isolates possessed the genes ybt and iuc, respectively. Notably, aerobactin (iuc lineage 3) was only detected in K. pneumoniae isolates from domestic pigs and wild boars. This study provides a snapshot of the genetic diversity of Klebsiella spp. in animals and food products in Germany. The siderophore aerobactin was found to be more prevalent in K. pneumoniae strains isolated from pigs than other sources. Further investigations are needed to evaluate if pigs constitute a reservoir for iuc lineage 3.
Collapse
Affiliation(s)
- Kathleen Klaper
- Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany; (Y.P.); (G.W.)
- Correspondence:
| | - Jens Andre Hammerl
- Unit Epidemiology, Zoonoses and Antimicrobial Resistance, Department Biological Safety, German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung [BfR]), 12277 Berlin, Germany;
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency (CVUAS) Stuttgart, 70736 Fellbach, Germany;
| | - Yvonne Pfeifer
- Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany; (Y.P.); (G.W.)
| | - Guido Werner
- Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany; (Y.P.); (G.W.)
| |
Collapse
|
53
|
Ssekatawa K, Byarugaba DK, Nakavuma JL, Kato CD, Ejobi F, Tweyongyere R, Eddie WM. Prevalence of pathogenic Klebsiella pneumoniae based on PCR capsular typing harbouring carbapenemases encoding genes in Uganda tertiary hospitals. Antimicrob Resist Infect Control 2021; 10:57. [PMID: 33736698 PMCID: PMC7977577 DOI: 10.1186/s13756-021-00923-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is an opportunistic pathogen that has been implicated as one of commonest cause of hospital and community acquired infections. The K. pneumoniae infections have considerably contributed to morbidity and mortality in patients with protracted ailments. The capacity of K. pneumoniae to cause diseases depends on the presence of an array virulence factors. Coexistence and expression of virulence factors and genetic determinants of antibiotic resistance complicates treatment outcomes. Thus, emergence of pathogenic MDR K. pneumoniae poses a great threat to the healthcare system. However, the carriage of antibiotic resistance among pathogenic K. pneumoniae is yet to be investigated in Uganda. We sought to investigate the carbapenem resistance profiles and pathogenic potential based on capsular serotypes of K. pneumoniae clinical isolates. METHODS This was a cross sectional study involving use of archived Klebsiella pneumoniae isolates collected between January and December, 2019 at four tertiary hospitals in Uganda. All isolates were subject to antimicrobial susceptibility assays to determine phenotypic antibiotic resistance, pentaplex PCR to detect carbapenemases encoding genes and heptaplex PCR to identify capsular serotypes K1, K2, K3, K5, K20, K54 and K57. RESULTS The study found an overall phenotypic carbapenem resistance of 23.3% (53/227) and significantly higher genotypic resistance prevalence of 43.1% (98/227). Over all, the most prevalent gene was blaOXA-48-like (36.4%), followed by blaIMP-type (19.4%), blaVIM-type (17.1%), blaKPC-type (14.0%) and blaNDM-type (13.2%). blaVIM-type and blaOXA-48-like conferred phenotypic resistance in all isolates and 38.3% of isolates that harbored them respectively. Capsular multiplex PCR revealed that 46.7% (106/227) isolates were pathogenic and the predominantly prevalent pathotype was K5 (18.5%) followed by K20 (15.1%), K3 (7.1%), K2 (3.1%) and K1 (2.2%). Of the 106 capsular serotypes, 37 expressed phenotypic resistance; thus, 37 of the 53 carbapenem resistant K. pneumoniae were pathogenic. CONCLUSION The high prevalence of virulent and antibiotic resistant K. pneumoniae among clinical isolates obtained from the four tertiary hospital as revealed by this study pose a great threat to healthcare. Our findings underline the epidemiological and public health risks and implications of this pathogen.
Collapse
Affiliation(s)
- Kenneth Ssekatawa
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P. O. Box 71, Bushenyi, Uganda
- Africa Center Excellence in Materials Product Development and Nanotechnology (MAPRONANO ACE), College of Engineering Design Art and Technology, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Denis K. Byarugaba
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Jesca L. Nakavuma
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Charles D. Kato
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Francis Ejobi
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Robert Tweyongyere
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Wampande M. Eddie
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
54
|
Shen X, Yin L, Ma H, Pan X, Zhang D, Zhao R, Dai Y, Hou H, Hu X. Comprehensive genomic analysis and characterization of a new ST 174 type Klebsiella variicola strain isolated from chicken embryos. INFECTION GENETICS AND EVOLUTION 2021; 90:104768. [PMID: 33588064 DOI: 10.1016/j.meegid.2021.104768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/31/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Klebsiella variicola is a widespread opportunistic pathogen that causes infections in humans and animals. Herein a novel Klebsiella strain, AHKv-S01, was isolated and identified from dead chicken embryos in Anhui, China. Its genome contained a circular chromosome of 5,505,304 bp, with 5244 protein-coding genes, and an integrative conjugative element region containing 79 ORF sequences. AHKv-S01 was given a new sequence type number-174. Phylogenetic analyses showed that rpoB partial nucleotide sequences were highly reliable for identifying Klebsiella spp. Most of the 340 unique genes of AHKv-S01 were involved in cell envelop biogenesis, transcription, transport, and metabolic processes. Moreover, AHKv-S01 was sensitive to several antibiotics, but it showed strong resistance to penicillins, macrolides, and lincosamide. The genome contained three drug efflux pump superfamilies, β-lactamase genes, and fosfomycin resistance-related genes. Most drug resistance genes showed amino acid mutations. Multiple virulence and pathogenic factors were also identified, and they were mainly related to adhesion, secretion, iron acquisition, and immune evasion. Chicken embryo lethality assay results revealed that the 7-day chicken embryo lethality rate was 80%, 40%, and 50% for AHKv-S01, K. pneumoniae ATCC10031, and K. pneumoniae CICC24714, respectively. The median lethal dose of AHKv-S01 was 39.9 CFU/embryo. Even low infection levels of AHKv-S01 caused a significant reduction in chicken embryo hatchability. Severe pathological changes to the liver, heart, and brain tissues of embryos infected with AHKv-S01 were observed, and these changes appeared earlier in the heart and brain than in the liver. To conclude, our results provide a foundation for further studies aiming to assess the potential risk of K. variicola to poultry populations and production yields.
Collapse
Affiliation(s)
- Xuehuai Shen
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Lei Yin
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaocheng Pan
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China.
| | - Danjun Zhang
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China.
| | - Ruihong Zhao
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Yin Dai
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Hongyan Hou
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| | - Xiaomiao Hu
- Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui, China
| |
Collapse
|
55
|
Salazar-Llorente E, Morales M, Sornoza I, Mariduena-Zavala MG, Gu G, Nou X, Ortiz J, Maldonado-Alvarado P, Cevallos-Cevallos JM. Microbiological Quality of High-Demand Food from Three Major Cities in Ecuador. J Food Prot 2021; 84:128-138. [PMID: 33411929 DOI: 10.4315/jfp-20-271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Bacterial foodborne diseases are among the most important public health issues worldwide, but in Ecuador, reports on the microbiological quality of food are scarce. In this cross-sectional study, 450 samples of high-demand Ecuadorian food, including bolon, encebollado, sauces, ceviche, fruit, fruit juice, fruit salad, cheese, raw chicken, and ground beef, were collected from popular street markets in the cities of Guayaquil, Quito, and Cuenca. Populations of total aerobic mesophilic bacteria, total coliforms, fecal coliforms, Escherichia coli, Salmonella enterica, and Listeria monocytogenes were examined on composited samples by plate count following the local regulations (Norma Tecnica Ecuatoriana, Instituto Ecuatoriano de Normalización) for each kind of food. The individual and interaction effects of the city and food type on the levels of each bacterial group were assessed by two-way analysis of variance. Selected colonies from each culture were identified using Biolog OmniLog ID and sequencing of the V3 to V4 region on the 16S rRNA gene. Average total aerobic mesophilic bacteria, total coliform, fecal coliform, and E. coli levels were 5.10 ± 0.12, 2.50 ± 0.16, 1.09 ± 0.12, and 0.83 ± 0.12 log CFU/g or mL, respectively, with significant variations among the cities. The prevalence of Salmonella in chicken and sauces and L. monocytogenes in cheese and fruit salad was greater than 20%. Opportunistic pathogens including Klebsiella pneumoniae, Staphylococcus sciuri, and Enterococcus spp. were frequently identified in the samples from all three cities. High prevalence of spoilage microorganisms such as Bacillus amyloliquefaciens and biocontrol bacteria such as Lactococcus lactis was also observed. This is the first report on the microbiological quality of food from Ecuador. HIGHLIGHTS
Collapse
Affiliation(s)
- Enrique Salazar-Llorente
- Escuela Superior Politécnica del Litoral (ESPOL), Centro de Investigaciones Biotecnológicas del Ecuador
| | - Maria Morales
- ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Produccion, U.S. Department of Agriculture Agricultural Research Service, Beltsville, Maryland, USA
| | - Ivette Sornoza
- ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Produccion, U.S. Department of Agriculture Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Ganyu Gu
- Environmental Microbiology and Food Safety Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, Maryland, USA
| | - Xiangwu Nou
- Environmental Microbiology and Food Safety Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, Maryland, USA
| | - Johana Ortiz
- Department of Biosciences, Food Nutrition and Health Research Unit, Faculty of Chemical Sciences, Cuenca University, Cuenca, Ecuador
| | - Pedro Maldonado-Alvarado
- Escuela Politécnica Nacional, Departamento de Alimentos y Biotecnología, P.O. Box 17-01-2759, Quito, Ecuador
| | - Juan Manuel Cevallos-Cevallos
- Escuela Superior Politécnica del Litoral (ESPOL), Centro de Investigaciones Biotecnológicas del Ecuador.,(ORCID: https://orcid.org/0000-0003-4609-7998 [J.M.C.C.]).,ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
56
|
Molecular Typing of Klebsiella pneumoniae Clinical Isolates by Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction. Int J Microbiol 2020. [DOI: 10.1155/2020/8894727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. Klebsiella pneumoniae is one of the most important causes of nosocomial infections, including pneumonia, sepsis, and urinary tract infection. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) technique is a quick, reliable, and cost-effective method for molecular typing of Enterobacteriaceae family members. This study aimed to detect genetic relatedness among K. pneumoniae isolates from hospitals in Hamadan city, using ERIC-PCR technique. Materials and Methods. A total of 72 K. pneumoniae isolates were collected from patients admitted to Besat and Sina hospitals. After detection and confirmation of K. pneumonia isolates by chemical and conventional microbiological methods, DNAs were extracted after 24 hours of incubation at 37°C, using the boiling method. ERIC-PCR technique was carried out, and the ERIC patterns were analyzed by online data analysis service (inslico.ehu.es). ERIC profiles were compared using Dice method and clustered by UPGMA (unweighted pair group method with arithmetic mean) program. Also, the samples were evaluated by PCR method for the detection of aerobactin gene within their genome. Finding. The genetic relatedness among K. pneumoniae isolates was studied, and results established the genetic diversity of the clinical isolates by detecting 25 different ERIC types, including 14 common types and 11 unique types. Also, none of the isolates had aerobactin gene. Discussion. The results of this study showed high genetic diversity among K. pneumoniae strains, indicating the polyclonal distribution of K. pneumoniae isolates in Hamadan hospitals. This diversity causes problems for the treatment of infections due to the circulation of diverse K. pneumoniae clones, which possibly have different antimicrobial susceptibility patterns.
Collapse
|
57
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
58
|
Sivaraman GK, Sudha S, Muneeb KH, Shome B, Holmes M, Cole J. Molecular assessment of antimicrobial resistance and virulence in multi drug resistant ESBL-producing Escherichia coli and Klebsiella pneumoniae from food fishes, Assam, India. Microb Pathog 2020; 149:104581. [PMID: 33080358 DOI: 10.1016/j.micpath.2020.104581] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
The present study investigated the prevalence of Extended-Spectrum Beta Lactamase (ESBL) -producing E. coli and K. pneumoniae from the food fishes in retail markets in Assam, India. A total of 54 ESBL-producing E. coli and 12 K. pneumoniae isolates were recovered from 79 fish samples and were analyzed for antimicrobial resistance genes (ARGs) and virulence genes. E. coli isolates were categorized as multi drug resistant with resistance up to 12 different antibiotics with multiple antibiotic resistances (MAR) index ranging from 0.26 to 0.63. In E. coli, 100% resistance to cefotaxime along with 6% resistance to ceftazidime (third-generation cephalosporins) was observed. Moreover, 85% of the E. coli isolates were resistant to cefepime, a fourth-generation cephalosporin. K. pneumoniae showed resistance to 11 different antibiotics with MAR index value ranging from 0.21 to 0.57. All K. pneumoniae isolates showed 100% resistance to cefotaxime, 67% resistance to ceftazidime and 75% resistance to cefepime. Molecular characterization of ARGs revealed the presence of CTX-M group 1(CTX-M-15) in almost all E. coli isolates (98%, n = 53) and 100% in K. pneumoniae. A combination of uniplex and multiplex PCRs revealed fewer ARGs in E. coli isolates, with each isolate carrying 3 to 5 genes (tetA, dfrA1, sul1, sul2, qnrB, qnrS, aac(6')-Ib-cr). Majority of the E. coli were assigned to low-virulence phylogroup B1 and A while 8% of them belonged to pathogenic phylogroup D. 31 unique genetic profiles were identified for E. coli isolates by Pulsed-Field Gel Electrophoresis (PFGE) typing. K. pneumoniae isolates were highly diverse with 11 unique genetic profiles and a substantial ARG profile (blaTEM, blaSHV, blaOXA-1-like, tetA, strA, strB, dfrA1, sul1, sul2, qnrB, qnrS, aac(6')-Ib-cr, oqxA, oqxB). The frequency of ARGs ranged between 4 and 11. All K. pneumoniae isolates belonged to capsular serotype with wzi gene. Virulence gene iutA was prominent in all isolates while ybtS and kfu were confirmed in two isolates. Our findings raise concerns that fishes bought for consumption may serve as potential reservoirs of AMR genes and pose serious threat to public health. The study emphasizes the need for extensive surveillance of resistant strains in aquaculture and related settings, their in-depth analysis of population structure and transmission dynamics.
Collapse
Affiliation(s)
- G K Sivaraman
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, India.
| | - S Sudha
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - K H Muneeb
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Bibek Shome
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Mark Holmes
- Department of Veterinary Medicine, University of Cambridge, UK
| | - Jennifer Cole
- Department of Geography, Royal Holloway, University of London, UK.PhD Principal Scientist & Principal Investigator, Microbiology Fermentation and Biotechnology Division ICAR-Central Institute of Fisheries Technology, Matsyapuri P. O, Willingdon Island Kochi, 682 029, India
| |
Collapse
|
59
|
Genotyping and Virulence Analysis of Drug Resistant Clinical Klebsiella pneumoniae Isolates in Egypt. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a highly drug-resistant human pathogen responsible for a variety of serious infections. Integrons, mobile genetic elements capable of integrating antibiotic resistance genes, and the capsule are important virulence factors that increase bacteria resistance to phagocytosis and antimicrobial agents. Molecular typing is an effective tool for identifying the likely etiology of infection. This study aimed to investigate the presence of the rmpA, wcaG, intI1, intI2, and intI3 virulence genes in clinical Klebsiella pneumoniae isolates, and explore their molecular genotypes by using ERIC-PCR. Fifty Klebsiella pneumoniae strains were isolated from various specimens. Antimicrobial resistance was evaluated by using the disc diffusion method. Five genes were amplified by conventional PCR. Genotyping was performed molecularly by using ERIC-PCR. Forty-seven isolates were multi-drug resistant. In all, 18%, 36%, and 98% of the 50 K. pneumoniae isolates were positive for rmpA, wcaG, and intI1 genes, respectively; however, all isolates were negative for intI2 and intI3 genes. Dendogram analysis of the ERIC-PCR results showed 49 distinct patterns, arranged in five clusters. Our study demonstrates high levels of antibiotic resistance and virulence among clinical isolates of K. pneumoniae. Such resistance reflects a growing problem for public health. Further, the presence of integrons increases the horizontal spread of antibiotic resistance and virulence genes among bacterial isolates. The ERIC-PCR technique is an effective method for molecular typing and epidemiological studies of hospital-acquired infections.
Collapse
|
60
|
Abdel-Rhman SH. Characterization of β-lactam resistance in K. pneumoniae associated with ready-to-eat processed meat in Egypt. PLoS One 2020; 15:e0238747. [PMID: 32881936 PMCID: PMC7470258 DOI: 10.1371/journal.pone.0238747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 11/19/2022] Open
Abstract
K. pneumoniae was known as a nosocomial infection that causes human diseases. It is considered as one of the food-borne pathogens as it causes septicemia and diarrhea in humans. This study aims to characterize K. pneumoniae strains isolated from ready to eat processed meat phenotypically and genetically. Three hundred and fifty ready to eat processed meat (Luncheon-meat) samples were collected. Forty-four (12.6%) K. pneumoniae strains were isolated and bio-typed, where the majority were identified to belong to biotype B1. K1 and K2 serotypes were detected and strains were classified as hypermucoviscous K. pneumoniae (HVKP) and classic K. pneumoniae (CKP) (26 and 18 isolates, respectively). The isolates were resistant to several classes of β–lactam antibiotics, ceftazidim and cefotaxime (95.5%), cefoxitin (93.2%), ertapenem (90.9%) and amoxicillin-clavulanic acid (86.4%). They were classified as extended spectrum β–lactamases (ESBLs), AmpC or carbapenemase-producers phenotypically. Eighteen β-lactamase genes were investigated by PCR. The most prominent genes were SHV (63.6%), TEM (52.2%), CTX-M15 (50%), AMPC (47.7%), CIT-M (45.5%) and VIM (43.2%). Co-detection of β–lactam resistance genes revealed 42 gene profiles. Twenty-four isolates had the complete efflux system (AcrAB-ToƖC). Besides, Integrons (I, II, III) were detected in 20 isolates. Molecular typing by ERIC-PCR showed high genetic diversity between isolates as 34 different patterns were identified. Overall, this study confirmed the hazards posed by the presence of multiple resistance genes in the same isolate and this should not be undervalued. Besides, the horizontal transfer of plasmid harboring resistance genes between isolates in food represents potential health risks for consumers in Egypt and so the control and inhibition plans are necessary.
Collapse
Affiliation(s)
- Shaymaa H. Abdel-Rhman
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- * E-mail: ,
| |
Collapse
|
61
|
Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch Microbiol 2020; 202:2825-2840. [PMID: 32747998 DOI: 10.1007/s00203-020-02005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022]
Abstract
M18 strain of Streptococcus salivarius is a bacterial replacement probiotic that has been suggested for use in the oral cavity. Here, we have shown that S. salivarius M18 cell-free supernatant reduced the growth of the two most common human pathogens Pseudomonas aeruginosa and Klebsiella pneumonia and sensitized the pathogenic bacteria to antibiotic. Besides, the supernatant inhibited biofilm formation of P. aeruginosa drastically. For pinpointing the biomolecular changes that occurred in P. aeruginosa incubated with the probiotic supernatant, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used. Unsupervised learning algorithms, principal component analysis (PCA) and hierarchical cluster analysis (HCA), and intensity analyses of individual spectral bands exhibited comprehensive alterations in the polysaccharide and lipid contents and compositions of P. aeruginosa cultivated with S. salivarius M18 cell-free supernatant. These results indicate that S. salivarius M18 has the potential for the prevention or alleviation of different pathogen-induced infections along with the infections of oral pathogens.
Collapse
|
62
|
Tian X, Wang Q, Perlaza-Jiménez L, Zheng X, Zhao Y, Dhanasekaran V, Fang R, Li J, Wang C, Liu H, Lithgow T, Cao J, Zhou T. First description of antimicrobial resistance in carbapenem-susceptible Klebsiella pneumoniae after imipenem treatment, driven by outer membrane remodeling. BMC Microbiol 2020; 20:218. [PMID: 32689945 PMCID: PMC7372807 DOI: 10.1186/s12866-020-01898-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a looming threat to human health. Although there are numerous studies regarding porin alteration in association with the production of ESBLs and/or AmpC β-lactamase, a systematic study on the treatment-emergence of porins alteration in antibiotic resistance does not yet exist. The aim of this study was to investigate the underlying mechanism of resistance of K. pneumoniae during carbapenem treatment. RESULTS Here, we report three strains (FK-2624, FK-2723 and FK-2820) isolated from one patient before and after imipenem treatment during hospitalization. Antibiotic susceptibility testing indicated that that the first isolate, FK-2624, was susceptible to almost all tested antimicrobials, being resistant only to fosfomycin. The subsequent isolates FK-2723 and FK-2820 were multidrug resistant (MDR). After imipenem therapy, FK-2820 was found to be carbapenem-resistant. PCR and Genome Sequencing analysis indicated that oqxA, and fosA5, were identified in all three strains. In addition, FK-2624 also harbored blaSHV-187 and blaTEM-116. The blaSHV-187 and blaTEM-116 genes were not detected in FK-2723 and FK-2820. blaDHA-1, qnrB4, aac (6')-IIc, and blaSHV-12, EreA2, CatA2, SulI, and tetD, were identified in both FK-2723 and FK-2820. Moreover, the genes blaDHA-1, qnrB4, aac (6')-IIc were co-harbored on a plasmid. Of the virulence factors found in this study, ybtA, ICEKp6, mrkD, entB, iroN, rmpA2-6, wzi16 and capsular serotype K57 were found in the three isolates. The results of pairwise comparisons, multi-locus sequencing typing (MLST) and pulsed-field gel electrophoresis (PFGE) revealed high homology among the isolates. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that isolate FK-2820 lacked OmpK36, with genome sequence data validating that there was a premature stop codon in the ompK36 gene and real-time RT-PCR suggesting high turnover of the ompK36 non-sense transcript in FK-2820, with the steady-state mRNA level 0.007 relative to the initial isolate. CONCLUSION This study in China highlight that the alteration of outer membrane porins due to the 14-day use of imipenem play a potential role in leading to clinical presentation of carbapenem-resistance. This is the first description of increased resistance developing from a carbapenem-susceptible K. pneumoniae with imipenem treatment driven by outer membrane remodeling.
Collapse
Affiliation(s)
- Xuebin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiongdan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Laura Perlaza-Jiménez
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xiangkuo Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yajie Zhao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Vijay Dhanasekaran
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
63
|
Zhao Y, Zhang S, Fang R, Wu Q, Li J, Zhang Y, Rocker A, Cao J, Lithgow T, Zhou T. Dynamic Epidemiology and Virulence Characteristics of Carbapenem-Resistant Klebsiella pneumoniae in Wenzhou, China from 2003 to 2016. Infect Drug Resist 2020; 13:931-940. [PMID: 32280249 PMCID: PMC7128075 DOI: 10.2147/idr.s243032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose To investigate transitions in resistance mechanisms, virulence characteristics and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) during 2003–2016 in a major Eastern Chinese medical center. Patients and Methods From a total of 2299 K. pneumoniae clinical strains collected from 2003 to 2016, 214 were found to be CRKP isolates and were selected for further study. Characterization of these was conducted by molecular detection of antibiotic resistance markers and virulence determinants, modified carbapenem inactivation method and multilocus sequence typing (MLST). Results In this study, the prevalence of CRKP was increasing over the 14-year period, mirroring a national trend. These CRKP strains were resistant to most of the tested, clinically relevant drugs. The majority of these CRKP strains were positive for carbapenemases, with the Klebsiella pneumoniae carbapenemase (KPC) found to be the dominant type (207/210, 98.6%). The carrier rates of virulence genes uge, entB, fimH, mrkD and ureA increased in 2016, while the ybtA, iucA and irp2 showed a relatively constant trend. From MLST data, ST11 (88.8%, 190/214) was the preponderant sequence type (ST), followed by ST15 (1.9%, 4/214) and ST656 (1.4%, 3/214). Several strains with less common STs (ST690, ST895, ST1823 and ST1384) were also detected, and these too showed high levels of antimicrobial resistance. Conclusion The average national rise in CRKP across China is mirrored in this in-depth analysis of a single hospital, while the prevalence of hypervirulent CRKP (such as ST15) was relatively low as of 2016. Continuous monitoring is necessary to keep track of CRKP and should include the prospect of newly emerging strains with less common STs and the prospect of detecting carbapenem-resistant, carbapenemase-negative Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Yajie Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Siqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Renchi Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yizhi Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Andrea Rocker
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
64
|
Bobbadi S, Kiranmayi Chinnam B, Nelapati S, Tumati SR, Kandhan S, Gottapu C, Boddu SV. Occurrence and genetic diversity of ESBL producing
Klebsiella
species isolated from livestock and livestock products. J Food Saf 2019. [DOI: 10.1111/jfs.12738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Suresh Bobbadi
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| | - Bindu Kiranmayi Chinnam
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| | - Subhashini Nelapati
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| | - Srinivasa R. Tumati
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| | - Srinivas Kandhan
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| | - Chaitanya Gottapu
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| | - Swathi V. Boddu
- Department of Veterinary Public Health and EpidemiologyN.T.R. College of Veterinary Science Gannavaram India
| |
Collapse
|
65
|
Zhang S, Zhang X, Wu Q, Zheng X, Dong G, Fang R, Zhang Y, Cao J, Zhou T. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob Resist Infect Control 2019; 8:166. [PMID: 31673355 PMCID: PMC6819602 DOI: 10.1186/s13756-019-0615-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background Klebsiella pneumoniae-induced pyogenic liver abscess (KP-PLA) has emerged as a life-threatening disease worldwide. However, to date, a limited number of scholars have attempted to systematically elucidate the characteristics of KP-PLA. The aim of the present study was to analyze clinical, microbiological, and molecular epidemiological characteristics of KP-PLA patients in Southeastern China. Methods The KP-PLA cases from a tertiary teaching hospital in China from January 2016 to December 2017 were systemically studied and elucidated comprehensively. The virulence factors, resistant spectrum, and clones of K. pneumoniae isolates were identified with string test, polymerase chain reaction (PCR), antimicrobial susceptibility test, and multilocus sequence typing. Moreover, the characteristics in KP-PLA patients with and without other hepatobiliary diseases (OHD) were also been compared. Results A total of 163 KP-PLA cases were enrolled, in which the majority of those cases were senior males, and often associated with multiple underlying diseases, including diabetes (49.7%). The remaining cases belonged to healthy individuals (50.3%). The clinical symptoms were common but nonspecific, characterized by increased inflammatory parameters and abnormal liver function parameters. The abscess was often right-sided solitary presentation (58.3%). Cephalosporin or carbapenem plus metronidazole combined with percutaneous puncture or catheter drainage were favorable therapeutics. Although low resistance rates of commonly used antimicrobial drugs (< 10%) were observed, twelve strains were identified as multidrug resistant (MDR) strains, and were mainly isolated from the OHD patients. The hypermucoviscosity, as well as K1 and K2 serotypes accounted for 30.7, 40.5, and 19.0%, respectively. Except for iroN (24.5%) and magA (45.4%), the high prevalence of virulence genes (e.g. aerobactin, rmpA, mrkD, fimH, uge, ureA, entB, ybtA, kfuBC, and wcaG) was identified (68.7–100.0%). Additionally, ST23 was found as a predominant sequence type (ST; 38.7%), and three novel STs (ST3507, ST3508 and ST3509) were noted as well. Conclusions The present study reported the abundant hvKp strains in KP-PLA, as well as convergence of hypervirulent and MDR K. pneumoniae isolates from the KP-PLA patients, particularly those cases with OHD. Given the various clinical manifestations and destructive pathogenicity, determination of the comprehensive characteristics of such isolates is highly essential to effectively carry out for optimal management and treatment of KP-PLA.
Collapse
Affiliation(s)
- Siqin Zhang
- 1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Xiucai Zhang
- 1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Qing Wu
- 1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Xiangkuo Zheng
- 2School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 China
| | - Guofeng Dong
- 2School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 China
| | - Renchi Fang
- 1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Yizhi Zhang
- 1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Jianming Cao
- 2School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000 China
| | - Tieli Zhou
- 1Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| |
Collapse
|
66
|
RANJBAR R, AFSHAR D. Evaluation of (GTG) 5-PCR for Genotyping of Klebsiella pneumonia Strains Isolated from Patients with Urinary Tract Infections. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1879-1884. [PMID: 31850266 PMCID: PMC6908898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Klebsiella pneumonia is one of the common causes of pneumonia and bacteremia in intensive care patients. The present study was aimed to determine the capability of (GTG) 5-PCR assay for molecular typing of K. pneumonia strains isolated from patients with urinary tract infections. METHODS In this descriptive-sectional study, K. pneumoniae strains were collected from hospitalized patients with urinary tract infection in Baqiyatallah Hospital, Tehran, Iran during 2017-2018. Isolates were identified by conventional microbiological tests. Bacterial DNA was extracted using boiling method and (GTG) 5-PCR assay was used for subtyping of the isolates. For clustering of isolates, dendrogram was generated according to the un-weighted pair group method with arithmetic (UPGMA). RESULTS Overall, 88 K. pneumoniae isolates were isolated and subjected to the molecular typing study. The (GTG) 5-PCR assay was able to differentiate the K. pneumoniae strains into 9 clusters including G1-G9. Genotype clusters G4 and G9 consist of highest (26) and lowest (1) number isolate, respectively. CONCLUSION The K. pneumonia strains isolated under the study belonged to various clones and the (GTG) 5-PCR assay as simple and rapid method can be a powerful tool for molecular typing of K. pneumoniae strains.
Collapse
Affiliation(s)
- Reza RANJBAR
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Davoud AFSHAR
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
67
|
Yang F, Deng B, Liao W, Wang P, Chen P, Wei J. High rate of multiresistant Klebsiella pneumoniae from human and animal origin. Infect Drug Resist 2019; 12:2729-2737. [PMID: 31564923 PMCID: PMC6731983 DOI: 10.2147/idr.s219155] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
Purpose The main objectives of the present study were to detect the antimicrobial susceptibility and molecular characteristics of Klebsiella pneumoniae isolated from different hosts and to investigate the possibility of K. pneumoniae transmission between animals and humans. Materials and methods A total of 189 nonduplicate K. pneumoniae isolates were collected from hospitals and four species of animals in Henan Province, China. The disk diffusion method was used for antimicrobial susceptibility testing, and resistance and virulence genes were screened by polymerase chain reaction (PCR). The molecular types were identified through multilocus sequence typing (MLST), and the hypermucoviscous (HMV) phenotype was identified using the “string-forming test”. Pearson’s parameters were used to determine the potential link among the molecular types and resistance and virulence genes of all K. pneumoniae strains. Results The resistance rates of the 189 K. pneumoniae isolates against 15 antibiotics ranged from 11.6% to 77.8%. The highest multidrug resistance rate was detected in the pig strains (93.6%), followed by the human strains (90.4%), chicken strains (88.9%), cow strains (52.0%) and sheep strains (50.0%). Forty-eight (25.4%) K. pneumoniae strains presented the HMV phenotype. entB, fimH-1 and mrkD were the most prevalent of the detected virulence genes, and magA and rmpA were the least prevalent genes in all the isolates. The MLST analysis revealed 24 unique sequence types (STs) among from the 189 isolates. ST11, ST235 and ST258 were common STs among the five isolates of host origin. ST258 exhibited significantly positive correlations with blaNDM, magA and the HMV phenotype and a negative correlation with qnrB. Conclusion K. pneumoniae strains from different hosts, including humans and animals, have common molecular types and similar phenotypes, and these strains can potentially be transmitted between humans and animals.
Collapse
Affiliation(s)
- Fan Yang
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China.,Xinxiang Key Laboratory of Pathogenic Biology, Xinxiang, People's Republic of China
| | - Baoguo Deng
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Wei Liao
- Department of Clinical Laboratory, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Peizhen Wang
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Ping Chen
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jidong Wei
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
68
|
Remya PA, Shanthi M, Sekar U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol 2019; 37:210-218. [PMID: 31745021 DOI: 10.4103/ijmm.ijmm_19_157] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose This study was undertaken to characterise the virulence factors in clinical strains of Klebsiella pneumoniae and analyse their association with various infections caused and also to determine the association between virulence factors and antimicrobial resistance profile. Materials and Methods A total number of 370 clinically significant, non-duplicate isolates of K. pneumoniae isolated from both hospitalised patients and patients attending clinics were included in this study. Polymerase chain reaction (PCR) was carried out for the detection of various virulence genes such as mucoviscosity-associated gene A (magA), gene associated with allantoin metabolism (allS), Klebsiella ferric iron uptake(Kfu), capsule-associated gene A (K2A), regulator of mucoid phenotype A (rmpA), enterobactin (entB), yersiniabactin (YbtS), aerobactin, Fimbrial adhesin (FimH) and uridine-diphosphate galacturonate 4-epimerase (uge). Antimicrobial susceptibility testing and PCR-based detection of beta-lactamase-encoding genes such as extended-spectrum beta-lactamases, AmpCs and carbapenemases were performed. Univariate analysis was done to find the association between virulence genes and mortality. Results The siderophore, entB, was present in most (90.5%) of the isolates. Of the 370 isolates, 345 carried multiple virulence genes; 15 harboured single virulence genes and 10 did not harbour any of the studied virulence genes. The most common combination of occurrence was entB and FimH. A mortality rate of 12.75% (38/298) was observed among hospitalised patients. None of the virulence genes had any significant association with mortality. Conclusion Pathogenic K. pneumoniae can harbour single to multiple virulence genes. Invasive infection with even a single virulence gene-harbouring K. pneumoniae can lead to poor outcomes. Both multidrug-resistant (MDR) and non-MDR K. pneumoniae can harbour a variety of virulence genes. None of the virulence genes have a significant association with mortality.
Collapse
Affiliation(s)
- P A Remya
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - M Shanthi
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Uma Sekar
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
69
|
DETECTION OF GENETIC DETERMINANTS OF PATHOGENICITY OF STRAINS OF KLEBSIELLA SPP. ISOLATED FROM THE INTESTINAL BIOTOPE OF CHILDREN WITH FUNCTIONAL GASTROINTESTINAL DISORDERS. ACTA BIOMEDICA SCIENTIFICA 2018. [DOI: 10.29413/abs.2018-3.5.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional gastrointestinal disorders (FGID) are one of the most common problems in children of the first year of life. The aim of the study was to assess the pathogenic potential of Klebsiella spp. strains, isolated from the colon in children of the first year of life with FGID. Material for the study included 61 coprological samples. The biological material was divided into comparison groups, depending on the type of Klebsiella excreted at a concentration of 105–108 CFU/g: 1st – with vegetation in the colon K. pneumoniae (n = 30); 2nd – with vegetation K. oxytoca (n = 31). Bacteriological study composition of the intestinal contents was carried out according to the Industry standard “Protocol of management of patients. Intestinal dysbiosis” (2003). Identification was carried out according to generally accepted schemes using commercial test systems for biochemical identification of bacteria. Statistical data processing was performed using licensed applications “MS Office Excel 2003 for Windows 7”. The data on the quantitative and qualitative changes in the composition microbiota in the comparison groups were obtained. The results of detection genetic determinants of pathogenicity in the samples of Klebsiella of two species show that among the strains of Klebsiella spp., vegetating in the intestines of children as a component of an allochthonous microbiota, a sufficiently high and virulent potential can be concentrated. Detection of pathogenicity genes in bacteria of the genus Klebsiella will expand and deepen the problem of finding the structures of adaptation of strains of bacteria that cause FGID in children of the first year of life.
Collapse
|